
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1948 | https://doi.org/10.1007/s42452-020-03750-7

Research Article

Health effects of heat vulnerability in Rio de Janeiro: a validation 
model for policy applications

Diogo Prosdocimi1,2 · Kelly Klima2 

Received: 13 June 2020 / Accepted: 21 October 2020 / Published online: 5 November 2020 
© The Author(s) 2020    OPEN

Abstract
Extreme heat events can lead to increased risk of heat-related deaths. Furthermore, urban areas are often hotter than their 
rural surroundings, exacerbating heat waves. Unfortunately, validation is difficult; to our knowledge, most validations, 
even if they control for temperatures, really only validate a social vulnerability index instead of a heat vulnerability index. 
Here we investigate how to construct and validate a heat vulnerability index given uncertainty ranges in data for the city 
of Rio de Janeiro. First, we compare excess deaths of certain types of circulatory diseases during heat waves. Second, we 
use demographic and environmental data and factor analysis to construct a set of unobserved factors and respective 
weightings related to heat vulnerability, including a Monte Carlo analysis to represent the uncertainty ranges assigned 
to the input data. Finally, we use distance to hospital and clinics and their health record data as an instrumental variable 
to validate our factors. We find that we can validate the Rio de Janeiro heat vulnerability index against excess deaths 
during heat waves; specifically, we use three types of regressions coupled with difference in difference calculations to 
show this is indeed a heat vulnerability index as opposed to a social vulnerability index. The factor analysis identifies 
two factors that contribute to >70% of the variability in the data; one socio-economic factor and one urban form factor. 
This suggests it is necessary to add a step to existing methods for validation of heat vulnerability indices, that of the 
difference-in-difference calculation.
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1  Introduction

Extreme heat events can have major impacts on people’s 
lives. Brazil, with its predominantly tropical monsoon cli-
mate [2], is one of the world’s hottest countries [40] and 
historically has had significant increases in heat wave fre-
quency [26]. The types of heat waves that Brazil experi-
ences can lead to increased risk of heat-related deaths [4, 
12, 24, 29], and numbers of deaths are more likely due to 
climate change [7, 46].

Furthermore, the urban heat island effect (where urban 
areas are hotter than surrounding rural areas) exacerbates 
heat waves [64, 65], especially in very densely populated 
areas [45]. Unfortunately for researchers, there are rela-
tively few populated areas with hyperlocal areas spanning 
extreme socioeconomic disparity. This can make it difficult 
to understand whether extreme heat deaths are due to 
changes in local temperature or changes in urban form 
(and population living there). We are aware of one study 
in the United States, which shows that the types of charac-
teristics leading to increased vulnerability differ between 
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urban and rural areas; however, this study actually showed 
lower deaths during hotter heat waves (see [43] which 
used temperature and humidity to define the apparent 
temperature) suggesting that more work needs to be done 
to understand the differences between rural and urban 
areas. While regression techniques exist to address these 
problems, it can sometimes ease the calculation burden to 
focus on hyperlocal areas. Perhaps unique to Brazil is the 
presence of favelas (slums), where the richest individuals 
in Brazil live a couple of meters away from the population 
living in these conditions (Leblon—the richest neighbor-
hood in Rio—and is less than 3 km away from Rocinha—
the largest favela in Latin America) [35]. To our knowledge, 
few studies have been done to understand how Brazil’s 
unique characteristics, such as favelas, might contribute 
to our understanding heat vulnerability.

Intertwined with weather and the environment is heat 
vulnerability. An individual’s heat vulnerability is known to 
increase with a number of factors, such as age [1], income 
[38], or ethnicity [55]. Generally speaking, two approaches 
exist to assess heat distress and deaths caused by heat 
exposure: regression and factor analysis [3]. In the first 
method, a researcher obtains data on deaths and regresses 
out the characteristics leading to increased vulnerability 
(e.g., [42, 62]). In the second method, a research attempts 
to develop heat vulnerability measures using factor analy-
sis or equal weights with generalized models, and then 
validate those models [53]. Unfortunately, due to limita-
tions on personally identifiable information and the need 
to aggregate and anonymize, in many countries it can be 
difficult to obtain fine resolution health record data to vali-
date these models. Conversely, in Brazil, health record data 
are publicly available. Furthermore, since in Brazil health 
emergency calls and health care are both free and univer-
sal (and do not require enrollment), often patients experi-
encing any heat-related symptom or condition are taken 
to the nearest hospital or clinic for urgent care. Thus, since 
the data are unclouded with differences in hospitalization 
choices, it is likely that hospitals closer to high heat vulner-
ability neighborhoods would have higher rates of heat-
related illnesses (e.g., cardiovascular disease, myocardial 
infarction, and chronic pulmonary disease hospitalization 
and deaths) during heatwaves.

