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Abstract
The occurrence of thrombotic complications, which can result in excess mortality and morbidity, represent an imbalance 
between the pro-thrombotic and fibrinolytic equilibrium. The mainstay treatment of these complications involves the use 
of antithrombotic agents but despite advances in pharmacotherapy, there remains a significant proportion of patients 
who continue to remain at risk. Endogenous fibrinolysis is a physiological counter-measure against lasting thrombosis 
and may be measured using several techniques to identify higher risk patients who may benefit from more aggressive 
pharmacotherapy. However, the assessment of the fibrinolytic system is not yet accepted into routine clinical practice. In 
this review, we will revisit the different methods of assessing endogenous fibrinolysis (factorial assays, turbidimetric lysis 
assays, viscoelastic and the global thrombosis tests), including the strengths, limitations, correlation to clinical outcomes 
of each method and how we might integrate the assessment of endogenous fibrinolysis into clinical practice in the future.
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1  Background

The occurrence of thrombotic complications, that may be 
associated with excess mortality and morbidity, represent 
an imbalance between the pro-thrombotic and fibrinolytic 
equilibrium. In the treatment of cardiovascular disease 
such as acute coronary syndrome (ACS) and atrial fibril-
lation (AF), the use of antithrombotic therapy to prevent 
further major adverse cardiovascular events (MACE) is an 
integral component of secondary prevention. However, 
despite advances in pharmacotherapy, many patients 
remain at risk of further thrombotic events.

Endogenous fibrinolysis, if impaired, has been identified 
as a novel risk factor for future adverse events [1, 2]. Bio-
logically, the presence of impaired fibrinolysis makes per-
fect sense as a risk factor beyond pro-thrombotic drivers as 
the two processes go hand-in-hand to prevent thrombotic 

and haemorrhagic events. Nonetheless, the complex and 
dynamic nature of the thrombotic and fibrinolytic path-
ways (Fig. 1) can make the assessment, interpretation and 
clinical application challenging and there is no accepted 
“gold standard” test in routine clinical use.

A typical evaluation of a process involves an assess-
ment of 3 parts—appraising the input (thrombus), the 
process (endogenous fibrinolysis) and the product 
(fibrin degradation product [FDP]) (Fig. 2a). Any evalu-
ation of the output requires a concurrent assessment 
of the input, for example, the more thrombus at the 
start, the higher the levels of FDP will be expected 
for an equally effective process (Fig. 2b). However, an 
assessment of in vivo thrombus burden with concurrent 
measurement of FDP to evaluate the efficacy of fibrinol-
ysis is not feasible with current available techniques, 
although the Badimon chamber [3], which utilises a 
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pump to draw native blood directly into perfusion 
chamber, is currently the most well recognised method 
to assess thrombogenicity, it remains only a surrogate 
measure of thrombus burden. Therefore, we are limited 

to measuring factors involved in the process (factorial 
assays) or utilising ex vivo methods to replicate in vivo 
conditions in order to assess its efficacy.
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Fig. 1  Process of thrombosis and fibrinolysis. The complex process 
of thrombosis and fibrinolysis requires the presence of multiple 
factors. The formation and stabilisation of a platelet-rich fibrin clot 
requires (1) the activation of platelets with the help of tissue fac-
tor (TF), thromboxane A2 (TxA2), adenosine diphosphate (ADP) 
and von Willebrand factor (vWF) all of which are present during 
endothelial injury and presence of high shear stress and (2) the 
activation of fibrinogen to fibrin which is driven by thrombin for-
mation, triggered by activated Factor X through the common path-
way of the coagulation cascade. On the other hand, fibrinolysis is 

mainly driven by plasmin. The activation of plasmin requires tis-
sue (tPA) and urokinase (uPA) plasminogen activator. Inhibitors of 
fibrinolysis works on different segments of the pathway—plasmi-
nogen activator inhibitor (PAI) inhibits tPA and uPA, lipoprotein (a) 
(Lp(a)) reduces formation of plasmin from plasminogen, thrombin-
activatable fibrinolysis inhibitor (TAFI) and α-2-antiplasmin (A2AP) 
reduces binding of plasmin to fibrin clot and in combination with 
Factor XIII (FXIII), they strengthen and stabilises the fibrin clot, mak-
ing it more resistant to lysis

