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Abstract
The history of tunnel boring machine (TBM) tunnelling dates back to nearly 50 years ago. Due to high construction 
cost, the investigation on TBM performance is regarded as one of the crucial issues which should be considered 
from different aspects. The prediction of TBM penetration rate is one of the most important part of every mecha-
nized tunnelling project which plays a key role in selecting the machine as well. One of the major difficulties and 
challenges in TBM performance prediction is to apply novel approaches to predict the TBMs penetration rate. 
Considering the importance of this issue, the objective of this research work is to attain more realistic models for 
predicting TBM penetration rate in Iranian water conveyance tunneling. With this respect, a database comprises 
field data and machine parameters in Chamshir water conveyance tunneling project were established. The data 
were then analyzed through artificial neural networks (ANN), support vector machine (SVM) and gene expression 
programming (GEP). Results demonstrated that obtained values of the coefficient of determination (R2) and the 
root mean square error (RMSE) found to be 0.99 and 0.15 for ANN, 0.95 and 0.37 for SVM, 0.99 and 0.11 for GEP, 
respectively. These models can be applied to predict TBM penetration rate in the Chamshir water conveyance 
tunnel. Moreover, it can be concluded that the GEP method has the higher accuracy (maximum R2 and minimum 
RMSE) among all predictive models.

Keywords  Tunnel boring machine (TBM) · Chamshir water conveyance tunnel · Artificial neural networks (ANN) · 
Support vector machine (SVM) · Gene expression programming (GEP)

1  Introduction

TBMs are the most outstanding excavating machines 
in tunnels and underground spaces [1, 2]. One of the 
important tasks in mechanical excavation is to predict 
the penetration rate (PR) of the miner [3, 4]. Knowing 
the factors influencing the penetration rate is crucial 
because it can directly affect project’s schedule, par-
ticularly cutting time, as well as operating costs [5, 6]. 
Penetration rate is the key factor through performance 
prediction of tunnel boring machines (TBMs) [7, 8]. 

There are various methods and equations to predict PR 
[9, 10], each has its own characteristics [11, 12] due to 
site specific rock mass parameters and machine speci-
fications [13, 14]. TBMs penetration rate is the first and 
most important step in predicting the time of tunneling 
project [15, 16]. One of the major difficulties and chal-
lenges in TBM performance prediction is to find more 
precise approaches to predict the TBMs penetration rate. 
Considering the importance of this issue and existing 
site specific models, the aim of this study is to use mod-
ern methods and compare their results to yield more 
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realistic models for predicting TBM penetration rate in 
Iranian water conveyance tunneling.

Oraee and Salehi [17] proposed a new model for 
advance rate in TBMs. Hassanpour et al. [18] calculated 
TBM performance based on experience of TBM tun-
neling. Mohammadi et al. [19] suggested the TBM pen-
etration rate using intact and mass rock properties. Pal-
trinieri et al. [20] studied the analysis and estimation of 
gripper TBM performances. Salimi et al. [21] developed 
a model for TBM performance prediction by regres-
sion technique. Jakubowski et al. [22] proposed a new 
model for the tunnel boring machine performance by 
multivariate linear regression technique. Liu et al. [23] 
presented a model for TBM performance prediction 
using a rock mass classification system. Maji and Theja 
[24] measured TBMs performance for rock. Mikaeil et al. 
[25] proposed a model to predict the penetration rate 
by fuzzy technique. Yagiz et al. [26] presented a model 
for prediction of rock brittleness. Adoko and Yagiz [27] 
proposed a new model for TBM field penetration index. 
Namli and Bilgin [28] developed a model to predict daily 
advance rates of EPB-TBMs. Afradi et al. [29] suggested a 
new method for TBM penetration rate using ant colony 
optimization, bee colony optimization and the particle 
swarm optimization. The aim of this paper is to show the 
application of ANN, SVM and GEP for prediction of TBM 
penetration rate in Chamshir water conveyance tunnel 
which is considered as one the most important TBM 
tunneling projects in Iran. Furthermore, the capability 
of these approaches to attain the more realistic results 
is investigated.