Furthermore, consider the studies that have attempted 
a validation. Bao et al. [3] conduct a literature review of 
heat vulnerability index construction and validation. 
They find that the temperature level is the most well-doc-
umented contributor to heat-related deaths, and that it 
is difficult to validate a heat vulnerability index. This sug-
gests that it is difficult to determine whether the indices 
are a general social vulnerability index (which measures 
vulnerability) or a heat vulnerability index (which has 

nonuniformly more deaths as temperatures rise). Indeed, 
this is the conclusion reached by multiple authors (e.g., 
[16, 53]).

Given this, our study considers three research questions 
in Brazil. First, what are the health effects of heat waves in 
Rio de Janeiro? Second, will a vulnerability index built over 
socio-economic and urban form variables retain urban 
form characteristics? Third, are we able to validate the 
proposed heat vulnerability index against health record 
data during heat waves? We use three types of regressions 
coupled with difference in difference calculations to test 
whether our index is indeed a heat vulnerability index as 
opposed to a social vulnerability index. Furthermore, we 
test our finding across multiple uncertainties, including 
that of the heat wave definition and that of the input data 
to the heat vulnerability index.

2 � Methods

2.1 � Heat‑related deaths

We compared heat wave data and data characterizing 
deaths over the period February 2007 to February 2016. 
First, consider the heat wave definition and data. Within 
the literature, the definition of heat wave events (and thus 
heat wave intensity) varies widely as a certain temperature 
threshold [20, 22, 27], a function of extreme percentiles of 
temperatures [14, 25, 51], or a particular heat index [47, 
61]. In this study, we used temperature and relative humid-
ity data from Instituto Nacional de Meteorologia [36] to 
calculate the incidence of heat waves in Rio de Janeiro. We 
conducted our analysis for two published definitions for 
heat waves. First, following Rothfusz, we use the tempera-
ture and relative humidity to calculate the heat index [54]. 
We considered heat hazard days with heat index higher 
than 32 °C (90 °F), which is defined by the National Weather 
Service (NWS) to be in the “Extreme Caution” range for 
likelihood of heat disorders with prolonged exposure or 
strenuous activity [33]. Second, and considering that a pol-
icy-maker might wish for a simpler data collection method, 
following [42], we considered a temperature-only defini-
tion of an extreme heat wave event being a period of two 
or more consecutive days with lower temperatures over 
25 °C (77 °F) and higher temperatures over 35 °C (95 °F). 
For each definition, we included two additional days at 
the end of each extreme heat days, to account for health 
effects occurring after the event.1

1  Future work could conduct additional sensitivity analyses; since 
the results are similar (insensitive) to the definitions of heat waves 
used, we explore other sensitivities in this paper.
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Now consider deaths. Due to the vast epidemiologic 
evidence (e.g., [5, 6, 60]), researchers suggest that heat 
waves increase the probability of death from certain cir-
culatory system diseases including specific cardiovascu-
lar diseases of heart disease, congestive heart failure, and 
myocardial infarction. For example, in Brazil, 115 excess 
deaths per year have been shown to occur due to the 
link between acute myocardial infarction (heart attack) 
and increased temperatures [23]. In this paper, we use 
data from the Brazilian healthcare database called DATA-
SUS [48] to assess socio-economic determinants of heat-
related deaths. Within these data, from 2007 to 2016, 449 
clinics have reported a total of approximately 168,000 
deaths in Rio de Janeiro by diseases of the circulatory 
system (ranging from 1180 in February 2015 to 1650 in 
February 2008).

