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Abstract
This study presents two time series models to estimate the mean increase in the monthly mean temperature in São 
Paulo City from 1960 to 2017. The basic model consists of a linear regression model including trend and sine and cosine 
functions to consider seasonality. As the errors are supposed to be autocorrelated for time series, we can include in the 
regression model the lagged temperatures or autoregressive errors. The first approach is often used in practice, but the 
trend parameter estimator is biased to estimate the long-run trend effect. The unbiased trend effect estimator is pre-
sented with its variance and confidence interval. The second approach provides directly the unbiased trend estimator. 
Finally, there is evidence that the temperature trend effect is constant over time and both models lead to a significant 
increase of 1.9 ◦ C in the last 50 years in São Paulo City. The 95% confidence interval is equal to [1.6; 2.2] for the model 
with autoregressive errors, which is beyond the limits announced in the Paris Agreement of 2015.
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1  Introduction

One of the main global concerns is global warming and its 
impact on our lives. Temperature is increasing worldwide 
[13], and the main goal of the Paris Agreement (2015) is to 
take efforts to maintain the rise of the global temperature 
in our century below 2 ◦ C above pre-industrial levels and 
limit the temperature increase further to 1.5 ◦C.

There are many lines of evidence about global warming. 
In March 2020, there were 1.89 million published papers 
including the words global warming and temperature 
increase in the Google Scholar website. Some of them 
discuss the impact of global warming, and that evidence 
of the increase in temperature is undeniable. The global 
annual temperature has increased at an average rate of 
0.18 ◦ C per decade since 1981 [15].

This paper aims to present and discuss time series mod-
els to estimate the increase in temperature. In special, the 
main goal of this analysis consists of estimating the mean 
temperature increase in the last 50 years based on the 
monthly mean temperature from 1961 to 2017 in the city 
of São Paulo, Brazil.

São Paulo is a vast city with an estimated population of 
12 million people in 2016 [10]. Another motivation for this 
analysis is that in the last ten years the number of vehicles 
increased by 39% in São Paulo, passing from 6,369,581 in 
2008 to 8,861,208 in 2018 (Detran), whereas the popula-
tion increased by 8% in the last two decades.

Linear regression models are convenient to estimate 
the linear trend and seasonality, but significant residual 
autocorrelations show that the usual assumption of error 
independence is violated when analyzing time series. To 
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estimate the mean temperature increase, we propose a 
linear regression model including linear trend and sine 
and cosine functions, but it is necessary to include also 
autoregressive errors, named AR error model. The alter-
native model is a linear regression model in which we 
include the lagged temperature (called ARX model) and 
consider the serial correlation between the temperatures 
in consecutive months. In this last model, the trend effect 
is accumulated in the long term and depends not only on 
the parameter of the linear trend, as some practitioners 
may think, but also on the parameters associated with the 
lagged temperatures.

In this paper, we propose, fit, and discuss both models. 
First, we check if all model assumptions are valid through 
a residual analysis. Then, the mean temperature increase is 
estimated for 50 years with the corresponding prediction 
interval. The method to estimate the mean annual increase 
is explained, and more complex calculations are required 
to estimate the long-term trend effect for the model with 
lagged temperatures.

Based on the observed monthly mean temperature 
from 1961 to 2017 in the city of São Paulo, it was observed 
a mean increase of 0.4 ◦C in each decade, and a mean 
increase of approximately 2 ◦ C in the last 50 years. We also 
fitted a dynamic linear model only to confirm that the 
trend effect is not varying over time.

This paper unfolds as follows. Section 2 presents the 
method used. Section 3 presents all the estimation results. 
Section 4 discusses the advantages and disadvantages of 
each model. Finally, some conclusions are given in Sect. 5, 
along with some explanations on why the model with 
autoregressive errors is easier to estimate covariate effects, 
such as the trend effect.

2 � Models, estimation methods, and residual 
analysis

The monthly mean temperatures in São Paulo, measured 
at the Mirante de Santana station from 1961 to 2017, were 
obtained from the Instituto Nacional de Pesquisas Espa-
ciais (INPE) [11]. This time series consists of 684 monthly 
observations, corresponding to 57 years. This time series 
presents 20 missing values, mainly in the beginning of the 
80’s. No imputation method was applied and the mod-
els proposed in this paper may be fitted with few missing 
values.

