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Abstract
Prior to the recent upward climb, global average temperatures were relatively stable. This trend was described by Mann 
et al. [23] using a hockey-stick model consisting of two line segments (with the x-axis as time and temperature as the 
y-axis) meeting at a single changepoint. The line segment prior to the changepoint is flat (indicating a stable tempera-
ture), and the line after the changepoint has a positive slope (indicating increasing temperatures). Because the long-
term average temperature change is a defining characteristic of climate change, researchers have shown that changes 
in many phenological variables over time can also be described by a hockey-stick model. For phenological variables, the 
changepoint and the slope of the line after the changepoint represent the timing of the onset and the effect of climate 
change. However, large annual variation often obscures the pattern when analyzed using data from a single location, 
whereas regional differences due to spatial variability of climate and weather patterns render pooling data from differ-
ent locations impractical. We demonstrate that the Bayesian hierarchical modeling approach is effective in separating 
these two sources of variability by partially pooling data from multiple sites. Using the North American lilac first bloom 
dates, we show that the Bayesian approach can adequately separate the temporal and spatial variations, thereby quantify 
site-specific patterns of change as well as national/regional average trends. Our analysis, using the Bayesian hierarchi-
cal hockey-stick model, showed that the effects of climate change started as early as the 1970s and the lilacs in North 
America have been blooming on average one day earlier every three years since.

Keywords  Climate change · Hockey-stick model · Phenology · Global temperature change · Bayesian hierarchical 
modeling · Threshold modeling

1  Introduction

Global average temperatures were relatively constant, 
with some annual variation, from the early 1800s to 
approximately the mid-twentieth century prior to a sharp 
increase after the mid-twentieth century (Intergovern-
mental Panel on Climate Change (IPCC), Contribution of 
Working Groups I, II and III to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change, 2014 
[19, 23]. The global average temperature has increased by 
0.67 degrees Celsius since 1986, surpassing the recorded 
increase in the 59 year period prior to 1986 [17]. This pat-
tern of global average temperature change was described 
by Mann et al. [23] using a hockey-stick graph. In this study, 
Mann et al. [23] depicted a recent changepoint, within the 
past century, in the increased occurrence of temperature 
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anomalies. The hockey-stick model is characterized by a 
flat left line segment and a sloped right line segment that 
meet at a changepoint (Fig. 1).

Because temperature is a key feature of climate change, 
many phenological phenomena respond to climate 
change in a similar pattern that can also be represented 
by the hockey-stick model [11, 36]. For example, Qian [30] 
used the hockey-stick model to describe the temporal 
changes in the first bloom dates of North American lilacs, 
showing that lilacs have bloomed earlier in recent years 
based on multiple graphs with the day-of-the-year on the 
y-axis and year on the x-axis. Additionally, Dose and Men-
zel [11] applied three different models to the flowering 
dates of Cherry blossom, Snow drop blossom, and Lime 
tree blossoms. They concluded that the hockey-stick, or 
changepoint, model best represented the phenological 
data examined [11]. A similar analysis was conducted on 
common plant species located several parts of Europe 
by Schleip et al. [36]. This study found the comparable 
results to Does and Menzel [11], showing that a hockey-
stick model explained the phenological phenomena more 
than any other model explored (Shleip et al. 2009). The 
research from Qian [30], Dose and Menzel [11], and Shleip 
et al. [36] shows that while the hockey-stick model is a sim-
plification of complex processes, it resembles the pattern 
observed in data well and provides more useful informa-
tion than a traditional linear model does. The hockey-stick 

trend observed in phenological phenomena is reasonable 
because the rise in global greenhouse gas concentrations, 
the mechanism that underlies the rise in global tempera-
ture, follows a pattern summarized by the hockey-stick 
model: a relatively constant trend rapidly transitioning 
to a steep rising trend (Supplemental Fig. 1 available at 
GitHub.com/StephAnnieNummer/Lilac_HockeyStick_
BHM,  [26]). This rise in global temperature in recent years 
can be attributed to the increase in greenhouse gasses 
from anthropogenic sources since the mid-1800s [26].

