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Abstract
Mud loss is a challenging obstacle in the oil and gas industry. Predicting mud loss can be very useful to stop or prevent 
this problem. In this study, data of more than 3500 wells collected worldwide were used to create two neural network 
models to predict mud loss in natural and induced fractures. For both networks, data were separated into three sets: 60% 
for training, 20% for validation, and 20% for testing. The number of hidden layers and the number of neurons in each 
hidden layer were optimized after multiple trials. The findings proved that the created models can estimate mud loss 
for natural and induced fractures within a small error. The overall R2 for the natural fractures model was 0.956 while the 
overall R2 for the induced fractures was 0.925. To further investigate and verify the created networks, both models were 
tested on 24 new wells (wells not used in the process of constructing the networks). The results indicated the models’ 
predictions closely tract the actual mud loss data with a maximum error of 6.34%. The models have proved their robust‑
ness in predicting mud loss and can be used worldwide for mud loss prediction as well as mitigating mud loss by altering 
the key drilling parameters to prevent or minimize mud loss.
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1  Introduction

Drilling fluid is a major expense in the oil and gas industry. 
Drilling fluid performs many functions in rotary drilling. 
Drilling mud is circulated to remove cuttings and enhance 
the performance of the drill bit. Cuttings are carried from 
the borehole to the surface, where cutting will be sepa‑
rated. Furthermore, the following functions are performed 
by drilling fluid [1]:

1.	 Minimizing the invasion of the filtrate
2.	 Decreasing the friction between the sides of the bore‑

hole and drill string
3.	 Sealing permeable formations
4.	 Maintaining stability for the borehole in uncased sec‑

tions

5.	 Limiting reservoir damage
6.	 Ensuring sufficient formation evaluation
7.	 Forming a thin, impermeable filter cake that seals 

pores and reduces the fluid lost into permeable for‑
mations.

Drilling mud losses and issues related to lost circulation 
during drilling the thief zones account for a considerable 
cost in the oil and gas industry. Millions of dollars are spent 
annually to stop and minimize this obstacle [2]. Lost circu‑
lation can be defined as “the partial or total loss of circulat‑
ing fluid from the wellbore to the formation. It is the loss of 
whole fluid, not simply filtrate, to the formation. Losses can 
result from either natural or induced causes and can range 
from a couple of barrels per hour to hundreds of barrels 
in minutes. Lost circulation is one of the drilling’s biggest 
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expenses in terms of rig time and safety. Uncontrolled lost 
circulation can result in a dangerous pressure control situ‑
ation and loss of the well” [3].

Even though it may happen in any zone, some primary 
factors to loss circulation are high permeability weakly 
consolidated formations, fracture calcium carbonate res‑
ervoirs, and depleted aquifer zones. [4]. Historically, techni‑
cal journals, papers, manuals, international oil companies 
training courses, and textbooks have been categorized the 
types of formations that are highly candidate to have lost 
circulation problem, and all of them are on the same page 
in terms of the formation causing lost circulation. These 
formations are cavernous formations, natural or intrinsic 
fractures, induced or created fractures, and unconsoli‑
dated or highly permeable formations as shown in Fig. 1.

Lost circulation occurrences are classified based on the 
total amount of mud lost during penetrating thief zones. 
The amount of mud loss relies on several elements, involv‑
ing formation characteristics, mud specifications, and frac‑
ture gradient. The classifications of mud loss are illustrated 
as follows, depending on the amount of mud loss [5, 6]:

1.	 Seepage loss (0.5–1 m3/hrs or 3–6 bbl/hr): It can hap‑
pen in most of the penetrated formations, and it is nor‑
mal during the drilling process due to over-balance 
drilling phase. Also, it can be named as filtration.

2.	 Partial loss (1–10 m3/hrs or 7–70 bbl/hr): this type of 
mud loss can occur in permeable zones, gravel beds, 
and small natural and induced fractures.

3.	 Severe loss (15 m3/hrs or 95 bbl/hr and above): This 
type of loss is more complicated and serious than par‑
tial loss, and it can lead to complicated consequences.

4.	 Complete loss: No return from the annulus to the sur‑
face will be presented in this kind of mud loss, it is con‑
sidered the most complicated and serious type of loss 
since it has many direct and indirect unwanted conse‑
quences in the drilling process. This type of mud loss 
occurs in large natural and induced fractures, vugs, 
long open sections of gravel, and caverns

Directly or indirectly, lost circulation has many negative 
impacts on the drilling process, including but not limited 
to; circulation loss, mechanical and differential stuck pipes, 
kick, bit damage, etc. [5].