The basic model includes a linear trend and harmonic 
components to take into account the seasonality as in [1]. 
Then, the regression model for the mean temperature in 
the tth month, yt , is given by

for t = 1,… , 684.
Note that all 11 harmonics, cos(2�jt∕12) and 

sin(2�jt∕12) , were included, except the sine function for 
j = 6 since sin(2�6t∕12) = sin(�t) = 0 . Beyond the orthog-
onality of these trigonometric functions, another impor-
tant feature is that for any integer k we have

Then, the seasonal component oscillates around zero and 
its inclusion in (1) implies that the mean of yt oscillates 
around the linear trend �0 + �1t∕12.

The main concern is that the error process is probably 
autocorrelated. Then, it was proposed that the error may 
be modeled as an autoregressive (AR error) process, as 
suggested by the residual autocorrelation and partial 
autocorrelation functions.

After removing the nonsignificant harmonic terms, 
based on the likelihood ratio test to verify the null 
hypothesis that 7 coefficients are all simultaneously null 
(p=0.5521), the model with AR(1) errors is

t = 1,… , 684 , where at are zero-mean, independent, 
Gaussian, and homoscedastic random errors. Also, after 
a sequence of replacements, the error can be written as 
et =

∑
i �

iat−i and the process et is stationary assuming 
that |𝜙| < 1.

This model was estimated using the maximum condi-
tional likelihood method. The likelihood is the product of 
the Gaussian conditional density functions of yt given all 
the available information up to t − 1 [19]. The asymptotic 
distribution of these maximum likelihood estimators is 
Gaussian and their variance are obtained from the inverse 
of Fisher information matrix. More details are, for example, 
in [3, 19].
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In this analysis, the model was estimated using the 
Arima command of the forecast library in [8] using the 
R programming language.

As an alternative, we also proposed a model that 
includes the last observation yt−1 in the regression model 
to take into account the autocorrelation. This proposal 
is simpler to practitioners since it is a regression model 
where the lagged observation is another covariate. We call 
this model ARX(1) model because it may be understood 
as an AR(1) model with covariates (X = trend and seasonal 
components), as the ARMAX model in [19]. The ARX(1) 
model is defined for t = 1,… , 684 as

where et are independent Gaussian errors with standard 
deviation �e and |𝜙| < 1.

The conditional mean of the temperature is

but the annual increase in the mean temperature does not 
directly correspond to �1 since yt−1 also depends on t. By 
increasing one month, the covariate xt = t goes to t + 1 , 
and in the first month yt+1 increases on average �1 , in the 
second month yt+2 increases �1 + �1� and after h months 
yt+h increases �1(1 + � +⋯ + �h) = �1

1−�h+1

1−�
 [7, 9]. As the 

process is a stationary autoregressive process, |𝜙| < 1 . 
Then, in the long term (as n → ∞ ), the mean annual 
increase corresponds to

Using the Delta method [18] and assuming that |𝜙| < 1 , the 
asymptotic variance of the maximum likelihood estimator 
�̂∗
1
= �̂1∕(1 − �̂) is

The estimated variance is obtained by replacing the 
parameters �1 and � by their respective estimates.

The residual analysis of both models included residual 
time series plots, residual autocorrelations and residual 
quantile–quantile (QQ) plots. After concluding that all 
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model assumptions are valid, the predicted temperatures 
were calculated for both models. The predicted tempera-
tures for the AR(1) error model in (2) are

and, for the ARX(1) model in (3), the prediction includes 
the lagged term

The temperature forecasts for the next 50 years are calcu-
lated with corresponding 95% prediction intervals using 
the AR(1) error model through the forecast library [8] in 
the R software [17]. The variance of forecasts using ARMA 
models are obtained, writing the model as an infinite 
order-MA model as explained in [3]. As we are considering 
an AR(1) error model, the coefficients of the MA model are 
�i = �i . Including the covariates at time h ( �h ), the variance 
of a forecast h steps ahead is