Fig. 2  Assessment of the effectiveness of a process. a Effectiveness 
of a process is measured by the output which is dependent on the  
input. b During period of stress, an effective process will be able 
to produce a higher output with the same volume of input when 

compared to an ineffective process. In biological systems, the effec-
tiveness of the system to cope with stress (e.g. higher thrombatic 
burden) decides the outcome (thrombatic compliacations versus 
no complications)
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In this review, we will discuss currently available assess-
ments for endogenous fibrinolysis, their clinical relevance, 
limitations and the future directions.

2  Regulation of endogenous fibrinolysis

There are many factors which play a vital role in the pro-
cess of thrombosis and fibrinolysis. As the review is cen-
tred around endogenous fibrinolysis, we will focus on the 
factors of the fibrinolytic pathway  (Fig. 3).

The key enzyme that degrades fibrin clots is plasmin 
which is released as a proenzyme (plasminogen) by the 
liver [4]. Activation of the inactive plasminogen to its 
active form is facilitated by tissue plasminogen activator 
(t-PA) and urokinase plasminogen activator. This consti-
tutes the main pathway of fibrinolysis which is regulated 
by other enzymes. Tissue plasminogen activator is con-
tinually released by vascular endothelial cells into the 
circulation and cleared by the liver. [5] It has a half-life of 
approximately three minutes. Under normal physiological 
situations, the activation of plasminogen to plasmin by 
t-PA is insignificant. However, in the presence of a fibrin 
clot (which offers binding sites to both molecules), the 
activity levels of t-PA are increased by at least 500-fold [6].

Normally, free t-PA forms a complex with plasmino-
gen activator inhibitor-1 (PAI-1), rendering it inactive 
thereby reducing the activation of plasminogen. Acting 
on processes further down the line, thrombin-activatable 
fibrinolysis inhibitor (TAFI) down-regulates fibrinolysis by 
reducing the binding of plasminogen to the fibrin clot via 
removal of C-terminal lysine binding site. This halts the 

propagation phase of fibrinolysis through a positive feed-
back loop whereby plasmin generates more C-terminal 
lysine which in turn propagates more plasmin formation 
[7]. Another inhibitor of fibrinolysis is alpha-2-antiplas-
min (A2AP) which works by inhibiting circulating plasmin 
through formation of a 1:1 stable complex [8].

Lipoprotein (a) [Lp(a)] is a low-density lipoprotein con-
taining apolipoprotein(a) which shows a high degree 
of sequence identity with plasminogen. This homology 
allows Lp(a) to compete with plasminogen for binding to 
fibrin, exerting an anti-fibrinolytic effect [9].

3  Factorial assays

Enzymatic measurements using factorial assays comprise 
of two main forms—immunological assays for the quan-
tification of specific proteins using enzyme-linked immu-
nosorbent assay (ELISA) techniques, and functional assays 
to evaluate activity levels associated with these proteins 
within a sample. Most clinical studies on fibrinolysis have 
utilised one assay method. Here, we summarise some of 
the studies which have been performed in this area over 
the past decade.

3.1  Tissue plasminogen activator

Tissue plasminogen activator may exist as either free t-PA 
or, due to the high affinity of PAI-1 for t-PA, for the main 
part as inactivated t-PA/PAI-1 complex. Over the years, lab-
oratory evaluation of this enzyme has proved challenging 
as t-PA and PAI-1 exhibit diurnal and seasonal variations 
[10, 11], and are influenced by factors such as exercise. 
Therefore, standardisation of blood collection is manda-
tory to produce accurate results. Samples should typically 
be taken from a rested, fasting subject in the morning with 
no consumption of tobacco or alcohol beforehand. For 
functional assays of enzyme activity, free t-PA in the blood 
must be stabilised by drawing the sample into an acidified 
citrate solution to prevent in vitro inactivation of free t-PA 
by active PAI-1 [12]. Total t-PA that represents both active 
and inactive fractions may be measured using ELISA. In 
the resting state, majority of t-PA is in the inactive form.