Other events also experience changes induced by the 
recent changes in temperature due to the increase in 
greenhouse gas concentrations in the atmosphere. Hay-
hoe et al. [17] reported changes in temperature extremes 
associated with the global temperature increase, including 
surges in heat and cold wave frequencies. Phenological 
events throughout the world are experiencing changes 
in association with the increase in global average tem-
perature as well [1, 9, 43]. Ahas et al. [1] examined the 
phenological shifts of six different plant species in Europe 
in response to changes in climate and temperature and 
found that areas with snow coverages are presenting with 
the greatest change. Additionally, Walther et al. [43] com-
piled evidence of ecological response to climate change 
including shifts in bird breeding and migration, earlier but-
terfly appearances, changes in the spawning of amphib-
ians, and earlier trends in plant phenology. Chen [9] exam-
ined and reviewed phenological events across different 
regions in China and found shifts including changes in 
green-up dates and first leaf unfolding dates.

Several examples of these phenological shifts and phe-
nomena have been the subject of research. Bird popula-
tions are declining or are at risk of declining because food 
availability is peaking earlier than when the birds arrive 
due to the warming temperature [4]. This change in peak 
food availability is a potential driver for bird breeding 
season to shift earlier. Cherry blossom blooming is an 
iconic Washington D.C. event, and this city has an almost 
century-long record of cherry blossom peak bloom dates. 
This dataset illustrates a shift in the peak bloom dates 
of these cherry trees (Fig. 2). Furthermore, Mason et al. 
[24] found that the duration of Great Lakes ice coverage 
has decreased. Great Lakes ice cover duration, mismatch 
between bird migration and food availability, and the 
Washington D.C. cherry blossom peak bloom dates are just 
a few examples of a large body of evidence of phenologi-
cal shifts [1, 5, 28, 35, 37, 43].

North American lilacs first bloom dates are another 
phenological event that responds to the change in global 
average temperature. Schwartz [38] found that phenologi-
cal data, including North American lilac first bloom dates, 
can be used as a missing link for satellite observations and 
thus adds to the need for cooperative research efforts to 
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Fig. 1   General graphical form of the hockey-stick model. The x-axis 
is year and the y-axis is the response, typically the ordinal day of 
the phenological trend, an example would be the day of year of the 
peak bloom of Washington D.C. cherry blossoms. The variable α is 
the left line segment y-intercept showing day of year of trend prior 
to the changepoint. For example, Washington D.C. cherry blossoms 
consistently have a peak bloom on day 95 or about April 5 prior to 
the changepoint. The variable β is the slope of the right line seg-
ment showing the rate of change in response after the change-
point, which would be about 1/7th of a day earlier each year in the 
case of Washington D.C. cherry blossom peak bloom dates. Lastly, 
ϕ is the changepoint where the two line segments meet indicating 
the onset of climate change effects, in the case of Washington D.C. 
cherry blossom peak bloom dates this is about 1965
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understand ecological questions. Schwartz et al. [40] used 
the North American lilac first bloom dates as an example 
of this cooperative research efforts because it is one of the 
first extensive phenological datasets in the USA. Schwartz 
and Reiter [41] and Wolfe et al. [44] analyzed portions of 
the North American lilac first bloom data using a linear 
model and found a shift of 0.14 and 0.092 days earlier each 
year in first bloom dates, respectively. Earlier blooming of 
North American lilacs was identified by Cayan et al. [8] 
using a linear model while Brunsdon and Comber [5] used 
a multilevel modeling to find a similar trend. Recently, 
Gerst et al. [16] evaluated Spring Indices applied to North 
American lilac and honeysuckle phenological data by 
Schwartz et al. [39] and concluded that these indices are 
generally a good proxy of observed phenological phe-
nomena in North American lilacs and honeysuckle.

The typically used linear model for phenological stud-
ies (e.g., [1, 17] almost always underestimates the magni-
tude of change when the data include observations made 
before the onset of climate change effect [30]. Instead, 
research shows that a hockey-stick model explains phe-
nological data better than a traditional linear regression 
by avoiding potential overestimation prior to the onset 
of climate change and underestimation after the onset 
of climate change [11, 28, 35]. A hockey stick model (or 
piecewise linear model) can be computationally challeng-
ing because of the discontinuity in its first derivatives. 
An early solution to the difficulty is to introduce smooth 
connection between the two intersecting line segments 
[2]. This approach is implemented in Qian [30]. However, 
using nonlinear regression requires appropriate starting 
values for all coefficients, a tedious trial and error process. 
Although Bayesian method is often computationally more 
intensive, the use of Markov chain Monte Carlo simulation 

made these computations trackable [32]. Consequently, 
we propose the use of the hockey-stick model as a mod-
eling framework to describe the general pattern of tem-
perature-sensitive phenomena or events in response to 
climate change.