2 � Materials and Methods

2.1 � The study area

Chamshir water conveyance tunnel is located in the north-
west of Bushehr Province and northeastern part of the 

city of Dilam and has been implemented to transfer water 
to Chamshir dam in Kohgiluyeh province in Iran [30]. A 
comprehensive database is compiled from field data and 
machine parameters during tunnel construction. It should 
be stated that theses parameters are the most influential 
parameters on TBM performance. The list of parameters 
and the statistical description of the data is presented in 
Table 1, and Fig. 1 shows the situation of the Chamshir 
water conveyance tunnel. 

2.2 � Artificial neural networks (ANN)

With the discovery that the human brain performs com-
putations quite differently from conventional digital 
computers studies on artificial neural networks have 
grown [31, 32]. The brain is a very complicated and par-
allel structure [33, 34]. Due to the ability to organize the 
fundamental elements of neurons, the brain has the 
capability to perform many calculations (such as pattern 
recognition, perception, etc.) at a much faster rate than 
the fastest digital computer [35, 36]. For example, con-
sider the visual process, which in fact is a kind of infor-
mation processing [37, 38]. The brain can easily handle 
the visual perception process at a time of 100–200 ms 
[39, 40]. However, the ability to detect much simpler 
images for conventional computers is much lower [41, 
42]. Another interesting example of the complex brain 
capabilities is the sound system of the bat [43, 44]. This 
system has the ability to provide information such as bat 
distance to the target [for example, a flying mosquito], 
as well as relative velocity, dimensions, azimuth and 
target height [45, 46]. However, all these very complex 
calculations occur in the brain rapidly [47, 48]. Today’s 
most advanced radars are not capable of doing this. At 
birth, the brain has a huge building and it has the abil-
ity to build and develop itself according to what we call 
"experience." In fact, experience is built up over time, and 
the highest volume of brain changes occurs during the 
first 2 years of birth, although this evolution continues 

Table 1   Parameters and the statistical description of the database

Joint 
spacing(m)

Joint 
angle 
(Deg.)

Revolutions 
per minute 
(RPM) (cycle /
min)

Uniaxial 
compressive 
strength 
(UCS) (MPa)

Poisson’s 
ratio

Brazilian ten-
sile strength 
(BTS) (MPa)

Thrust per 
cutter (KN)

Power(KW) Penetration 
rate (PR)
(m/h)

Mean 0.20 26.62 5.61 47.33 0.27 7.12 198.60 710.63 2.661
N 100 100 100 100 100 100 100 100 100
Std. Devia-

tion
0.22 6.55 2.23 23.95 0.06 1.66 34.05 204.32 1.66

Minimum 0.1 19 3 10 0.20 5.00 150 480 1.5
Maximum 1.6 50 10 90 0.40 10.00 250 1200 9.0
Variance 0.05 42.92 5.00 573.83 0.004 2.76 1159.47 41,748.70 2.77
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throughout life [49, 50]. On the other hand, the plasticity 
of the brain allows the neurons to adapt to the surround-
ing environment [51, 52]. Generally, a neural network is 

a system designed to model brain function in a specific 
activity [53]. Neural networks are usually used as software 
in digital computers [54]. Also, for better performance, 

Fig. 1   Location of Chamshir water conveyance tunnel [30]
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these networks require a large amount of connections 
between "neurons" and "processing units" [55]. Accord-
ing to the above explanations, the following definition 
can be provided for neural networks: a very parallel and 
distributed neural network that consists of small proces-
sor units and has an inherent interest in storing empirical 
information and preparing it [56]. The neural network is 
similar to the brain in general:

1.	 Information is obtained in the same way as the brain 
through a learning process from the environment.

2.	 Synaptic weights are used to store information.

The steps are called the learning algorithm, which 
during this learning process weighs synaptically to 
correct an optimal response [57, 58]. The strength and 
ability of a neural network comes from two factors: 
first, a very parallel and scattered structure [59, 60]. 
The human nervous system is the same as a 3-step 
system. The first subsystem is the information receiver 
from the surrounding area [61, 62]. In the middle of 
this, brain system is the name of the neural network 
[63]. This section is constantly receiving information, 
understanding and decision making [64]. The final 
operator provides the answer after the decision stages 
in the final stage of the system [65, 66]. A neural net-
work (artificial) is a network of simple elements called 
neurons that receive inputs and modify their internal 
status according to the same input (activation) and 
output according to input and activation [67, 68]. This 
network connects the output of some of the neurons 
to the input of other neurons and forms a directional 
and weighted graph [69, 70]. Weights, as well as the 
functions, that compute activation can be modified 
under a process called learning [71], which is managed 
by a learning rule [72].