Kulwas et al. found that ELISA-measured t-PA was raised 
in patients with type 2 diabetes mellitus (DM) compared to 
age-matched controls [13]. However, the authors reported 
that among those with type 2 DM, a lower concentration 
of t-PA was seen in patients with diabetic foot syndrome. 
A community-based cohort study of 8265 participants 
based in Netherlands did not demonstrate any relation-
ship between baseline t-PA levels and incident AF over a 
10-year follow-up period [14]. Nonetheless, elevated levels 
of t-PA were described in patients with an acute coronary 

Fig. 3  Effects of different factors on the process of fibrinolysis. 
FDP—fibrin degradation product, Lp(a)—Lipoprotein A, PAI-1—
plasminogen activator inhibitor 1, TAFI—thrombin activatable 
fibrinolysis inhibitor, tPA—tissue plasminogen activator, uPA—
urokinase plasminogen activator
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syndrome compared to healthy controls [15]. Moreover, 
there was a gradual reduction in t-PA over 30 days after the 
acute event which is in alignment with our understand-
ing of prothrombotic states in this setting. In patients 
with an acute ischaemic stroke, there was a weak but 
independent positive association between levels of t-PA 
antigen and vascular death [16]. A prospective study of 
3358 middle-aged males by Wannamethee et al. failed 
to demonstrate any relationship between tPA and stroke 
risk over a 9-year follow-up period [17]. Limitations of this 
study were the lack of generalisability to females, younger 
males and other ethnic groups (predominantly Caucasian 
population), and the use of a single measurement of t-PA 
at baseline.

Surprisingly, the use of t-PA-ROTEM, which is the addi-
tion of recombinant t-PA to whole blood assays analysed 
by thromboelastometry (discussed later in the review), did 
not detect enhanced fibrinolytic capacity in patients with 
mild bleeding symptoms. Instead, the results were influ-
enced by other factors such as PAI-1, TAFI, α2-antiplasmin, 
plasminogen, FII and FXII levels. [18] The latter finding 
highlights the limitations of studies that utilise immuno-
logical assays and evaluate fibrinolytic enzymes in isola-
tion as the change in individual fibrinolytic markers may 
not necessarily reflect the overall state of fibrinolysis. Lev-
els of plasminogen could potentially be more reflective of 
hyperfibrinolysis, with lower levels associated with severe 
sepsis [19] although its role in impairment of fibrinolysis 
and coronary artery disease remains uncertain.

3.2  Plasminogen activator inhibitor‑1

Another important factorial assay of the fibrinolysis path-
way is PAI-1. The performance of PAI-1 as a biomarker has 
been reported to be comparable to established clinically-
utilised biomarkers such as NT-proBNP and C-reactive 
protein [20]. Nonetheless, PAI-1 may be affected by vari-
ous external factors. Moreover, peripheral plasma levels 
of PAI-1 may not reflect its true contribution to inhibiting 
fibrinolysis as the majority of PAI-1 is released at the site 
of thrombus by activated platelets [21]. Elevated levels 
of PAI-1 are observed in conditions such as obesity and 
metabolic disorder [22]. Both of these conditions have 
been independently related to hypertension, dyslipidae-
mia, coronary artery disease and atrial fibrillation which 
further supports the association between PAI-1 and vari-
ous cardiovascular pathologies [23]. However, the effects 
of PAI-1 on long-term outcomes remain ill-defined. It was 
previously reported to be linked to impaired fibrinolysis in 
prothrombotic events such as myocardial infarction and 
stroke [24, 25]. A meta-analysis of studies in patients with 
atrial fibrillation (AF) found that increased circulating PAI-1 
levels were significantly associated with subsequent stroke 

[26]. However, the results of this analysis were based on 
only two studies.