2.2 � Heat vulnerability index

We created a heat vulnerability index including the urban 
form characteristics of Brazil’s favelas. Literature has 
demonstrated in Brazil [8] and elsewhere [10] that there 

are socioeconomic characteristics that are indicative of 
increased deaths in heat wave events. We used a type of 
scaling called factor analysis to develop a predictive index 
for social vulnerability. The objective was twofold: (1) to 
construct a latent variable, or an index (or a scale), to spa-
tially measure social vulnerability of a population; (2) to 
identify the underlying dimensions of the index to support 
public policy.

Based on literature, we hypothesized a number of vari-
ables that affect heat vulnerability (Table 1). All variables 
were coded so that higher values indicated higher vulner-
ability. We collected most socio-economic and urban form 
data from the 2010 Censo [35], a Brazilian decennial survey 
of all households in country (where setor censitário means 
“census tract”, and has a size similar to a United States 
census block group2). A full description of the variables, 

Table 1   Socio-economic and urban form descriptive statistics for Rio de Janeiro

Variable Count within census block group: mean (standard deviation)
Population of Household 2.94 (0.46)
Average Individual Income (R$) 1381 (1378)
Total Population 617 (296)
Variable Fraction within census block group: mean (standard deviation)
Age > 60 years 0.002 (0.021)
Age < 5 years 0.843 (0.084)
Literate in Portuguese 0.181 (0.088)
Branco (White) 0.095 (0.059)
Preto (Black) 0.527 (0.213)
Amarelo (Yellow) 0.155 (0.107)
Pardo (Mixed) 0.028 (0.045)
Indigena (Native) 0.369 (0.168)
Per capita income <1/8 minimum wage 0.020 (0.050)
Per capita income equal to zero 0.023 (0.049)
No access to water network 0.974 (0.118)
No access to sewage network 0.003 (0.021)
No garbage service 0.019 (0.106)
Presence of garbage in the street 0.117 (0.168)
No access to energy service 0.026 (0.118)
No access to energy 0.981 (0.105)
No streetlight 0.019 (0.105)
No sidewalk 0.037 (0.144)
No pavement 0.037 (0.147)
No trees 0.044 (0.162)
Variable Normalized to 0 to 1: mean (standard deviation)
Normalized Difference Vegetation Index (NDVI) 0.109 (0.267)

2  There are a total of 10,233 setores censitário in Rio de Janiero. In 
our study, the number of people in a setor censitário is on average 
617 people (see Table 2). Figure 2, which shows part of our results, 
depicts within the choropleth map the individual setores censitário.
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including both the reason for inclusion and characteristics 
within our dataset, is given in the Electronic Supplemen-
tary Information.

Next, following existing literature [10, 31, 32, 50, 52], 
we then combined the variables to create factors. First, we 
tested for multicollinearity of the variables, and dropped 
variables with Pearson coefficient higher than 0.75 (see 
Electronic Supplementary Material, Table S.1). Second, 
we conducted a factor analysis [49] with varimax rotation, 
retaining the factors following the Kaiser rule (eigenvalue 
higher than one). Finally, we calculated the index from 
the factor scores. For ease of interpretation, we converted 
results into seven groups of one standard deviation (Min-
imum: < −2.5SD from the mean; Very Low: −2.5 to −1.5 
SD from the mean; Low: −1.5 to −0.5 SD from the mean; 
Medium: −0.5 to 0.5 SD from the mean; High: 0.5 to 1.5 SD 
from the mean; Very High: 1.5 to 2.5 SD from the mean; 
Maximum: >2.5 ST from the mean).

While spatial clustering analyses have existed for many 
years (e.g., see summary texts on spatial autocorrelation 
such as [18, 19]), there is a recent interest in the literature 
on examining the vulnerabilities for spatial correlation. For 
example, a recent paper calculates a Moran’s I analysis on 
the Center for Disease Control’s social vulnerability index, 
heat-related emergency room visits, and heat mortality at 
the county level in the state of Georgia, U.S., finding signifi-
cant levels of high clustering [41]. Conversely to this paper, 
our analysis is conducted at the setor censitário level, which 
is roughly equivalent to a U.S. census tract, and only within 
the urban area. Thus, while we do not expect to see spatial 
clustering from urban and rural differences (as these are 
not in our data set), we calculate a univariate Moran’s I 
to determine whether there is clustering in the city itself.