Using a hockey-stick model, we can better describe 
the basal mechanisms, or forcing function, that led to the 
changes occurring in the phenological variable of inter-
est, as well as the underlying pattern of long-term global 
average temperature change. The model provides two key 
parameters that can help us retrospectively estimate the 
time when the effect of climate change initiated and the 
magnitude of the change. These two key parameters are 
the changepoint which represents when the impacts of cli-
mate change on the phenological response began and the 
slope of the line after the changepoint which shows the 
rate at which the response is changing. We used Bayesian 
computational method to expand the model to include 
data from multiple locations.

The two key parameters of the hockey-stick model can 
lend more information to researchers and better describe 
phenological data than a traditional linear model [11, 28, 
35]. Does and Menzel [11] found that the one-changepoint 
model (i.e., hockey-stick model) was the optimal model 
for the application to phenological data. A further under-
standing of this was provided by, Schleip et al. [35] who 
compared a constant, linear, and hockey-stick model. The 
hockey-stick model represented the pattern of phenologi-
cal data the best. In addition, Pope et al. [28] found the 
hockey-stick model ideal for modeling the spring response 
of phenological data. Qian [30] developed an R function 
that easily fit the hockey-stick model. When applied to 
North American lilac first bloom dates from four Pacific 
Northwest locations, the estimated changepoints range 
from 1974 to 1983 [30]. The same model showed that the 
climate change effect on Washington, D.C. cherry blossom 
likely started as early as mid-1960 s and the peak bloom 
date has since moved about 6–7 days earlier (Fig. 2).

Phenological data, such as first bloom dates of the North 
American lilac, are inevitably location-specific because 
weather and climate patterns vary geographically [5]. As 
such, combining phenological data from different loca-
tions are unadvisable and we typically analyze these data 
by location. However, phenological data from a single loca-
tion are almost always noisy because of the natural variation 
in weather. Due to this natural variation in day-to-day and 
year-to-year weather, we may not be able to see the hockey-
stick pattern clearly, just as the long-term mean temperature 
signal [3]. Thus, accurately depicting the underlying pattern 
requires a long-term record at a single location. Even with 
the century-long Washington D.C. cherry blossom data, fit-
ting a hockey-stick model is still unconvincing compared to 
a simple linear model. Brunsdon and Comber [5] proposed 
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Fig. 2   Hockey-stick model developed by Qian [30] applied to Wash-
ington, D.C. cherry blossoms peak bloom dates from 1930 to 2016. 
The vertical indicates the changepoint of 1964.9 (1930.3, 1999.6). 
The slope after the changepoint is −0.13 (−0.001, −0.25) days ear-
lier per year after 1964.9
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using the multilevel modeling approach that applies the 
intended model to each group, often geographic location, 
and partially pool all groups together to improve statistical 
power [15, 30]. The application of a multilevel, or Bayesian 
hierarchical, modeling approach provides a practical means 
to reduce site-specific estimation uncertainty through par-
tially pooling the data from multiple locations [5, 15].

While research has documented when changes in global 
temperature began to impact phenological responses, 
this research typically follows one of two approaches: (1) 
employing a linear regression while using a multilevel model 
[5, 10] or (2) applying a hockey-stick model to the data from 
all locations together as one [35]. The goal of our research 
is to combine these two methods by developing a Bayesian 
hierarchical hockey-stick model for partially pooling pheno-
logical data from multiple locations to better differentiate 
region-specific patterns of response, as well as the aggre-
gated response pattern.

The general premise of a Bayesian hierarchical mod-
eling approach can be traced back to Stein’s paradox and 
empirical Bayes methods, which reduces overall estimation 
uncertainty by partially pooling information from similar 
observations made in multiple locations (see [12] for an 
extensive review and [33] for recent references). Although 
the computational complexity of applying the hockey-stick 
model [32] to data from a single location is no longer an 
issue [30], a stable maximum likelihood estimator of a mul-
tilevel hockey-stick model is still unavailable. Consequently, 
we opt to use the Bayesian computational method via 
Markov chain Monte Carlo simulation. The North Ameri-
can lilac phenological dataset, compiled by Schwartz and 
Reiter [41], includes annual first bloom and leaf dates for 
the common lilac (Syringa vulgaris) from 1956–2003 and 
collected at 1126 locations across North America. This well-
studied dataset is ideal for our study because of its long-term 
records, availability, and large areal coverage [5, 8, 41]. The 
Bayesian hierarchical hockey-stick model in this study will 
bring together both the suggested model for phenological 
data and the need for a hierarchical structure to organize 
the data from different locations. By using this model, we 
can quantify when biological systems began to respond to 
the change in global average temperature and the rate at 
which they are responding, both at individual locations and 
at a continental scale.