Another area which has received some attention is the 
evaluation of PAI-1 in patients undergoing percutane-
ous coronary intervention. Jung et al. demonstrated that 
raised PAI-1 was independently associated with higher 
rates of unplanned early revascularisation (< 30 days) but 
reduced rates of unplanned late revascularisation (30 days 
to 1 year) following percutaneous coronary intervention 
[27]. The authors postulate that the former observation 
may be related to the fact that PAI-1 levels are a surro-
gate for platelet activation which is enhanced in the acute 
phase [27]. Additionally, excess PAI-1 has been associated 
with lysis-resistant thrombus [28]. Based on the studies 
above, PAI-1 levels may have differing implications in spe-
cific cohorts and clinical situations. Overall, the role of PAI-
1as a biomarker has the same pitfall as t-PA – when meas-
ured in isolation from other factors, its value is limited.

Several studies have investigated the role PAI-1 4G/5G 
polymorphism in the promoter region of chromosome 
7q22. This mutation is associated with an increased expres-
sion of PAI-1. Compared to carriers of homozygous phe-
notypes (4G/4G or 5G/5G), myocardial infarction patients 
with PAI-1 4G/5G polymorphism were more likely to have 
coronary artery occlusion. Indeed, a meta-analysis of 72 
studies which included 45,083 patients found that the 
PAI-1 4G/5G polymorphism was associated with early-
onset coronary artery disease and significantly increased 
the risk of myocardial infarction in both Caucasians and 
Asians [29]. In contrast, the PAI-1 5G/5G genotype was 
independently linked to early spontaneous recanalization 
of the infarct-related artery in patients who presented with 
ST-elevation myocardial infarction [30].

On a separate but related topic, higher levels of PAI-1 
were found to be correlated to decreased low density 
lipoprotein particle size, which in turn increases the risk 
of atherosclerotic cardiovascular disease [22, 31]. Plasma 
concentration of PAI-1 has been found to be reduced with 
drug therapies such as atorvastatin and empagliflozin 
[32, 33]. This may provide an interesting avenue for future 
research.

3.3  Thrombin‑activatable fibrinolysis inhibitor

In a study of female patients, those with prior gestational 
DM had increased levels of atherosclerotic biomarkers and 
carotid intima media thickness compared to controls but 
no difference in TAFI antigen levels [34]. A further study 
involving a subgroup of patients with AF on oral antico-
agulation also demonstrated similar TAFI antigen levels 
between patients with and without DM. Despite this, the 
authors found that patients with DM who were treated 
with insulin had a hypercoagulable state secondary to 
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higher levels of thrombin generation. Ząbczyk et  al. 
showed that patients with left ventricular thrombus had 
hypofibrinolysis with higher TAFI antigen levels along-
side enhanced thrombin generation and more compact 
fibrin clots compared to controls. A case-controlled study 
of Chinese patients demonstrated a definite correlation 
between TAFI antigen levels and stroke risk in this popu-
lation [35]. However, there was a complex relationship 
such that with the increase of TAFI levels, the relative risk 
of stroke first increased then decreased. TAFI antigen may 
also be related to excess prothrombotic complications 
typically observed in malignancy [36].

TAFI is encoded by the carboxypeptidase B2 (CPB2) 
gene and several genetic mutations have been described. 
In a case-controlled trial, Xu et al. found that at the TAFI 
coding gene 1040C/T, the frequency for the T allele 
was inversely linked to an increased risk of diabetic 
nephropathy [37]. TAFI gene polymorphisms (505G/A 
and + 1583 T/A) were associated with greater severity 
of coronary stenosis in patients with suspected coro-
nary artery disease [38]. Other genetic variants such as 
Ala147Thr(rs3742264) and Thr325Ile(rs1926447) have also 
been investigated but with conflicting results [39, 40].