Finally, we checked the sensitivity of the heat vulner-
ability index performing a 10,000 simulation to check the 
robustness of the results to measurement error in the vari-
ables (up to 1.96 standard deviation).

2.3 � Validating heat vulnerability against excess 
deaths during heat wave

We tested whether the index is a good predictor of health 
effects in the population during a heat wave. Our hypoth-
esis is that more vulnerable regions in the city may expe-
rience higher health effect due to heat events. That is, 
we should observe more deaths in regions with higher 
vulnerability.

Existing research has considered over-dispersed gen-
eralized linear modeling, finding that there is a relation 
between deaths and temperature in San Paolo, Brazil [57]. 
Here, since we consider both distance to hospitals and 
socio-economic vulnerability, we specified two parts of 
a model to validate our index: (1) a model to determine 

whether the vulnerability index is statistically signifi-
cant, and (2) a logistic model predicting whether zero 
deaths observed is a certain zero. For each of these model 
approaches, we specified explanatory variables and an 
outcome variable, and then tested a linear regression, 
zero-inflated Poisson, and zero-inflated negative binomial 
(allowing for tests of overdispersion and excess of zero in 
the data).

In each of the models, we use three of the same explan-
atory variables. First, the number of heat waves takes the 
part of a “treatment” that we are aiming to measure the 
health impacts, and second the duration of heat waves is 
the intensity of the “treatment”, or the dosage effect. These 
two variables allow us to make inferences about possible 
diminishing effects for longer heat waves or periods with 
more than one heat wave. The third explanatory variable, 
the heat vulnerability index, is the construct we are aim-
ing to validate.

Following the literature (e.g., [13, 21, 37]), we use the 
relative distance from setor censitário to the nearest hospi-
tal (following the road network using GIS network analyst 
tools) as an instrument to patient hospital/clinic choice 
and, eventually, their death location. Distance from their 
residence to the nearest hospital as an instrument to 
patient choice for healthcare is reasonable for two rea-
sons. First, the emergency medical services in Brazil direct 
patients to the nearest hospital for urgent issues [9]. Sec-
ond, Brazil has a free and universal healthcare system (not 
even an opt-in is required) and even individuals enrolled in 
private health insurance are directed to the public system 
during emergencies [30]. The matching process provided 
the response variable (number of deaths in the nearby 
hospital) and one control variable (the population served 
by each hospital—that is, the sum of the populations of all 
setores censitário from each hospital). We also calculated 
the death rate using these two variables that would be an 
explanatory model for a second model specification.

Then for the three hybrid models, we specified explana-
tory variables as the heat wave variables, the vulnerability 
index, and the population count, where the outcome vari-
able is the number of observed deaths. Also, given known 
effects of seasonal variations in certain types of deaths 
(e.g., [44]), we included in our model time fixed effects to 
account for seasonality in the death data. Note, the geo-
graphic unit, the setor censitário, is on average 617 people 
(see Table 1), and so excess deaths of 2–3 people per setor 
censitário is approximately 0.5% of the population.

An important caveat is to ensure that the index meas-
ures heat vulnerability and not a general socio-economic 
vulnerability. Thus, for the models, we clean our coeffi-
cients performing a simple differences-in-differences cal-
culation between high and low vulnerable regions with 
and without occurrence of heat wave. The conclusion and 
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discussion will use this parameter rather than the coef-
ficients of the estimation models.

Finally, in addition to using multiple definitions and 
model specifications to test the robustness of our result, 
we used two other methods to check the robustness of 
our results. First, we checked the sensibility of our results 
using a Monte Carlo Simulation. We ran 1000 simulations 
to check the sensibility of the results to measurement 
error. We adopted the following steps: (1) we created 
new variables with the standard normal deviation of each 
socio-economic and physical characteristic; (2) we gener-
ated a random number based on a beta distribution and 
performed the appropriate transformations to have values 
between −1 and 1; (3) we multiplied the values in (1) and 
(2) with the value of each observation; (4) we performed 
the factor analysis and the validation count model for the 
data with this measurement error shock; (5) we repeated 
the first three procedures 1000 times. We recorded the 
resulting coefficients only for the two predictors of inter-
est: heat vulnerability index and length of the heat wave.

