Research Article

A particle swarm optimization approach using adaptive entropy-based
fitness quantification of expert knowledge for high-level, real-time
cognitive robotic control

Deon de Jager'® . Yahya Zweiri' - Dimitrios Makris'

Received: 29 July 2019 / Accepted: 14 November 2019 / Published online: 26 November 2019
© The Author(s) 2019 OPEN

Abstract

High-level, real-time mission control of semi-autonomous robots, deployed in remote and dynamic environments,
remains a challenge. Control models, learnt from a knowledgebase, quickly become obsolete when the environment or
the knowledgebase changes. This research study introduces a cognitive reasoning process, to select the optimal action,
using the most relevant knowledge from the knowledgebase, subject to observed evidence. The approach in this study
introduces an adaptive entropy-based set-based particle swarm algorithm (AE-SPSO) and a novel, adaptive entropy-
based fitness quantification (AEFQ) algorithm for evidence-based optimization of the knowledge. The performance of
the AE-SPSO and AEFQ algorithms are experimentally evaluated with two unmanned aerial vehicle (UAV) benchmark
missions: (1) relocating the UAV to a charging station and (2) collecting and delivering a package. Performance is meas-
ured by inspecting the success and completeness of the mission and the accuracy of autonomous flight control. The
results show that the AE-SPSO/AEFQ approach successfully finds the optimal state-transition for each mission task and
that autonomous flight control is successfully achieved.

Keywords High-level robot control - Cognitive robotics - Knowledge optimization - Maximum entropy principle -
Markov decision process - Adaptive entropy-based fitness quantification - Set-based particle swarm optimization

1 Introduction

Cognitive robotics is described as “the study of knowl-
edge representation and reasoning problems, faced by
an autonomous robot (or agent) in a dynamic and uncer-
tain world”[1]. The efficient control of robots, operating in
remote environments, has long proved to be a challenge,
especially when the robot operates in a dynamic environ-
ment. In a typical remote-controlled, semi-autonomous
robot, elementary knowledge is stored in a knowledge-
base (KB), which is augmented by a domain expert. The KB
is used for the generation of inference models (controllers)
for decision-making by the robot.

Arguably, the most widely used statistical formalism for
the high-level control of robots is the use of finite state
automata (FSA) as high-level controllers. In FSA, Markov
decision processes (MDPs) represent the states and state-
action pairs of each state-transition. The state-action pairs
are referred to as the policies of the FSA and it is the poli-
cies which governs the behaviour of the robot. The objec-
tive is to find an optimum policy for each state-transition.
However, the generation of inference models in dynamic
and remote environments is not trivial.

B< Deon de Jager, K0952100@kingston.ac.uk | 'Faculty of Science, Engineering and Computing, Kingston University London,

London SW15 3DW, UK.

®

Check for
updates

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

SN Applied Sciences

A SPRINGERNATURE journal

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1697-4&domain=pdf
http://orcid.org/0000-0002-4011-9597

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

1.1 Problem description

e Augmenting or modifying the KB of a remotely-
deployed robot becomes more convoluted, error-prone
and computationally expensive if the structure of the
KB is complex. Limited communication bandwidth also
restricts the maintenance of the KB.

e High-level controllers are often generated through
machine learning techniques, where an FSA is gener-
ated for all states. These techniques progressively learn
the policies of the FSA, using user-defined parame-
ters, which are often selected subjectively or derived
through experimentation. For example, Q-learning uses
a user-defined probability state-transition matrix (STM)
and reinforcement learning (RL) uses a user-defined
discounted reward to statistically determine the best
policies for the FSA. Changes in the environment, is
likely to lead to the re-optimization of the parameters
and re-learning of the model.

¢ When machine learning is used to generate models as
high-level controllers, the controller (FSA) is learnt in
its entirety. For dynamic environments, a large num-
ber of models have to be learnt to handle different sce-
narios. However, when the underlying knowledgebase
changes or the environment changes, learnt models
may become obsolete and need to be replaced. Due
to the time it takes to relearn a model, re-generation of
high-level controllers in real-time operation becomes
infeasible.

1.2 Proposed solution

The solution proposed in this research study aims to
reduce and simplify the “cognitive world” of the robot (UAV
in this study). In this study, cognitive reasoning is defined
as decision-making, based on current knowledge which
is optimized using real-time evidence. The solution intro-
duces a cognitive reasoning process (CRP) for the UAV in
order to govern its behaviour in real-time. This process
is similar to that of the human cognitive framework [2]
and intuitively provides the UAV with some intelligence in
decision-making. Figure 1, gives an overview of the CRP:
A domain expert provides all the knowledge, i.e. the KB,
mission definitions and evidence definitions, to be used
by the CRP. The KB is the set of all state-transitions (poli-
cies) between the states of the UAV. Each state-transition
has a trigger formula which is composed of a set of con-
junctive propositions. The mission definition is defined
as a set of tasks to be completed in order to successfully
complete the specified mission. The evidence definition
is a set of variables, representing environmental observa-
tions, received in real-time. The KB, mission definitions and

SN Applied Sciences

A SPRINGER NATURE journal

* Reasoning
T - n
Policy selection N
NN
A \

*

rn}

Cognition_ __ __[__ __

Optimized
l Knowledgebase I

, w}‘}-q ' (kB*
:/j/ Yy > l__ L
RN

Quantification

2N Q

(1) N

> Evidence |

Expert T T

Krfv»iedie Evidence || Mission Tl’l
definitions | | definitions

! Knowledge |
A

Domain
Expert |

© PPy _|

Knowledgebase (KB)

Fig. 1 Cognitive reasoning process (CRP)

evidence definitions are used by the CRP to find the opti-
mal policy, given the evidence. The CRP will be discussed
in detail in Sect. 4.