3.4  α2‑antiplasmin

In mice models, α2-antiplasmin appeared to be essential 
for the formation of stasis-induced thrombus [41]. Further-
more, it had a profound, dose-related impact on ischaemic 
brain injury, swelling, haemorrhage and survival after cer-
ebral thromboembolism potentially through its effects on 
microvascular thrombosis and expression of matrix metal-
loproteinase-9 [42]. Patients with type 1 DM were reported 
to incorporate more antiplasmin into the fibrin network 
than controls without DM; however, this may be counter-
balanced by an increased fibrinolytic potential in plasma 
due to lower antiplasmin levels (and PAI-1 activity).

Higher levels of α2-antiplasmin were also observed 
in patients with obstructive sleep apnoea [43]. This may 
partly explain the increased risk of cardiovascular com-
plications often linked to this cohort, as confocal stud-
ies have revealed that greater levels of α2-antiplasmin 
were associated with the formation of denser fibrin clots 
with a decreased fibrinolytic response [44]. Interestingly, 
Tóth et al. found regional differences in α2-antiplasmin 
levels (and other markers of thrombosis and fibrinoly-
sis) between left atrial and femoral vein samples during 
cardiac catheterisation [45], suggesting that systemic 
measures may not necessarily reflect local changes in 
haemostasis.

3.5  Lipoprotein(a)

Measurement of Lp(a) is typically performed using immu-
nological methods directed at apo(a). There is growing 
data to support a relationship between Lp(a) and the 
risk of atherosclerotic cardiovascular disease, ischaemic 
stroke and venous thromboembolism. In fact, this has 
recently been described in detail [46, 47]. High Lp(a) level 
has been identified as an independent risk factor of car-
diovascular disease with causal links to atherosclerosis. 
Among patients with known coronary artery disease, it 
also predicts worse long-term outcomes in terms of all-
cause death, cardiovascular death, non-fatal myocardial 
infarction, stroke and in-stent restenosis [48, 49].

In the ARIC study cohort, elevated levels of Lp(a) were 
not associated with incident AF [50]. However, it contrib-
uted to an increased risk of stroke among non-AF patients. 
More recently, a study by Arora et al. confirmed that Lp(a) 
is indeed a risk factor for ischaemic stroke but suggested 
that there were racial differences of the Lp(a) risk multiplier 
in this setting [51]. Conversely, higher Lp(a) levels were 
related to a lower risk of haemorrhagic stroke among 
patients on peritoneal dialysis [52].

3.6  Summary on the usefulness of measuring 
different components of the fibrinolytic 
pathway

There have been many studies in the literature attempting 
to define the predictive value of different factorial assays in 
fibrinolysis. However, the conflicting results coupled by the 
limitations of this approach in terms of knowing the rela-
tive importance and contribution of individual biomarkers 
to the overall fibrinolytic response, the difficulty in inter-
pretation of biomarker levels and activity, and the weak 
association in positive studies have resulted in much dis-
appointment. Due to the complex nature of the fibrinolytic 
pathway, with complex interactions between each factor, 
it is understandably challenging to gain a comprehensive 
overview based on assessments of individual components 
or enzymes [53–55]. Hence, global assays of fibrinolysis 
may provide a better assessment of fibrinolytic status.

4  Ex vivo assessment of fibrinolysis

Ex vivo assessment of fibrinolysis can be performed in 
plasma or whole blood assays, with or without external 
activators.
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4.1  Turbidimetric lysis assays

One of the first tests for overall fibrinolytic activity of 
plasma was the Euglobulin Clot Lysis Test in which plasma 
samples were treated to form a precipitant containing 
plasminogen, t-PA and fibrinogen. The precipitant is then 
dissolved in buffer and clotted with addition of thrombin, 
measuring the time to clot lysis by inspection. Although 
it has shown correlation to factors of fibrinolysis [56], 
this cumbersome technique has been replaced by more 
modern assays. The laboratory technique for assessment 
of plasma clot turbidity utilises light transmission to pro-
vide a measure of fibrin clot density. Plasma samples are 
treated with a mix of coagulation and lysis activators to 
initiate the process of coagulation and fibrinolysis [1]. With 
the utilisation of a microplate assay, lysis time (typically 
recorded as time to achieve half of the maximum absorb-
ance) can be recorded as a measure of effectiveness of 
fibrinolysis.