An assessment of the severity of mud loss should be 
carried before selecting the best lost circulation treatment 
to be used to stop mud loss. It is distinguished that it is 
complicated to find one solution to stop lost circulation. 
Hence, an enormous range of lost circulation treatments 
are available, including but not limited to, high viscosity 
pill, fibrous, granular, and flaky materials, and cement slur‑
ries. These treatments are classified into generic groups to 
help in elucidating to recognize their uses. Also, a broad 
range of plugging materials is available for mitigating 
lost circulation or restoring circulation during drilling or 
cementing. Every material or treatment is chosen by rely‑
ing on the type of mud loss, timing, cost, drilling phase, 
fluid type, and thief zone. Mud loss treatments and materi‑
als are used to accomplish two goals [7, 8]:

1.	 To bridge across the already existed vugs and frac‑
tures.

2.	 To prohibit the development of new fractures that may 
be stimulated during the penetration.

The purpose of this paper is to build two neural net‑
work models to predict mud loss for natural and induced 
fractures using data of more than 3500 wells drilled world‑
wide. This work will eliminate the shortcomings in the liter‑
ature regarding lost circulation predictions using real-field 
data collected from various locations around the world.

2 � Neural networks

McCulloch and Pitts [9] presented the first neural net‑
work research. Rosenblatt [10] developed the percep‑
tron and proved that a perceptron would create a vector 

Fig. 1   Candidate formations for lost circulation
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that divides the classes. Rosenblatt [10] believed that 
structures of more layers can conquer the limitations of 
a simple perceptron. Nevertheless, there were not any 
learning algorithms that can determine the weights for a 
given calculation [11]. A few years after, a network called 
Adeline was created by Widrow [12]. Minsky and Papert 
[13] proved that single-layer perceptron cannot solve 
elementary calculation problems. After that, the neu‑
ral network’s research stopped for 20 years [14]. Then, 
Hopfield [15] proposed new algorithms, such as back‑
propagation, that brought life for the neural network’s 
research. Afterward, the neural network applications 
have gone viral [11]. An artificial neural is a mimic for 
a biological neuron that can process information. Neu‑
rons are the basic building blocks of the nervous system. 
A typical biological neuron consists of a cell body, an 
axon, and dendrites. Information in the cell body enters 
through the dendrites. The cell body then gives an out‑
put that travels via the axon then to another receiving 
neuron, the output from the first neuron becomes an 
input for the second neuron, and so on.

The human brain has 10–500 billion neurons [16]. The 
neurons are separated into sections; every section has 
about 500 neural networks [17]. Every neural network 
contains about 100,000 neurons where these neurons are 
linked with thousands of other neurons. This structure 
is behind the human’s complex behavior. A simple task 
such as moving hands, walking, or catching a cup of coffee 
requires very complex computations that advanced com‑
puters cannot execute, but the human brain can do them. 
Although computers are faster than human brains (human 
brain cycle is 10 to 100 milliseconds while computer chips 
cycle is in nanoseconds), the human brain can still perform 
much more complex activities than computers due to the 
sophisticated structures of the neurons [11].

Neural networks are a simulation for the aforemen‑
tioned biological process. Neural networks are developed 
based on the following assumptions and mathematical 
models:

1.	 Neurons are responsible for processing the informa‑
tion

2.	 To let the information pass through, the neurons are 
connected by connection links. Every connection link 
has weights.

3.	 To find the output of a neuron after receiving input, an 
activation function will be applied by the neuron.

The outputs of other neurons are multiplied by the 
weights of the connection links and enter the neuron. 

Then, the input data are summed, and the activation func‑
tion of the neuron is applied which leads to an output. 
Thus, a neuron can have multiple inputs but only a sin‑
gle output. An artificial neural network has an input layer 
where the inputs are processed, one or more hidden layers 
where the feature extraction from the data are processed, 
and an output layer to process the outputs. Artificial neural 
networks (ANNs) have been utilized in drilling for a long 
time. Table 1 shows some applications of ANNs in the drill‑
ing industry.