3 � Results

3.1 � Heat‑related deaths

We find that, regardless of heat wave definition chosen, 
Rio de Janeiro has had excess deaths due to extreme heat. 
First, consider a heat wave definition that includes both 
temperature and humidity (per [54]), or defined as three 
or more consecutive days with heat index over 32 °C /90 °F. 
Our data show that Rio de Janeiro had 60 such events 
during the period of analysis (February/2007 to February 
/2016). Moreover, heat index exceeded 103 °F in 2 events, 
totaling 8 days. Figure 1 shows the distribution of the 
occurrence and duration of heat waves in Rio de Janeiro 
by month. Most heat waves occur between late spring 
and early autumn, with at least one heat wave occurring 
in each January and in each February. Heat wave dura-
tion spans 0–29 days, with an average duration of 8 days 
in December, 17 days in January, and 14 days in February.

Considering the heat waves and the two subsequent 
days after each event, we find that the number of deaths 
increases with number and duration. The coefficient for 
the variable heat wave duration is 0.003677 and statisti-
cally significant at 1% level, meaning that a heat event 
would increase the count of deaths by 0.4% (or a fac-
tor of exp.[0.003677]). That is, the marginal effect of 
each additional day in the length of a heat wave would 
lead to an increase in the order of 0.0301 in the death 
count. These results indicate that the number of deaths 
in each setor censitário (which, on average, consists of 

617 people) increases from 2.59 to 2.89 during a 10-day 
heat wave, holding all other variables constant at the 
mean. We find that a 25 day long heat wave would lead 
to a death count of 3.40 in each setor censitário. This is 
approximately 0.5% of the population, which since Rio 
de Janiero is home to approximately six million people, 
means approximately an excess 30,000 deaths.

Next, consider a definition that might be easier for a 
policy-maker to obtain: a temperature-only definition. 
Here, consider minimum temperatures higher than 
25 °C/77  °F and maximum temperatures higher than 
35 °C/ 95 °F (per a combination of [17, 47]). Given this, Rio 
de Janeiro experienced 46 heat waves, totaling 319 days. 
We find that the number of deaths increases with num-
ber and duration. The coefficient for the variable heat 
wave duration is .003681 and statistically significant at 
1% level, meaning that a heat event would increase the 
count of deaths by 0.4% (or a factor of exp.[0.003681]). 
That is, the marginal effect of each additional day in the 
length of a heat wave would lead to an increase in the 
order of 0.0230 in the death count. These results indi-
cate that the number of deaths in each setor censitário 
increases from 2.66 to 2.85 during a 10-day heat wave, 
holding all other variables constant at the mean. We find 
that a 25 day long heat wave would lead to a death count 
of 3.15 in each setor censitário.

These results are qualitatively similar. We also checked 
the same model specification with multiple definitions 
of heat wave (e.g., [20, 22, 27, 28, 56]), and found that the 
results do not change for a simplified definition using 
only temperature or considering only more extreme 
events.
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3.2 � Heat vulnerability index

We collected multiple socio-economic and urban form 
characteristics shown to be predictive of heat vulnerability. 
First, we performed multi-correlation tests with the socio-
economic and environmental characteristics to determine 
relative unique contributions of variables. We found that 
only having children younger than 5 years old was highly 
correlated with being able to read and write in Portuguese 
(Pearson coefficient of 0.81), and so dropped the first one 
since it describes a characteristic with less amplitude.

Then, we performed factor analysis and the results 
revealed that two underlying factors capture 94.74% of 
the data variance in explaining vulnerability across pop-
ulations in Rio de Janeiro (see Electronic Supplementary 
Material, Table S.2, Fig. S.1). The first dimension (factor 
1) is a construct of socio-economic characteristics such 
as age, race, and alphabetization. The second dimension 
(factor 2) is a construct of urban form, including arboriza-
tion, public lights, and presence of sidewalks and paved 
streets. Figure 2 shows the heat vulnerability map for Rio 
de Janeiro and the hospitals that reported deaths due to 
cardiovascular diseases. We see that favelas and slums 

neighborhoods have higher vulnerability given the high 
weight of urban form in the factor analysis. This is an 
expected finding given the importance for the composi-
tion of the index in the factor analysis of variables such 
as paved roads, presence of sidewalk, streetlight, trees 
and sewage. Favelas and slums in Brazil lack this kind of 
public infrastructure.