The measurement of plasma clot lysis time has been 
shown as an independent predictor of adverse clinical out-
come in ACS as shown in the large, multicentre substudy 
of the PLATO trial, with a HR of 1.36 (95% CI 1.17–1.59) 
for cardiovascular death with each 50% increase in lysis 
time[1] and within the diabetic population (HR 1.49, 95% 
CI 1.08–2.04) [57]. In patients with AF on oral anticoagu-
lation, clot lysis time has been shown to predict stroke, 
with a HR of 7.67 (95% CI 2.78–21.17) when comparing the 
highest to the lower quartiles [58].

There are important limitations to this technique in how 
it reflects fibrinolysis in vivo. The main limitation of this 
technique is that it excludes cellular components (includ-
ing platelets, neutrophils) so does not assess the contri-
bution of these to thrombosis and fibrinolysis and also 
because of this, no platelet-dependent thrombus is gener-
ated, and thrombin is the main determinant of thrombosis 
and fibrinolysis resistance. Secondly, as the test requires 
addition of factors to initiate coagulation and fibrinolysis, 
making it insensitive to the influence of intrinsic fibrinolytic 
factors [59] and hence, is less of a measurement of endog-
enous fibrinolysis but more of assessment of response 
to fibrinolytic factors. Another limitation of turbidimetric 
assays is the requirement of trained laboratory personnel 
and the variation which exists between laboratories which 
makes it cumbersome as a routine clinical test [60].

4.2  Viscoelastic tests

Thromboelastography or TEG® (Haemonetics, UK) and 
rotational thromboelastometry or ROTEM® (Pentapharm 
GmbH, Munich, Germany) are point of care, global test of 
coagulation status, simultaneously assessing clot devel-
opment, stabilization, and dissolution based upon the 

same principle. These utilise a pin suspended by a torsion 
wire into a cylinder to measure the physical properties 
of a clot. As blood clot formation occurs around the pin, 
fibrin strands form between the cylindrical cup and pin. 
The rotation of the cylindrical cup will be transmitted to 
the pin whose displacement is then picked up by the tor-
sion wire. This is analysed and presented in graphical form 
by the instrument to allow analysis of different stages of 
coagulation and fibrinolysis [61]. The techniques were 
designed to be used with native blood but modification 
with different activators and inhibitors have been used, 
[62–64] although the correlation between activated and 
non-activated samples has been poor [65].

Studies involving viscoelastic tests are mainly based 
on the prediction of bleeding (hyperfibrinolysis) and the 
requirement for blood and blood products in the settings 
of trauma resuscitation and in surgery [66–69]. Apart from 
maximum amplitude (MA) which is a measure of hyperco-
agulability [70], there has not been any studies correlating 
fibrinolytic assessment using viscoelastic tests and adverse 
outcomes.

One of the main advantages is that performing the test 
is relatively simple as apart from preparation of the sam-
ple, the test is fully automated, with the results recorded 
on the system. However, its usefulness is limited in the 
assessment of thrombosis risk [71, 72]. Another shortcom-
ing, in terms of prediction of arterial thrombosis, is the 
employment of the low-flow, static-type situation which 
resembles more venous, rather than arterial thrombosis. 
This is less reflective of the physiological response to high 
shear thrombosis, which typically occurs during arterial 
thrombotic events.

4.3  Global thrombosis test

The Global Thrombosis Test (GTT) (Thromboquest Ltd., 
London, UK) is a relatively new automated, point-of-care 
test that simultaneously assesses platelet reactivity, throm-
bosis, and fibrinolytic activity, from a native whole blood 
sample [73]. Blood passing through a plastic conical tube 
with narrow gaps is exposed to high shear stress that 
mimics flow within a narrowed vessel, activates platelets 
and induces thrombus formation. Thrombus formation 
gradually reduces flow and finally causes luminal occlu-
sion. Reduction of flow, as detected by an optical sensor, 
is expressed as occlusion time (OT). Blood flow resumes 
in response to spontaneous fibrinolysis of the thrombus, 
and the time taken to do so is expressed as lysis time (LT).