A neuron labeled j that receives input pj (t) from its 
predecessor neurons consists of the following compo-
nents [64]:

A.	 An activator, which depends on a time discrete param-
eter.

B.	 Probably a threshold θj, which is constant unless 
changed by the learner function.

C.	 An activation function f that computes the new activa-
tor at given time t + 1 from θj, aj (t), and net pj input and 
obtains the following Eq. (1) [65, 66]:

And an output function that calculates the output of 
the activator:

The diffusion function calculates the input of pj (t) to 
neurons j from the outputs oi (t) of neurons before and 
is usually as follows [67, 68]:

Mathematically, the function f (x) of a neuron network 
is defined as a combination of other gi (x) functions that 
can themselves be decomposed into other functions. 
The following is a summary of gi functions as a vector 
[69, 70]:

This requires defining a cost function C: F → R so that 
for the optimal answer we have f * [71]:

As a simple example, consider finding the model f, 
which minimizes C = E

[
(f (x) − y)2

]
 for ordered pairs of 

data (x, y) from a D distribution. In practice, we have only 
N instances of D, so for the above example, we minimize 
only the following statement [72]:

ANN structure of Chamshir water conveyance tunnel 
is shown in Fig. 2. It should be stated that several ANN 
structure has been made (in terms of different hidden and 
output layers with different nodes) and simplest structure 
with the lowest error was selected as ANN structure for 
Chamshir water conveyance tunnel.

(1)aj(t + 1) = f
(
aj(t), pj(t), θj

)

(2)oj(t) = fout(aj (t))

(3)pj(t) =
∑

i

oj(t)wij

(4)g = (g1, g2,… , gn)

(5)C (f ∗) ≤ C (f )∀f ∈ F

(6)Ĉ =

(
1

N

N∑

i

(
f
(
xi
)
− y2

j

))

Fig. 2   ANN structure of Cham-
shir water conveyance tunnel
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2.3 � Support vector machine (SVM)

At the beginning of the classification, we examine the data 
for a case. If the samples are linearly separable, you should 
look for the best line or super-page that can split the two 
categories [73, 74].

In w.x + b = 0, the vector w is called the weight, which 
is perpendicular to the separator superplane, and b is a 
bias value [75, 76]. Borders are defined as follows [Eq. (7)]:

The patterns on these pages have the closest distance 
to the optimal super-page, which calls the support vector 
[77]. The region between the two hyperplanes H + and H- is 
called the Margin.

The classification function in the SVM method is as fol-
lows [Eq. (8)]:

It is necessary to solve the problem of optimal super-
conductivity as follows [Eq. (9)]:

The optimal superconducting objective is apart from 
all the superscripts that separate the convex corpuscles 
of the two classes, the best of them is the super-graph, 
which separates the convex corners of the two classes with 
the largest margin [78, 79]. To avoid scaling w and b, we 
conventionally consider the size of the decision function 
for the closest sample to be equal to 1 as follows [Eq. (10)]:

In addition, the distance between each sample is as fol-
lows [Eq. (11)]:

In this way, it can be seen the distance of the closest 
samples from each class is equal 1

‖w‖ and the width of the 

margin is equal to 2

‖w‖ So, we can minimize the value ‖w‖
2

 

by maximizing the margin and by placing ||w||2 instead of 
||w|| an equation is obtained and its target function. Kernel 
functions are shown in Table 2, where γ,d, p, and r are ker-
nel parameters.

SVM specifications of the Chamshir water conveyance 
tunnel are shown in Table 3, where C is a positive constant, 
and ε is the insensitive zone, both are chosen by the user. 

(7)
H+ ∶ w.x + b = +1

H− ∶ w.x + b = −1

(8)f (x) = sign (w.x + b)

(9)
Minimize

‖w‖2

2
=

1

2
(w.w)

Subjectto ∶ yi(w.x + b) ≥ 1&yi = ±1∀i = 1, 2, 3, ...,N

(10)||w ⋅ x
i
+ b|| = 1

(11)
��w ⋅ xi + b��

‖w‖

C is also referred to as the regression parameter or penalty 
parameter and δ is an independent random noise.