Other high vulnerability regions include traditionally 
poor and non-white neighborhoods, such as Guaratiba, 
Sepetiba and Santa Cruz. These suburb regions have more 
public infrastructure than the favelas and slums but may 
have more profound socio-economic disparities from the 
main regions in the city such as unemployment and less 
education.

We conducted a univariate Moran’s I test on the heat 
vulnerability index at the setor censitário, and find across 
the city a statistical significance of 0.11 at p < 0.0001. Since 
Moran’s I runs from −1 to 1 with 0 indicating no correla-
tion and one indicating perfect correlation, our data show 
a small amount of autocorrelation. This suggests that we 
may proceed with using the heat vulnerability index; in our 
discussion, we describe how future research could exam-
ine the spatial autocorrelation.
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To understand the sensitivity of our results to meas-
urement error in the Brazilian census data, we performed 
1000 simulations using the margin of error of Brazilian 
census data (and 1.96 standard deviation from the mean 
for the other variables). We found that our results did not 
change significantly due to uncertainty in the census data. 
As shown in Fig. 3, the simulation’s mean is 0.003673 for 
the variable of length of heat waves while our main result 
is 0.003677. That is, the difference between the mean in 
less than 10−5.

3.3 � Validating heat vulnerability against excess 
deaths during heat wave

Finally, we use distance to hospital and clinics and their 
health record data (both diseases knowingly related and 
unrelated to heat waves) to validate the heat vulnerability 
index against excess deaths during heat waves.

In the first part of the model, we find statistically sig-
nificant coefficients for heat vulnerability and heat wave 
variables (see Table 2). A zero-inflated model indicates that 
the vulnerability index is statistically significant at 99.9% 
level and one increase in the vulnerability index is associ-
ated with an increase of a factor of 1.05 (exp[0.049]). The 
effect is diminishing since the coefficient for squared heat 
vulnerability index is negative. The expected number of 
deaths increases a factor of 1.004 (exp[0.0037]) during the 
first heat event. The zero-binomial specification shows 
similar results than our main model, showing that stand-
ard deviations may not be biased and the statistical signifi-
cance of the results is reliable. Our results also corroborate 
with findings that deaths due to cardiovascular diseases 

have seasonal variation with higher incidence during the 
winter than in the summer [58]).

The second part of the model, a logistic model pre-
dicting whether or not zero deaths observed is a certain 
zero, also corroborates the literature. Consider: longer the 
distance to hospital [15], less vulnerable populations [63], 
and absence of heat events [11] would decrease the prob-
ability of deaths (from cardiovascular diseases) within in 
a setor censitário. Figure 4 shows the first derivative of the 
response with respect of the length of heat waves for dif-
ferent levels of vulnerability levels. Low vulnerable setores 
censitário also face an increase in deaths during heat 
wave, but with lower magnitude. The number of deaths 
increases from 2.527 to 2.828 during a 10-day heat wave 
and to 2.483 during a 20-day heat wave. The graph also 
shows us the count of deaths by cardiovascular disease for 
setores censitário with different levels of vulnerability. For 
instance, very highly vulnerable census tracts experience 
0.587 counts more than the medium vulnerability while 
low vulnerable census experience 0.253 less counts during 
a 5-day heat wave.