Lost circulation estimation is a limited topic in the lit‑
erature; only a few papers were published about this topic. 
Some shortcomings were identified in the previous work 
as follows [34, 36, 39–42]:

1.	 Not enough data were used
2.	 The model is applicable only in a specific area

3 � Data and methods

3.1 � Data

Figure 2 presents a map with red dots showing the loca‑
tions where data collected. Many resources were used 
to collect data such as daily drilling reports (DDR), final 
well reports, case histories, literature, etc. Two separate 
databases were created; natural fractures and induced 
fractures. The data went through processing steps where 
all outliers, errors, white spaces were removed [43]. Input 
data were selected based on previous statistical and sen‑
sitivity analysis studies conducted that showed the most 
influential parameters on mud loss as well as experts’ opin‑
ions [39, 41]. Table 2 shows the parameters used to create 
the models and a summary of statistics for both induced 
and natural fractures.

3.2 � Data normalization

Normalizing the data is a vital step in the training process 
for any neural network. Normalization and scaling help 
simplify the problem being modeled and assist the net‑
work in achieving better results [44, 45]. One example of 
normalizing the data is to make the data range between 
−1 and 1; this can be obtained using Eq. 1:

X �

i
= 2

[

Xi − Xmin

Xmax − Xmin

]

− 1
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where X
′

i
 is the normalized value of original value (Xi), 

Xmin and Xmax minimum and maximum values of Xi, respec‑
tively [46].

3.3 � Activation function

Weight (w) will be assigned to each input, and bias (b) will 
be assigned for each neuron in the hidden layer. These 
biases and weights for each input will be summed and 
will be an input for the activation function. There are sev‑
eral activation functions available in the literature. These 
activation functions are divided into linear and nonlinear 
activation functions. Discussion of the activation function 

is beyond the scope of this paper; details of the activation 
functions are available in the literature [47]. Hyperbolic 
tangent sigmoid activation function was selected for the 
hidden layer while a linear activation function was utilized 
for the output layer due to its suitability for regression 
problems [46].

3.4 � Feedforward backpropagation

Usually, to create a neural network, data are divided into 
three sets; training, verification, and testing. This is done to 
ensure the model’s robustness at generalizing to new data. 
Training data are used in training, verification data are 

Table 1   Applications of ANNs in drilling

Author(s) Application Notes

Arehart [18] Drill bit diagnosis Used ANNs to find the state of wear of drill bit 
during drilling

Dashevskiy et al. [19] Real-time drilling dynamic Modeling the dynamic behavior of drilling 
system

Bilgesu et al. [20] Drill bit selection Used ANNs to select the “best” bit based on 
some inputs

Ozbayoglu et al. [21] Bed height for horizontal wells Used ANNs to predict bed heights in horizontal 
or highly inclined wellbores

Vassallo et al. [22] Bit bounce detection Used ANNs to detect bit bounce that can be 
used as a proactive approach to prevent bit 
whirl and stick–slip

Fruhwirth et al. [23],Wang and Salehi [24] Drilling hydraulics optimization and predic‑
tion

Used ANNs to optimize and predict drilling 
hydraulics with a practical example

Moran et al. [25],Al-AbdulJabbar et al. [26] Rate of penetration (ROP) prediction Used ANNs to predict ROP so that the drill time 
can be estimated better

Gidh et al. [27] Bit wear prediction Used ANNs to predict/ manage bit wear to 
improve ROP

Lind & Kabirova [28] Drilling troubles prediction Used ANNs to forecast problems during the 
drilling process

Okpo et al. [29] Wellbore instability Wellbore stability prediction
Ahmadi et al. [30] Prediction of mud weight at wellbore condi‑

tions
Collected data from the literature

Al-Azani et al. [31] Elkatatny et al. 
[32],Abdelgawad et al. [33]

Drilling fluid rheological properties Estimating rheological properties of drilling 
fluid

Cristofaro et al. [34] Mud loss Used multiple artificial intelligence methods to 
find the best treatment for mud losses

Hoffimann et al. [35] Drilling reports sentence classifications Used ANNs to develop a methodology for auto‑
mating sentences in drilling reports

Li et al. [36] Lost circulation Used ANNs to predict lost circulation risk during 
drilling

Al-AbdulJabbar et al. [37] Formation top prediction while drilling Used ANNs to predict formation tops while 
drilling

Elzenary et al. [38] Equivalent circulation density (ECD) predic‑
tion

Used ANNs to predict ECD while drilling
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used to verify the model, and testing data are used to test 
the network and assess the outcomes. Feedforward back‑
propagation is the process where the data are imported 
to the model and obtaining a desired output, then the 
output of the network will be compared with the actual 
output, the error will backpropagate, and the weights are 
adjusted until calibration is reached. To prevent overtrain‑
ing and ensure generalization, the data were divided into 
60% for training, 20% for validation, and 20% for testing. 