2.4 � Gene expression programming (GEP)

The program for gene expression was presented by Fer-
reira [80]. In this program, linear and simple constant-
length chromosomes are used in the genetic algorithm 
and branch structures of different sizes and shapes are 
combined with expression trees in genetic planning [81]. 
The first step in the model algorithm is to generate the 
initial population of solutions, which can be done by 
random sampling or taking into information about the 
problem [82]. Chromosomes are expressed as expres-
sion tree and evaluated by fit function, if the desired 
solution or the arrival of generations, the evolution is 
stopped and the best solution is provided [83, 84]. If the 
conditions are not stopped, elitist will be done and the 
remaining solutions will be assigned to the selective pro-
cess, which will be repeated for several generations and 
proceeded the generation to a superior quality of the 
population [85, 86]. In the planning of gene expression, 
various operators, such as mutation and combination, 
are used. The model uses the famous Roulette wheel for 
selecting individuals [87, 88]. The mutation operator is 
a random regeneration within certain chromosomes. 
The property of this operator to prevent the creation 
of defective individuals in terms of rules, the operation 
will run without defects. In this model, a single-point, 
two-point and gene combination are used. It is prefer-
able that the two-point combination is able to turn the 
unencoded areas into chromosomes more extensively 
[89–91]. The general structure of the computation 

Table 2   Kernel functions

Linear k
(
xi .xj

)
= xT

i
, xj

Polynomial k
�
xi .xj

�
=
�
𝛾⟨xi .xj⟩ + r

�d
𝛾 > 0

Gaussian
k
(
xi .xj

)
= exp

(
−

xi−x
2
j

2p2

)

Radial basis function k
(
xi .xj

)
= exp

(
−𝛾xi − x2

j

)
𝛾 > 0

Sigmoid k
(
xi .xj

)
= tanh

(
�xi .xj + r

)

Table 3   SVM specifications of the Chamshir water conveyance tun-
nel

Model Kernel Degree ɛ C σ

ɛ − SVR Radial basis function (RBF) 2 0.1 1000 0.5
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Table 4   The values of the parameters used in GEP

Parameter value Parameter description

10 (Head size)
30 (Chromosomes)
4 (Number of gene)
0.00138 (Mutation rate)
0.1 (Inversion rate)
0.00277 (One-point recombination rate)
0.00277 (Two-point recombination rat)
0.00277 (Gene recombination rate)
0.00546 (IS transposition rate)
0.00546 (RIS transposition rate)
0.00546 (Gene transposition rate)
RMSE (Fitness Function)
( +) (Linking Function)

performed in the GEP algorithm to arrive at the answer 
considers the following:

•	 At first, a generation (first generation) is created (pro-
duced).

•	 The population produced in the community (Hal 
field) is evaluated.

•	 The computational problem of the iterations begins 
to arrive at the answer.

•	 The next-generation number will be produced.
•	 The new generation is selected from the previous 

generation based on the evaluation and evaluation 
of the traits.

•	 If the new generation features are not suitable, each 
new member will be replaced.

•	 The new population in the community or field of set-
tlement is evaluated.

•	 The computational loop is repeated long enough to 
satisfy the condition of generation evolution

Before implementing gene expression programming, 
consider the following:

1.	 Set of input variables (fixed numbers)
2.	 The set of mathematical operators used in the formu-

las
3.	 Selection of fit function for formulas fitting
4.	 Determine the parameters of the program controller 

(such as population, chromosomes created, etc.)
5.	 Completion criteria and presentation of program 

results (Determine a new value for fitting formulas if 
the fitness level is equal to or greater than that value, 
stop running.)

Each solution of the population is evaluated by con-
sidering Eqs. (12), (13) and (14) and the fitness function is 
obtained.

In order to create a network for entering primary data 
for predicting the penetration rate, there is a need for input 
variables in programming. Genetic programming takes three 
steps (A, B, C) to solve the problem.

(12)if
(
x = X1 & G(x) ≥ 0

)

(13)fitness1(i) = min |G(x)|

(14)if
(
x = X1 & G(x) < 0

)

(15)fitness2(i) = min |G(x)|

(16)best_fitness = argmax[fitness1(i) + fitness2(i)]

A.	 Training
	   Learning is a process in which the network learns 

how to recognize the pattern in the input. For this pur-
pose, each initial assumption is generated from a set 
of learning rules defining the mode of learning.

B.	 Validation
	   Assessment is the ability of the network to provide 

acceptable responses to inputs that are not included 
in the training set.