Combining these two results, we perform a difference-
in-difference analysis to isolate the impact of vulner-
ability during the longest heat wave experienced in Rio 
de Janeiro (that lasted 25 days), as shown in Table 3. The 
first difference (the estimated count of deaths for a low 
vulnerable setor censitário and a highly vulnerable setor 
censitário when no event has occurred) is approximately 
0.795. The second difference separately considers the sub-
set of setores censitário within each vulnerability level. For 
each group, we find that the number of deaths increases 
as the length of the heat wave event increases (from no 
days to a 25 day length event). These two characteristics 
indicate that, at a minimum, the developed index is indica-
tive of vulnerability to all types of events. To determine 
whether the index is indicative specifically of heat vulner-
ability, one would need to see that there is an even higher 
increase in the most vulnerable setores censitário than in 
the least vulnerable setores censitário when moving from 
zero events to a 25 day long event. We see that the dif-
ference in deaths across high and low heat vulnerability 
becomes 1.043 during the 25 day heat wave, which is an 
increase of 0.248 over the non-heat wave event. This indi-
cates that the developed index is also representative of 
heat vulnerability.

4 � Discussion

We show three findings in Rio de Janeiro. First, as shown in 
the literature [23], we find that heat waves are correlated 
with excess deaths of certain types of circulatory diseases. 
The factor analysis identifies two factors that contribute to 
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Fig. 3   Probability distribution function of Monte Carlo analysis of 
the coefficient for heat wave duration. Note the difference between 
the mean of the Monte Carlo results (solid line, 0.003673) and the 
initial result (dashed line, 0.003677)
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94.74% of the variability in the data; one socio-economic 
factor and one urban form factor. This indicates, as sug-
gested in the literature (e.g., [43]), that there are differ-
ences between rural and urban vulnerability indices; in our 
index unregulated urbanization (within favelas and other 
slum-like neighborhoods,) is an important as socio-eco-
nomic characteristics to determine vulnerability. Finally, 
we find that we can validate the Rio de Janeiro heat vul-
nerability index against excess deaths during heat waves; 
specifically, we use three types of regressions coupled with 
difference in difference calculations to show this is indeed 
a heat vulnerability index as opposed to a social vulner-
ability index. This suggests it is necessary to add a step to 

existing methods for validation of heat vulnerability indi-
ces, that of the difference-in-difference calculation.

These findings may have an important impact in policy 
for developing countries. While socio-economic risk may 
change only with long term policies, urban form may 
change more rapidly with re-urbanization policies. There-
fore, reducing heat vulnerability might add up to the many 
benefits of urbanizing favelas and slum areas. In devel-
oping countries, urbanization is likely more effective and 
responsive in the short term. For example, urbanization 
policies such as paving streets, building proper sanitary 
sewer and arborizing favelas will reduce the vulnerabil-
ity of the population living there. It may even be that, as 

Table 2   Heat vulnerability index validation results showing estimation of number of deaths in Rio de Janeiro’s setores censitário 

B standardized estimate, se standard error, β unstandardized estimate

*p < 0.05, **p < 0.01, ***p < 0.001

Variable Model 1:
Linear regression; B (se)

Model 2:
Zero-inflated Poisson B (se)

Model 3:
Zero-inflated 
negative binomial 
B (se)

Heat vulnerability index 0.086 (0.082) 0.049*** (0.003) 0.039*** (0.004)
Heat vulnerability index, squared −0.059 (0.047) −0.030*** (0.002) −0.026*** (0.002)
Distance to closest clinic −0.000***(0.000) −0.000*** (0.000) −0.000*** (0.000)
Population (log) 0.137 (0.086) 0.008** (0.003) 0.046*** (0.004)
Population (log) squared −0.000 (0.000) 0.000*** (0.000) 0.000 (0.000)
Length of Heat Events 0.004*** (0.001) 0.004*** (0.000) 0.003*** (0.001)
January 0.118*** (0.014) 0.018 (0.012) 0.051*** (0.013)
February −0.283*** (0.014) −0.090*** (0.011) −0.098*** (0,013)
March −0.133*** (0.014) 0.002 (0.011) −0.019 (0.012)
April −0.129*** (0.014) 0.002 (0.012) −0.016 (0.013)
May 0.184*** (0.014) 0.100*** (0.011) 0.096*** (0.013)
June 0.229*** (0.014) 0.130*** (0.012) 0.121*** (0.013)
July 0.357*** (0.014) 0.139*** (0.012) 0.152*** (0.013)
August 0.283*** (0.014) 0.134*** (0.011) 0.133*** (0.013)
September 0.140*** (0.014) 0.081*** (0.011) 0.076*** (0.013)
October 0.099*** (0.014) 0.071*** (0.012) 0.061*** (0.013)
November −0.077 (0.014) −0.015 (0.011) −0.010 (0.013)
Constant 1.677* (0.864) 1.889*** (0.031) 1.049*** (0.040)
Inflate
Distance to closest clinic – 0.000*** (0.000) 0.000*** (0.000)
z-scored HVI −0.018*** (0.002) −0.009*** (0.004)
# of Heat Events – 0.108*** (0.005) 0.169*** (0.009)
Length of Heat Events – −0.012 *** (0.001) −0.020*** (0.001)
Constant – 0.288*** (0.003) −0.712*** (0.012)
Model statistics
R-squared 0.0046 n/a n/a
log likelihood of null model −3,737,891 −3,098,517 −1,890,717
log likelihood of full model −3,735,360 −3,089,081 −1,889,815
AIC 7,470,755 6,178,205 3,779,677
BIC 7,470,970 6,178,467 3,779,951
df 17 22 23
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shown in a flood study in the United States [39], that the 
order of these policies does not matter; rather the environ-
mental justice disparities might be sufficiently high that 
any action will be helpful.