A state space model [16] with a time-varying trend and 
also seasonality was also proposed only to verify if the 
trend parameter is constant over time. The non-observed 
state variables to measure the time-varying trend �t 
evolves as a random walk in

where �0 is the intercept, �t is the time-varying trend 
parameter, each st is the monthly effect and the errors 
vt ∼ N(0, V ) , wS

t
∼ N(0,WS) and w�

t ∼ N(0,W�) are inde-
pendent. In state space models [16], it is usual to assume 
that the seasonal effects st are random variables such that 
st + st−1 +⋯ + st−11 = wS

t
 have zero-mean and the time-

varying effect is a random walk.
This state space model was fitted using the Kalman 

Filter and the maximum likelihood method through the 
dlm library [16] in the R software [17]. The predicted time-
varying effect 𝛽t is obtained with the smoothed equations 
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of the Kalman filter and is plotted to verify if it may be 
considered a constant or time-varying effect.

The computing code used and the database is available 
upon request.

3 � Results

In this section, we shall present the results of the present 
temperature data analysis.

Figure 1 shows the monthly mean temperature in São 
Paulo. We note a linear increase from 1960, and the mean 
temperature increase is around 0.4 ◦ C per decade as pre-
sented in Table 1. This corresponds to a mean increase of 
almost 2 ◦ C in the last 50 years ( 0.39 × 5 = 1.95 ◦C).

All the estimates and corresponding standard errors for 
the proposed models are presented in Table 2. For both 
models, the estimated annual mean increase in tem-
perature is 0.038 ◦ C, which corresponds to an increase of 
1.9 ◦ C in 50 years with 95% confidence intervals equal to 
[1.91∓0.29] = [1.62;2.20] for the AR(1) error model and 
[1.91∓0.43] = [1.48;2.34] for the ARX(1) model.

Both models, the AR(1) error model and the ARX(1) 
model, presented nonsignificant residual autocor-
relations (Fig. 2) and also there is no significant resid-
ual autocorrelation until lag 10 according to the 
Ljung–Box test ( p value = 0.5161 for the AR(1) error model 
and p value = 0.2424 for the ARX(1) model) [2]. Also, Fig. 2 
shows that the residuals are homoscedastic and normally 
distributed. Then, all model assumptions are valid for the 
AR(1) error and ARX(1) models and the prediction intervals 
and forecast may be used for inference.

Figure 3 presents the predicted values only from 2010 
for better visualization. The predictions for the AR(1) error 
model in (6) and ARX(1) model in (7) are similar and close 
to the observed temperature values.

Notice that the weather will be warmer in São Paulo if 
the current trend remains the same in the coming years, as 

observed in Fig. 4. These forecasts are calculated assuming 
that the trend will remain the same for a long time and it is 
shown only to visualize the future temperatures.

Based on the dynamic model with time-varying trend 
effect, the predicted time-varying effect 𝛽t oscillates close 
to 0.0383 as shown in Fig. 5. The variance of the time-var-
ying error is too small ( < 0.0001 ), indicating that the linear 
trend effect does not change over time.

4 � Discussion

Both the regression model with AR(1) errors in (2) and the 
ARX(1) model in (3) provide similar estimates and pre-
dicted values.

For several practitioners, it is easier to include the 
lagged observation in the regression model, as in the 
ARX(1) model (3), since it can be estimated by the least 
squares method using any spreadsheet program. If the 
main goal is to calculate predictions or forecasts for the 
temperature, this model may be chosen or even a SARIMA 
model. However, considering the trend coefficient as the 
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Fig. 1   Monthly mean temperature in São Paulo City from 1960 to 
2017

Table 1   Descriptive statistics of monthly mean temperature by 
decade in São Paulo

Years Average Difference Minimum Maximum Range

61–69 18.8 13.1 23.4 10.3
70–79 19.2 0.4 14.6 24.1 9.5
80–89 19.5 0.3 13.7 24.8 11.1
90–99 20.1 0.6 14.8 24.6 9.8
00–09 20.4 0.3 15.3 25.4 10.1
00–17 20.8 0.4 15.5 25.4 10.0
Mean 19.8 0.4