C.	 Testing
	   Implementation is the ability of the network to pro-

vide an acceptable answer to the inputs in the training 
set.

The values of the parameters used in GEP to predict the 
penetration rate in the Chamshir water conveyance tunnel 
are shown in Table 4. In Fig. 3, flowchart of GEP algorithm 
is shown.

2.5 � Evaluation criteria

In this research, for the purpose of evaluating the accuracy 
and efficiency of the models, the coefficient of determina-
tion (R2) and root mean square error (RMSE) factors are used 
according to the following Eqs. (17) and (18).

Xi and Yi are the computational and observational values 
of the time step i, N is the number of time steps.X  and Y  

(17)R2 =

∑N

i=1

�
Xi − X̄

��
Yi − Ȳ

�

�∑N

i=1

�
Xi − X̄

�2 ∑N

i=1

�
Yi − Ȳ

�2

(18)RMSE =

√√√√ 1

N

N∑

i=1

(Xi − Yi)2
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are the average of computational and observational val-
ues, respectively.

2.6 � Parameters

In studies of the main factors influencing penetration rate, 
we deal with variables that are in some way associated with 
several other variables. Since the task of science is to pre-
dict and explain phenomena, regression analysis can play 
an important role in research. As a result, to better and more 
accurately respond to the evaluation of TBM penetration 
rates in excavating projects, ANN, SVM and GEP be used to 
establish a relationship between these variables. Input and 
output parameters used in research are shown in Table 5.

As shown in Table 5, input and output parameters are 
presented, the penetration rate is considered as the output 

parameter and joint spacing (m), joint angle (Deg.), RPM 
(cycle/min), UCS (MPa), Poisson’s Ratio, BTS (MPa), Thrust 
Per Cutter (KN) and Power (KW) were considered as input 
parameters. In order to evaluate the effect of each variable on 
increasing or decreasing the penetration rate and establish-
ing a meaningful relationship between them, the steps are 
entered into the software and each of the variables is added 
to the regression analysis to create a new model, respectively.

3 � Results of modeling

3.1 � Modeling results using ANN

At this point, we evaluate the performance of the network. 
You can see the results obtained from the network and the 
best performance of the network in Figs. 4 and 5, respec-
tively. The distribution diagram and the fitting diagram of 
penetration rates by the predictive model are shown in 
Figs. 6 and 7, respectively.

3.2 � Modeling results using support vector machine 
(SVM)

At this point, using the data in prediction of the TBM pen-
etration rate, we perform modeling using SVM and exam-
ine the results. R2 and RMSE of the support vector machine 
model (SVM) are presented in Fig. 8 for predicting the pen-
etration rate of the TBM. The fitting model of PR by SVM is 
shown in Fig. 9.

3.3 � Modeling results using gene expression 
programming (GEP)

At this point, using the data in prediction of the TBM pene-
tration rate, we perform modeling using GEP and examine 
the results. R2 and RMSE of the GEP model for predicting 

Fig. 3   Flowchart of GEP algorithm [92, 93]

Table 5   Input and output parameters

Input Output

Joint spacing(m), Joint Angle (Deg.), RPM (cycle / min), 
UCS(MPa), Poisson’s Ratio, BTS(MPa), Thrust Per cutter 
(KN), Power (KW)

PR(m/h)



Vol:.(1234567890)

Case Study	 SN Applied Sciences (2020) 2:2004 | https://doi.org/10.1007/s42452-020-03767-y

Fig. 4   Results obtained from 
artificial neural network

Fig. 5   Best network perfor-
mance using artificial neural 
network
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the TBM penetration rate are shown in Fig. 10. The fitting 
diagram of PR by GEP in Fig. 11 is displayed. Expression 
Tree of predictive relation of the penetration rate in this 
database, created by the GEP model, is shown between 
input variables and penetration rates in Fig.  12. The 

mathematical expression of this equation is also described 
in relation to [(Eq. (19)].