3.5 � Network structure

Choosing the number of hidden layers and the number of 
neurons in the hidden layers is a vital step to create neural 
networks. There are endless network structures that can 
be chosen. Choosing too many hidden layers and/or too 

Table 2   Summary of statistics Reason Parameter Mean Standard dev Min Max

Natural fractures MW, gm/cc 1.10 0.04 1.04 1.17
ECD, gm/cc 1.12 0.04 1.06 1.19
PV, cp 14.10 3.20 6.00 21.00
Yp, Ib/100 ft2 17.92 3.92 12.00 29.00
Q, L/Min 2131.43 373.80 1232.00 3168.00
RPM 79.77 15.78 50.00 120.00
WOB, Ton 11.85 3.22 4.00 20.00
Nozzles, TFA, inch2 3.79 2.24 0.45 10.60
Actual Loss, m3/hr 22.73 19.94 0.00 84.00

Induced fractures MW, gm/cc 1.18 0.06 1.15 2.30
ECD, gm/cc 1.19 0.07 1.12 2.50
PV, cp 16.70 3.05 10.00 23.00
Yp, Ib/100 ft2 15.70 4.56 11.00 30.00
Q, L/Min 1719.01 274.53 1232.00 2640.00
RPM 77.01 16.47 55.00 120.00
WOB, Ton 12.42 3.51 5.00 21.00
Nozzles,TFA, inch2 3.35 1.72 0.31 5.96
Actual loss, m3/hr 26.35 23.15 0.00 92.00

Fig. 2   Data collection locations

Fig. 3   Process of selecting the optimum number of hidden layers
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many neurons in each hidden layer may result in over‑
training of the network, meaning the network will lose 
generalization to new data. Thus, the optimal number of 
hidden layers and the number of neurons in the hidden 
layers must be selected. This process was done by trial 
and error, such that starting with one hidden layer and 
increasing the number of hidden layers after each trial, the 

same process was also implemented to select the number 
of neurons in the hidden layers. Figure 3 summarizes the 
process of selecting the optimal number of hidden layers. 
For each trial, the mean square of error (MSE) was calcu‑
lated, and the scenario with the lowest MSE was selected. 
MSE was calculated using Eq. 2, where M is the number of 
data points [46]:

 

3.6 � Training algorithms

Table  3 shows a summary of the training algorithms 
tested in this work. Two criteria were used to select the 
training algorithms; the algorithm with the lowest MSE 
and the highest R2 was selected to train the network. 
Equation 3 was used to calculate R2:

 
where yi is the actual data point, ŷi is the estimated 

data point, and 
−

y is the average mean of the actual data. 
Figure 4 summarizes the methodology used in this study.

4 � Results and discussion

Since two datasets were collected for the natural and 
induced fractures, two networks were created: one for 
the natural and one for induced fractures. The results 
are divided into natural fractures network results and 
induced fractures network results.

4.1 � Natural fractures network

A neural network with one input layer, one hidden layer 
with ten neurons, and one output layer was created for 
the natural fractures dataset. Figures 5 and 6 show the 
MSE and R2 for all training functions examined in this 
study, respectively. LM and BR algorithms have the low‑
est MSE and the highest R2 among the other algorithms 
with the LM algorithms being slightly better than the BR 
algorithm (LM has lower MSE and higher R2). Typical BR 
algorithm does not use validation to stop the network 

(2)MSE =
1

M

∑M

i=1
(Actual − Predicted)

2

(3)R2 =

∑n

i=1

�

ŷi − y
�2

∑n

i=1

�

yi − y
�2

Table 3   Training algorithms

Description Acronym

Bayesian Regularization BR
Conjugate Gradient with Powell/Beale Restarts CGB
Fletcher–Powell Conjugate Gradient CGF
Levenberg–Marquardt LM
One Step Secant OSS
Polak–Ribiére Conjugate Gradient CGP
Quasi-Newton BFG
Resilient Backpropagation RP
Scaled Conjugate Gradient SCG
Variable Learning Rate Backpropagation GDX

Fig. 4   Summary of the methodology used in this study
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when a generalization is reached such that the training 
can continue until an optimal combination of weights is 
found. On the other hand, LM usually has the fastest con‑
vergence which gives accurate training. Also, the LM nor‑
mally performs very well in approximation (regression) 
problems. Training will stop in the LM algorithm when 
generalization stops improving. Thus, the LM algorithm 
was chosen to train the network [46]. 