Table 2   Estimates and corresponding standard errors, first residual 
autocorrelation, and estimated residual standard deviation

Effects AR(1) Error model ARX(1) model

Estimate Std. Error Estimate Std. Error

Intercept 18.685 0.098 15.475 0.681
Trend 0.038 0.003 0.032 0.003
cos(2�t∕12) 2.505 0.066 2.283 0.072
cos(4�t∕12) −0.583 0.060 −0.518 0.057
cos(6�t∕12) 0.105 0.032 0.124 0.039
sin(2�t∕12) 1.766 0.066 1.288 0.115
ar(1) 0.214 0.037 0.172 0.036
1 year 0.038 0.003 0.038 0.004
50 year 1.910 0.148 1.912 0.220
1st Autocorrel −0.015 0.034
Res. SD 1.027 1.021
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Fig. 2   Residual analysis AR(1) error
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Fig. 3   Observed and predicted temperatures from 2010 to 2017 in 
São Paulo City
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and forecasts with 95% prediction intervals for the next 50 years 
using the AR(1) error model
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mean increase in temperature is not adequate since this 
would underestimate the trend. In Table  2, the trend 
parameter estimate is 0.032, but the mean increase esti-
mator must be calculated using (4), providing an annual 
increase equals to 0.038 with corresponding asymptotic 
variance in (5).

On the other hand, to estimate and obtain confidence 
intervals or tests involving the model parameters, for 
example, for the secular trend, it is easier to consider the 
model with AR(1) errors. This occurs because its trend 
parameter directly measures the trend effect, and it is 
easier to obtain standard errors and confidence intervals.

It is worth noting that usually it is expected that the 
range of the forecast interval grows for larger horizons. 
However, the forecast interval are not getting wider in 
Fig. 4 and this may occur due to the very small variance of 
the trend estimator.

In [6], a regression model with trend and autoregres-
sive error is fitted, but there is no seasonal component. 
This may have increased the estimated autoregressive 
coefficient, turning the error process similar to a random 
walk (unit root process). After considering differences, they 
also found significant temperature increases in Alaska, 
but the estimated parameters do not correspond to the 
mean annual increases presented here, which is easier to 
interpret.

A dynamic linear model to estimate a time-varying 
trend effect was also fitted indicating that this effect does 
not vary over time and the temperature is always increas-
ing with the same rate, as also concluded by [5] for the 
global temperature data until 1980.

Recent papers concluded that global warming was 
overestimated. For example, [4] indicated that, in the 
period 1993–2012, the mean global temperature increased 
0.14 ◦C(∓0.06◦ C) per decade. This increase is lower than the 
previously estimated 0.3 ◦ C using simulations of complex 
models. They concluded that maybe the models did not 
reproduce the observed global warming over the past 20 

years or the slowdown in global warming over the past 
fifteen years.

Also, the mean increase in the global temperature is 
0.18◦ per decade since 1981 in the Global climate report 
[15] and, for example, it is 0.2◦ in Ghana [12]. All these 
increases are smaller than the estimated increase around 
0.4 ◦ C per decade in São Paulo City, as observed in Table 1 
and estimated by the proposed models ( 0.38 ◦ C in Table 2). 
Our data from São Paulo showed a constant increase in 
temperature, with no slowdown.

5 � Conclusions

Whenever there is evidence that the temperature increase 
is not changing over time, it is recommended to fit a 
regression model including trend and seasonal compo-
nents and autoregressive errors to estimate the mean 
temperature increase with the corresponding confidence 
interval. If a model with lagged temperatures is chosen, it 
is necessary to calculate the long-term mean increase as in 
(4) and its variance as in (5), because the estimator of the 
trend coefficient is a biased estimator of the mean annual 
increase in the temperature.

Focusing on the climate change issue, there is suffi-
cient evidence that temperature is increasing and there 
is an increase of 1.9 ◦ C in the last 50 years in the city of 
São Paulo, with a 95% confidence interval of [1.6; 2.2] for 
the AR(1) error model, including the upper limit, stated in 
the Paris Agreement [14] of 2 ◦C-increase. Maintaining this 
increase, it is expected another increase of around 1.9 ◦ C 
in the next 50 years.
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