2 � Methods

2.1 � Hockey‑stick model

The hockey-stick model consists of two line segments that 
meet at a changepoint. On the left of the changepoint, the 
line is flat, indicating the stable trend prior to the change 

in phenological response. The line to right of the change-
point is characterized by a positive or negative slope that 
describes the phenological trend occurring in response 
to changes in global average temperature. These line seg-
ments meet at the changepoint, indicating when the sys-
tem began to respond to climate change. The formula of 
the hockey-stick model applied in this study is

where yi is the response measured in day of year, α is the 
intercept of the left line segment (representing the aver-
age response before the effect of climate change on the 
response can be detected through the model), β is the 
slope of the right line segment (representing the aver-
age annual change of the response since the effect of 
climate change on the response became detectable), xi 
is the calendar year, ϕ is the changepoint where the two 
line segments meet (the year when climate change effect 
on the response become detectable), and ε1 and ε2 are the 
error terms associated with the model (representing the 
annual variability of the response variable) and assumed 
to be normal random variables with a constant variance 
ε1 ~ N(0, σ1

2) and ε2 ~ N(0, σ2
2). This model specification 

allows the two error terms, ε1 and ε2, to have different vari-
ances. While this is available, we assume that the two error 
terms share the same variance in our study. In the case of 
North American lilac first bloom dates, the intercept � is 
the average day of year of the first bloom before the effect 
of climate change can be detected. The slope β represents 
the average rate, that is, days per year that lilacs are bloom-
ing earlier. Finally, the changepoint, ϕ, is when lilacs first 
appeared to respond to the effect of climate change.

2.2 � Bayesian hierarchical implementation

The Bayesian hierarchical hockey-stick model is a compu-
tational method we used to pool data from different loca-
tions to simultaneously fit location-specific models and 
an “average” model [15]. This method fits the hockey-stick 
model to all locations at the same times as opposed to 
one at a time, as is with Eq. 1. The functional form of the 
Bayesian hierarchical hockey-stick model is the same as 
the single-location hockey-stick model, but with location-
specific model coefficients:

where the subscript j represents locations. The change-
point, ϕ, for each location is limited by the first and last year 
of monitoring for that group. As such, the changepoint 
cannot be outside the range of data when monitoring 

(1)yi =

{
𝛼 + 𝜀1, xi < 𝜙

𝛼 + 𝛽
(
xi − 𝜙

)
+ 𝜀2, xi ≥ 𝜙

(2)yij =

{
𝛼j + 𝜀1j , xi < 𝜙j

𝛼j + 𝛽j
(
xi − 𝜙j

)
+ 𝜀2j , xi ≥ 𝜙j
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occurred for each location. If the change occurred before 
the first year or after the last year of the record, the esti-
mated changepoint would be concentrated on one or the 
other end of the time record. The site-specific parameters 
are assumed to be exchangeable – these parameters vary 
by site and are otherwise uncertain. As a result, a common 
prior distribution is used:

which is a multivariate normal distribution with mean μα, 
μβ, μϕ and variance–covariance matrix, Σ. These param-
eters are known as hyperparameters. Combining Eqs. (2) 
and (3), we estimate all model coefficients (site-specific 
intercept, slope, change-point, and the hyperparameters) 
simultaneously using Markov chain Monte Carlo simula-
tion implemented in Stan [42] through R [34]. Computer 
code is available at GitHub.com/StephAnnieNummer/
Lilac_HockeyStick_BHM.