Figure 7 shows the MSE with iterations for training, 
validation, and testing sets  for the LM  algorithm. To 

avoid overfitting, the MSE in the validation set is moni‑
tored and the training will stop once the lowest MSE is 
reached. Also, testing and validation MSE should have 
similar characteristics to avoid overfitting and have a rig‑
orous network. Figure 7 shows the training stops after 
33 iterations which when the MSE for the validation set 
is minimum. Moreover, Fig. 7 clearly shows that testing 
and validation sets have the same MSE characteristics.

Figure 8 shows the actual and predicted mud loss for 
training Fig. 8a, validation Fig. 8b, testing Fig. 8c, and all 

Fig. 5   MSE of all training func‑
tions examined in this study 
(natural fractures)

Fig. 6   R2 of all training func‑
tions examined in this study 
(natural fractures)
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Fig. 8d datasets. The R2 for the training, validation, and 
testing is 0.96, 0.95, and 0.948, respectively. The network 
has an overall R2 of 0.956. With this high R2, the network 
can be used to predict mud loss prior to drilling for for‑
mations with natural fractures.

Equation 4 can be used to estimate mud loss for for‑
mations with natural fractures prior to drilling.

where n is the number of neurons in the hidden layer 
that optimized to be ten, w1 is the hidden layer’s weight, 
w2 is the output layer’s weight, b1 is the hidden layer’s 
bias, b2 is the output layer’s bias, and x is the input. The 
j’s are related to the input variables such that j = 1 is MW, 
j = 2 is ECD, j = 3 is PV, j = 4 is Yp, j = 5 is Q, j = 6 is RPM, j = 7 
is WOB, and j = 8 is Nozzles TFA. Table 4 summarizes the 
coefficients for Eq. 4.

(4)

MudLoss =

�

n
�

i=1

w2i

�

2

1 + e
−2
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∑J

j=1
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Fig. 7   MSE vs epochs for the LM training function (natural frac‑
tures)

Fig. 8   Predicted and actual 
mud loss (natural fractures)
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4.2 � Induced fractures network

A neural network with one input layer, one hidden 
layer with ten neurons, and one output layer was cre‑
ated for the induced fractures dataset. Figures 9 and 10 
show MSE and R2 for all training functions, respectively. 
Although the BR algorithm has a lower MSE, the LM algo‑
rithm was chosen because it has a higher R2. 

Figure 11 shows the MSE for the LM algorithm for 
training, validation, and testing. Figure 11 shows the 
training stops after 19 iterations which when the MSE for 
the validation set is minimum. Moreover, Fig. 11 clearly 
shows that the testing and validation sets have the same 
MSE characteristics. Figure 12 shows the actual and pre‑
dicted mud loss for training Fig. 12a, validation Fig. 12b, 
testing Fig. 12c, and all Fig. 12d datasets. The R2 for the 

training, validation, and testing is 0.928, 0.925, and 0.91, 
respectively. The network has an overall R2 of 0.925. With 
this high R2, the network can be used to predict mud loss 
prior to drilling for formations with induced fractures. 

Equation 5 can be used to estimate mud loss for forma‑
tions with induced fractures prior to drilling.

where n is the number of neurons in the hidden layer 
that optimized to be ten, w1 is the hidden layer’s weight, 
w2 is the output layer’s weight, b1 is the hidden layer’s bias, 
b2 is the output layer’s bias, and x is the input. The j’s are 
related to the input variables such that j = 1 is MW, j = 2 is 

(5)

MudLoss =

�

�n

i=1
w2i

�

2

1 + e
−2

�

∑J

j=1
w1i,j xj+b1i

� − 1

�

+ b2

�

Table 4   Coefficients for natural fracture formations mud losses (Eq. (4))

Weights w1j Hidden layer bias Weights of 
output layer

Output layer bias

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 b1 w2 b2

−2.2091 2.7249 1.8762 0.6220 −0.0617 −1.7078 -0.7524 −1.0397 −1.7124 0.3750 −0.2793
−6.9222 3.2221 2.1353 −1.7348 1.1825 −0.8590 0.6850 2.7215 3.5206 −0.2016
−0.4195 −0.7027 −4.4217 1.4298 −1.3663 0.2557 4.9967 1.8083 4.1717 0.2147

5.5710 1.4180 2.3832 0.8779 −0.7672 −0.1834 −1.0082 −0.0979 −4.8003 0.3362
−2.3232 −3.2751 1.3330 0.5541 −1.0229 0.9844 −0.6204 −2.8423 −0.5922 2.4752