(19)

ET1 = −3.01 − ln (RPM) + 0.230 − ln (thrustpercutter)2

ET2 = 8.87 −
1

(RPM − 6.38)3 − 2.2

ET3 = ln (UCS − RPM − Thrustpercutter

− Power + 4.21) +
1

Thrustpercutter

Fig. 6   Distribution diagram of penetration rate by ANN

Fig. 7   Fitting diagram of penetration rate by ANN

Fig. 8   Distribution diagram of penetration rate by SVM
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3.4 � Comparison of the results

In this study, a database primarily established from 
machine parameters and field data for predicting PR in 

Chamshir water conveyance tunneling project. With this 
regard, artificial neural networks (ANN), support vector 
machine (SVM) and gene expression programming (GEP) 
applied to the database. The results for predicting PR, as 
can be seen in Table 6 and Fig. 13. Based on Table 6 and 
Fig. 13, it can be concluded that all predictive models lead 
to acceptable results while GEP contributes to a more pre-
cise and realistic outcome with higher R2 and lower values 
of RMSE. The results of sensitivity analysis of input param-
eters are given in Fig. 14. UCS is the most influential param-
eter in modeling, as can be seen in Fig. 14.

4 � Discussion

As cited before, mechanized tunneling has many advan-
tages; hence, it is important to predict TBMs performance 
which is directly related to the prediction of TBM pen-
etration rate. In recent years, many models have been 
proposed for predicting penetration rate. The aim of this 
research works is to find more precise predictive models 
using novel predictive approaches. Among modern tech-
niques, ANN, SVM and GEP are more powerful approaches 
that are capable to result in more realistic findings in pre-
diction process. Therefore, the authors tried to apply these 
methods for prediction of TBM performance. Another 
aspect of using these techniques is to compare the results 

Fig. 9   Fitting diagram of penetration rate by SVM

Fig. 10   Distribution diagram of the penetration rate by GEP
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of this work, Chamshir water conveyance tunneling pro-
ject as one the most important TBM tunneling projects 
in Iran, with other water conveyance tunneling projects 
inside and outside of Iran. Table 7 shows the analogy of 
the suggested model and the existing ones in terms of 
the TBM penetration rate. As it can be seen in Table 7, the 
model presented in this study has the highest R2 and the 
lowest RMSE, which shows a tangible advantage over 
other models.

5 � Conclusions

Penetration rate prediction is one of the important indi-
cators of the performance of TBMs. In this study, primar-
ily a database was provided from field data and machine 
parameters during excavation of Chamshir water convey-
ance tunnel in Iran. Parameters including joint spacing, 
Joint Angle, RPM, UCS, Poisson’s ratio, BTS, thrust per cut-
ter and power (KW) considered as input parameters and 

Penetration Rate (PR) as output parameter through the 
analyses. The data were then analyzed through artificial 
neural networks (ANN), support vector machine (SVM) 
and gene expression programming (GEP). Results dem-
onstrated that obtained values of R2 and RMSE found to 
be 0.99 and 0.15 for ANN, 0.95 and 0.37 for SVM, 0.99 and 
0.11 for GEP, respectively. These models are reliable to be 
applied to predict TBM penetration rate in the Chamshir 
water conveyance tunnel. Moreover, it can be concluded 
that the GEP method has the higher accuracy (maximum 
R2 and minimum RMSE) among all predictive models. 
Gathering additional data such as number of consumed 
disc cutters could be considered a limitation for such 
study. For future works, it is suggested to use other novel 
heuristic algorithms such as shark smell optimization and 
shuffled frog leaping algorithm to predict the penetration 
rate of the tunnel boring machine.

Fig. 11   Fitting diagram of penetration rate by GEP
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Fig. 12   Expression tree of predictive relation of the penetration rate
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Table 6   Results for predicting 
PR

Model R2 RMSE

ANN 0.99 0.15
SVM 0.95 0.37
GEP 0.99 0.11

Fig. 13   Results of R2 and RMSE

Fig. 14   Sensitivity analysis of 
input parameters

Table 7   The analogy of the suggested model and the existing ones in terms of the TBM penetration rate

Model Output R2 RMSE Case Study

(This study) TBM penetration rate (m/h) 0.99 0.11 Chamshir water conveyance tunnel
Zare Naghadehi et al. [93] TBM penetration rate (m/h) 0.72 0.18 Queens water tunnel
Yagiz and Karahan [14] TBM penetration rate (m/h) 0.66 0.20 Queens water tunnel
Afradi et al. [91] TBM penetration rate (m/h) 0.97 0.48 Beheshtabad water conveyance tunnel
Adoko et al. [1] TBM penetration rate (m/h) 0.66 0.22 Queens water tunnel
Afradi et al. [29] TBM penetration rate (m/h) 0.97 0.34 Sabzkooh water conveyance tunnel
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