2.3 � Example data description

The North American lilac phenological dataset is a compi-
lation of two separate observational studies performed by 
a network of volunteers ranging from 1956 to 2003 [41]. 
The first observational dataset began in the Western USA 
between 1956 and 1957 [6, 8]. Between 1961 and 1965 the 
second observational dataset began in the Eastern United 
States, with locations in Eastern Canada as well [40]. For 
both datasets, the first bloom and leaf dates are recorded 
as the ordinal day or day of the year, with January 1 being 
day 1. In this application, the response variable is the day 
of the year (ordinal date) of lilac first bloom date. Stations 
are assumed to be exchangeable with respect to model 
coefficients, thus allowing for the comparison between dif-
ferent stations and addressing the potential confounding 
factors due to location. Data from 53 stations with records 
of at least 30 years are used in our study (Fig. 3; the location 
of the 53 stations can be found in Supplemental Table 1), as 
we are interested in the long-term trends in response to the 
changes in temperature associated with the global rise in 
greenhouse gasses.

3 � Results

The estimated hyperparameters for the entire dataset 
show a North American average changepoint (μϕ) of 
1972.9 (with a 95% credible interval of 1970.3, 1976.4), 
an average left line segment y-intercept (μα) of day 134.6 
(129.8, 139.4) of the year, and an overall average right 

(3)
⎛
⎜⎜⎝

�j
�j
�j

⎞
⎟⎟⎠
∼ N

⎛
⎜⎜⎝

��

��

��

,Σ

⎞
⎟⎟⎠

line segment slope (μβ) of −0.37 (−0.46, −0.30) days per 
year (Fig. 4, Table 1). These estimated hyperparameters 
suggest that on average North American lilacs have 
started to bloom earlier since about 1973. Prior to 1973 
North American lilacs typically bloomed on approxi-
mately day 135, or about May 15th, each year. Since 
1973, North American lilac first bloom dates shift earlier 
by about one day for every three years. The estimated 
average rate of change is about double of the estimated 
rate of change found by Brunsdon and Comber [5] who 
used a linear multilevel model (−0.18 days per year).

In addition to calculating the overall average for all 
stations, the Bayesian hierarchical model produced coef-
ficients for each individual station (Fig. 4). All 53 stations 
included in this model have a changepoint that ranges 
between 1964.4 and 1976.4 and a right line segment 
slope between the range of −0.16 and −0.63 days per 
year (Fig. 5). While the credible intervals for each station 
show wide variation, we cannot directly compare the 
credible interval of individual stations to discern a signif-
icant difference because of the correlations among the 
estimated site-specific changepoints [29]. The earliest 
response was from station 49,122 which has a change-
point of 1964.4 (1957.8, 1973.2) and the steepest slope 
of the right line segment at −0.68 (−1.01, −0.38) days per 
year. Station 49,122 is located in California, USA, near 
South Cow Mountain OHV Recreation Area, while sta-
tion 213,303 near Grand Rapids, Minnesota, USA, had 
the latest changepoint of 1976.4 (1973.1, 1986.3) and the 
shallowest slope of −0.16 (−0.40, −0.09) days per year.

Fig. 3   Map of North America and the 53 stations that have at least 
30  years’ worth of data in the North American lilac phenological 
dataset. The blue diamond is station 49,122 located near the South 
Cow Mountain OHV Recreation Area in California, USA. This sta-
tion has the earliest changepoint and the steepest slope after the 
changepoint. Station 213,303 is the purple triangle and is located 
near Grand Rapids, Minnesota, USA, and has the shallowest slope 
of the right line segment and the latest changepoint
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4 � Discussion

Long-term change in average temperature is orders of 
magnitude smaller than the daily, seasonal, or year-to-year 
temperature variations. As a result, phenological signals 
often present with a weak or subtle trend e.g., changing 
fractions of a day per year, [41, 44] and can cause addi-
tional difficulties beyond those associated with the com-
plex computations used in a multilevel model. In addition, 
large variation may be present in phenological data from 
a single location due to the noise associated with daily 
weather patterns. By pooling data from multiple locations, 
location-specific model coefficients are constrained by the 
overall average coefficients, thereby reducing overall esti-
mation uncertainty [14] induced by large daily weather 
variations. The Bayesian hierarchical model is a shrinkage 
estimator, which always outperforms its non-shrinkage 
competitors [14, 25].

While the model used in this study was developed using 
the common lilac in North America, it is readily applicable 
for any long-term phenological data. For example, long-
term crop yield data reported by Schlenker and Roberts 
[37] can be reanalyzed to examine the effect of climate 
change, in addition to the effect of temperature. Data pre-
sented by He et al. [18] can also be re-examined with the 
hockey-stick model to quantify the timing and magnitude 
of climate change because it is a long-term soybean phe-
nology dataset shown to be influenced largely by tem-
perature. Specifically, the soybean phenology examined 
by He et al. [18] include sowing, emergence, anthesis, and 
maturity. Applications studying the shift in the agricultural 
growing season can inform managers and farmers on how 
to better adapt for climate change.