1.0026 0.1431 −0.1428 1.4370 0.2717 −1.6094 −0.3796 −1.6778 −2.2784 −0.7235
1.2600 1.0021 2.5369 −0.1617 5.4880 −0.4228 4.0073 −3.1335 −3.9646 0.1092
3.2746 3.3977 −2.1981 −0.7570 1.8079 −1.2094 1.2321 3.5979 0.6624 1.8705
3.3066 0.7451 −0.1552 −0.1148 −0.1447 0.5618 0.3344 −0.0443 2.1266 0.6306
2.3620 −3.3680 −0.4873 −1.0335 −0.3052 1.7558 −1.8901 1.1824 3.5360 −0.5589

Fig. 9   MSE of all training func‑
tions examined in this study 
(induced fractures)
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ECD, j = 3 is PV, j = 4 is Yp, j = 5 is Q, j = 6 is RPM, j = 7 is WOB, 
and j = 8 is Nozzles TFA. Table 5 summarizes the coefficients 
for Eq. 5.

4.3 � Verification of the models

To further ensure the validity of the created neural net‑
work models, the models were tested on 24 new oil wells 
from different locations around the world (locations where 
data were gathered). Table 6 shows the 24 new tested oil 
wells, 12 wells for naturally fractured formations, and 12 for 
induced fractured formations. As can be seen, both models 
closely track the actual mud loss. The highest error in the 
naturally fractured formations network is about 6.34% in 

well 3, while the highest error in the induced fractured 
formations network is about 5.5%. These errors are not sig‑
nificant (one barrel per hour is not significant). Therefore, 
the networks are reliable to be utilized in the locations 
where data were collected to estimate mud loss based on 
key drilling parameters within an acceptable margin of 
error. Using the created models, key drilling parameters 
can be set to limit or minimize mud loss and save time 
and money.

5 � Conclusion

The following conclusions can be deduced based on this 
study:

•	 Two neural networks were created to be used to predict 
mud loss for natural and induced fractures. The net‑
works showed the ability to predict lost circulations 
prior to drilling within an acceptable range of error.

•	 After testing various training algorithms, the LM func‑
tion was selected to be used to train both networks 
because it had the highest R2 which makes it better for 
predictions.

•	 The created neural networks can be used in reverse to 
limit mud loss in induced and natural fractures by set‑
ting the key drilling parameters and obtaining a target 
mud loss.

•	 To further investigate and verify the created models, 
24 new wells were used to test the models. The mod‑
els’ outputs closely tracked the actual mud loss with a 
maximum error of 6.34%.

•	 This work overcame the shortcoming in the previous 
studies about the estimation of mud loss prior to drill‑

Fig. 10   R2 of all training func‑
tions examined in this study 
(induced fractures)
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Fig. 11   MSE vs epochs for the LM training function (induced frac‑
tures)
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Fig. 12   Predicted and actual 
mud losses (induced fractures)
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Table 5   Coefficients for induced fracture formations mud losses (Eq. (5))

Weights w1j Hidden layer bias Weights of 
output layer

Output layer bias

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 b1 w2 b2

−0.0188 0.4299 0.5094 −0.1200 −0.4728 0.9857 −2.2359 −1.5879 −0.9569 −0.8401 −0.0934
−1.2088 0.1555 −0.0515 1.6637 −0.4362 0.3206 −1.9913 −0.5783 2.0514 −0.7485
−1.4972 1.1058 −0.3683 −0.0899 −0.2342 −1.1991 1.8422 1.4864 0.2953 −0.6208

0.3541 1.3957 0.9587 −2.0335 0.6458 −0.2935 0.9900 1.7517 −0.5481 0.0843
1.0827 1.4165 4.9306 0.2243 −0.3265 0.6341 −0.3807 1.2828 −0.9051 0.4399

−0.6141 −0.9271 0.7023 1.8216 −0.1393 −0.0490 −0.5954 −0.9000 −0.5400 0.7831
−1.0147 −0.5148 −0.2306 1.0537 −2.5582 0.6457 −0.0649 −3.2413 −1.0419 −1.0123
−0.5832 −0.2497 −2.6341 −0.6176 0.2716 0.5635 0.4701 −0.5470 1.2409 0.5409

0.5697 0.3100 −0.3131 0.7437 −2.6053 0.4978 −0.1359 −3.0343 0.7000 1.0956
1.7660 0.2721 −0.6647 4.0852 −0.5448 0.3596 1.3750 1.0492 2.4765 −0.4157
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ing. This is the first study that provides a generalized 
model to estimate lost circulation prior to drilling that 
can be used worldwide.
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