Given that our findings suggest there may be some 
reason to, within a city, separate favelas from other areas, 
this suggests research into improved understanding of 
the spatial autocorrelation within the city and how it may 
be affecting heat vulnerability and deaths. For instance, 
although the factor analysis takes into account similari-
ties between regions, other methods exist to investigate 
similarities between regions (e.g., see summary texts on 
spatial autocorrelation such as [18, 19]). A recent report 
has found evidence of spatial clustering at the county level 
(which reflects urban and rural areas, [41]); other reports 
suggest there may be spatial clustering in Latin American 
cities (e.g., [34]). Thompson et al. [59] describe other meth-
ods to calculate vulnerability, and find that if one is limited 
to county level data, that a hierarchical generalized linear 
regression model with multiscalar indicators and spatial 
components performs better than methods that lack con-
sideration of spatial dynamics. While our study did not face 
the limitation of aggregating to the county level (recall the 
setores censitário is of similar size to a census tract in the 
United States), due to the stark differences between very 

closely neighboring areas, it may be of interest to explore 
other vulnerability method calculations to determine 
whether a model that performs even better can be found.

Alternatively, consider that our distance metric (the way 
to get from here to there) was distance along roads as cal-
culated using GIS network analyst tools. This may be an 
appropriate metric when driving or taking public transit 
to a local hospital. However, recall our findings regarding 
favelas; people living in favelas might travel to the hospi-
tal might in a qualitatively manner different from those 
living in more wealthy communities. Alternative methods 
to calculate distance might be able to more closely model 
actual behavior in favelas, and thus improve model fidelity.

5 � Conclusion

In this paper, we investigated how to construct and vali-
date a heat vulnerability index given uncertainty ranges in 
data for the city of Rio de Janeiro. First, we compare excess 
deaths of certain types of circulatory diseases during heat 
waves. Second, we use demographic and environmental 
data and factor analysis to construct a set of unobserved 
factors and respective weightings related to heat vulner-
ability, including a Monte Carlo analysis to represent the 
uncertainty ranges assigned to the input data. Finally, we 
use distance to hospital and clinics and their health record 
data as an instrumental variable to validate our factors. 
We find that we can validate the Rio de Janeiro heat vul-
nerability index against excess deaths during heat waves; 
specifically, we use three types of regressions coupled with 
difference in difference calculations to show this is indeed 
a heat vulnerability index as opposed to a social vulner-
ability index. The factor analysis identifies two factors that 
contribute to >70% of the variability in the data; one socio-
economic factor and one urban form factor. This suggests 
it is necessary to add a step to existing methods for valida-
tion of heat vulnerability indices, that of the difference-in-
difference calculation.
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Table 3   Difference in difference model estimates for a 25-day heat 
wave between low and very highly vulnerable setores censitário 

Heat wave length 
(days)

Low HVI Very high HVI Difference

0 2.35 3.14 0.79
25 3.08 4.12 1.04
Difference 0.73 0.98 0.25
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