Because the hierarchical model simultaneously esti-
mates site-specific and overall average model parameters, 
the model is useful for both national and regional entities. 
At the local level, changes specific to the location (e.g., 
the rapid response to climate change in lilac first bloom 
dates near station 49,122) can inform managers to adjust 
monitoring schedule. At the national level, the estimated 
hyperparameters can inform government officials about 
the change and variation occurring at a national scale.

Although we fit the hockey-stick model by assuming 
the sites are exchangeable with respect to model coeffi-
cients, a scientifically meaningful question about the fitted 
model is whether we can explain the among-location vari-
ations in model parameters, especially the changepoint 
and the rate of change. To answer this question, we need 
additional location-specific variables that can be used 
to distinguish one site from another. Such variables are 
known as “group-level” predictors in multilevel model ter-
minology [15]. Although we were unable to explain the 
changes of the changepoint, ϕ, and slope of the right line 
segment, β, using group-level predictors such as latitude, 
elevation, ecoregions, and USDA Plant Hardiness Zones, 
the capability of a hierarchical model to include group-
level predictors is an important feature which can be eas-
ily incorporated in a causal analysis (Supplemental Fig. 2 
available at GitHub.com/StephAnnieNummer/Lilac_Hock-
eyStick_BHM, [15, 31]). Location-specific weather and cli-
mate data were not included as variables in the Bayesian 
hierarchical hockey-stick model because these data would 
introduce additional noise that we aim to reduce with the 
hierarchical method, and modeled climatic data can incor-
porate additional assumptions into the model. We note 
that lilacs are an introduced species which may explain 
the lack of geographic pattern in association with latitude, 
elevation, ecoregion, or USDA harshness zones. With lilacs 
blooming earlier in the year, a natural question is how this 
change in lilac first bloom dates translates through trophic 
levels. Previous research has found instances of trophic 
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Fig. 4   Bayesian hierarchical hockey-stick model for the 53 stations 
used from the North American lilac phenological dataset. The bold 
line represents the overall average and the model described by the 
hyperparameters. The light gray lines represent each station and 
the model described by station-level coefficients

Table 1   Hyperparameters and associated credible intervals for the 
3 coefficients (ϕ – the time of climate change effect started, β – 
the rate of change since the onset of climate change effects, and 
α – average first bloom date before the onset of climate change 
effects) in the Bayesian hierarchical hockey-stick model

Coefficient Estimated value (Lower 
95% CI, Upper 95% CI)

α 134.55 (129.76, 139.38)
ϕ 1972.91 (1970.35, 1976.37)
β -0.373 (-0.463, -0.296)
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mismatch where interdependent populations are respond-
ing to the global average temperature at different rates, as 
well as significant differences between functional groups 
[4, 21, 22, 27]. For example, Both et al. [4] noted the poten-
tial difference in the peak of food availability for birds and 
the timing of birds breeding season as a result of the dif-
ferential responses to climate change. Similarly, Parmesan 
[27] demonstrated contrasting degrees of advancements 
between butterflies and flowering herbs in response to 
climate change, which can be problematic because of the 
mutually dependent relationship between butterflies and 
flowering herbs in all life-stages. The mismatch between 
these two populations has the potential to grow further 
apart or converge depending on when the mismatch 
started for each population [27].

In our example, we modeled the response of a single 
species over multiple locations to summarize the impact 

of climate change on the species. The same model can be 
used to analyze patterns of change in multiple species at 
a single location to study the community response. Such 
an application is ideally suited for predicting potential mis-
match of multiple co-dependent species, enhancing our 
understanding of the impact of climate change on biodi-
versity due to trophic mismatches.

Data availability  https​://www.ncdc.noaa.gov/paleo​-searc​h/study​
/5981
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Fig. 5   Changepoint, ϕ, and the 
right line segment slope, β, for 
each of the 53 stations used 
from the North American Lilac 
phenology dataset. The y-axis 
for each graph is organized 
to go from the most north-
ern latitude at the top to the 
most southern latitude at the 
bottom. Each station had the 
estimated parameter as the 
bold dot with the 95% credible 
interval symbolized by the 
horizontal line
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