Clinical studies evaluating the GTT have shown a rela-
tionship between LT, a measure of endogenous fibrinol-
ysis, and MACE in patients with ACS. The assessment of 
endogenous fibrinolysis has been shown to independently 
predict MACE in ACS [74]. In patients undergoing primary 
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PCI, pre-PCI impaired endogenous fibrinolysis is associ-
ated with subsequent MACE (HR 9.1, 95% CI 4.28–15.03), 
[2] whilst effective (short) fibrinolysis was associated with 
spontaneous reperfusion as evidenced by ST-segment 
resolution on the ECG and angiographic Thrombolysis In 
Myocardial Infarction (TIMI) 3 flow pre-primary PCI [75]. 
The importance of endogenous fibrinolysis in patients 
with AF, in terms of predicting future ischaemic events 
such as stroke, has not been evaluated, apart from evalu-
ating the effects of direct oral anticoagulants [76, 77].

The main advantage of the GTT is that it is an easy to 
use, point-of-care test that can assess platelet reactivity, 
thrombus stability and endogenous fibrinolysis, providing 
an overall assessment. When compared with other forms 
of testing for platelet function and fibrinolytic potential, 
the GTT has other advantages. The use of native, non-
anticoagulated whole blood allows the measurement 
of the effects of thrombin generation in platelet aggre-
gation without depletion of calcium (as opposed to cit-
rated blood which is commonly required in other tests). 
Secondly, the presence of high shear as the key initiator 
of platelet activation is analogous to the physiological 
mechanism of platelet activation within a stenosed artery. 
Lastly, the assessment of spontaneous lysis through the 
measurement of LT is again comparable to the physiologi-
cal recanalization of an occluded artery.

One of the limitations of the GTT is the requirement for 
rapid processing of whole blood sample as the process of 
coagulation will initiate without the use of anticoagulants. 
When compared to other assessments of fibrinolysis, the 
GTT produces a more global assessment which is more 

reflective of the pathological conditions that occur within 
stenosed arteries.

5  Clinical integration and conclusion

To integrate a test into routine clinical practice, the test 
must be [1] valuable in either providing diagnostic or 
prognostic information and [2] actionable to alter phar-
macotherapy or future management. The assessment of 
endogenous fibrinolysis (Table 1), as shown by the studies 
above, has been shown to provide prognostic information 
in patients cardiovascular disease. Second, in the era of 
personalised medicine, using impaired fibrinolysis as an 
adverse prognostic biomarker could justify more potent 
pharmacotherapy that carries higher risk in some groups 
of patients. Therefore, there are grounds to integrate its 
assessment into routine clinical practice.

The assessment of endogenous fibrinolysis can play a 
vital role in predicting future MACE in patients with car-
diovascular disease. More work will need to be done to 
build a more complete fibrinolytic profile for each of indi-
vidual patient so we can move closer towards personalised 
medicine, to improve outcomes in patients with impaired 
fibrinolysis.
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Table 1  Summary of strengths and limitations of different assessment methods

Assessment Strengths Limitations

Factorial assays
Antigen Reliable

Easy to perform
Measures total antigen variably depending on antibod-

ies used Does not provide a true reflection of the 
effects of measured biomarker

Weak association with clinical outcomes
Activity Measures effects of biomarkers Less reliable—influenced by external factors

Impractical (collection and storage requirements)
Weak association with clinical outcomes

Ex-vivo assessment
Plasma turbidimetric assay Large studies with good correlation to clinical out-

come
Plasma sample—lack of effect from blood components
Requires addition of coagulation and lysis activators
Skilled laboratory personnel required
Variation between different laboratories

Viscoelastic assay Easy to perform—fully automated test
Can be performed with native whole blood or blood 

with activators

Low-flow, static-type more akin to venous flow
Limited correlation of fibrinolytic markers to clinical 

outcomes
Global thrombosis test Easy to perform—fully automated test

Uses native whole blood
Mimics high-shear test
Good correlation with clinical outcomes

Requires rapid processing of blood sample
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