Since the KB is a set of discrete elements, the problem
is defined as a constrained, set-based knowledge opti-
mization problem. Therefore, the CRP uses the AE-SPSO
and AEFQ algorithms to find, quantify and evaluate each
potential policy for optimality. The best policy is then
selected and its action is passed as a command to the UAV.

To the best of our knowledge, there has been no
attempt to affect high-level robot control through
dynamic and real-time policy optimization using a particle
swarm optimization approach.

The main contributions of this research study are the
following:

1. The introduction of a novel adaptive entropy fitness
quantification (AEFQ) algorithm for the statistical
quantification of state-transitions (policies) of a FSA
as high-level controller.

2. Theintroduction of an improved set-based PSO which
uses the AEFQ, to produce an optimized KB*, which
contains the optimal policies for selection.

3. The generation of re-usable high-level controllers
(FSAs) as a result of the real-time, evidence-based,
policy optimization and execution of the CRP.

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

The remainder of the research study is organized as fol-
lows: Sect. 2 reviews related work on high-level autono-
mous control in robotics; Sect. 3 provides some theoretical
background on the methodologies used in the study. Sec-
tion 4 introduces the methodology for the CRP and dis-
cusses the novel AEFQ algorithm and AE-SPSO algorithms
in detail. Sections 5, 6 describes the experiment setup,
results and analysis, respectively. Section 7 concludes the
work of this research study and proposes relevant future
work on autonomous high-level control through knowl-
edge optimization in the CRP.

2 Related work

Improving the cognitive ability of robots has received a
considerable amount of attention over the last decade.
As described in the introduction, the two key factors of
cognitive robotics, are knowledge representation and
cognitive reasoning [3]. Although the problem of improv-
ing autonomy is non-trivial, it is relevant to a variety of
robotic applications, for example, in humanoid robotics
[4, 5], human-robot interaction [6-9], Search and Rescue
(SAR) [10] and multi-robot systems [11].

2.1 Knowledge representation

In order to perform efficient inference, the structure and
content of the KB is very important, especially if the KB has
to be maintained remotely.

For many years various machine learning approaches,
such as statistical relational learning (SRL) [12], inductive
logic programming (ILP) [13, 14] and knowledge-based
model construction (KBMC) [15, 16] have been used
to derive expert knowledge from existing data sources.
Some machine learning systems have been developed
to learn and formulate knowledge: FOIL [17] learns Horn
clauses from relational data and MADDEN [16] performs
statistical knowledge extraction from textual data. CLAU-
DIEN [14] is an ILP engine which computes a set of logically
valid clauses from data sets.

Horn clauses are particularly useful, as its form is simi-
lar to programmatic conditional statements, and therefore
easier to implement.

More recent approaches are proving more suitable for
cognitive robotics. Linear temporal logic (LTL) isused as a
formal language to define the tasks of a robot, as applied
in [18], where LTL is combined with Petri Nets to determine
optimal movement planning for multiple robots.

The problem of high-dimensionality in the relation-
ship between task planning, using LTL and robot motion
is investigated by Shoukry et al. [19]. Here, LTL is used to
define a set of propositions, applicable to all robots, for

each region of the workspace. The robots’ movements
across regions are controlled by the LTL propositions.

2.2 Cognitive reasoning

A lot of research have been focussed on the low-level
control of robots, for example improving path planning
in dynamic environments, where obstacles are avoided
by prioritizing and predicting the future behaviour of
the object [20]. However, cognitive robotics is concerned
with cognitive reasoning, using current knowledge. In [9],
a semi-autonomous high-level controller is proposed for
the semi-autonomous control of robot teams in urban
search and rescue missions. The objective of the control-
ler is to reduce the workload of the robot operator. Other
cognitive robotic approaches, for example, inductive logic
programming (ILP) which is used for predicate generation,
is combined with reinforcement learning (RL) to learn opti-
mal behavioural policies in [21].

A popular approach used for cognitive robotics is the
combination of (LTL) and MDPs, where the LTL formulae
provide a formal definition of tasks for the robot and the
MDPs are used to synthesize high-level controllers. How-
ever, synthesizing high-level controllers in a, dynamic envi-
ronment remains a challenge. Meyer and Dimarogonas
[22] introduces a framework to increase the adaptability
of the synthesis process, by using a 3-layer top-down hier-
archical decomposition of the control problem. A three
step-approach is used to firstly, solve the LTL problem on
a FSA, secondly, find the best policy for transitioning and
thirdly, synthesize a controller.

Reinforcement learning (also referred to as Q-learning)
of MDP type controllers are increasingly being combined
with other methodologies to learn high-level control-
lers to accomplish some task. Generally, the objective of
Q-learning is to iteratively select the best policy, i.e. state-
action, which maximizes the expected discounted reward
(Q-value), given the current state, the user-defined STM
and user-defined rewards. The most popular approach is
the use of the Bellman equations [23], which calculates
the optimal Q-value over all policies. In [24], Q-learning is
used in combination with a Deep Deterministic Policy Gra-
dients (DDPG) algorithm for a UAV to learn a landing task
in simulation. In [25], the effectiveness of the Q-learning
algorithm for robot path planning, is improved by using
a flower pollinating algorithm to initialize the g-values of
the algorithm.

2.3 Critical review

For semi-autonomous robots, remotely deployed in
unknown and dynamic environments, the complexity
of the formulation of expert knowledge is critical. The

SN Applied Sciences

A SPRINGER NATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

methods discussed in Sect. 2.1 may prove to be sufficient
for discovery and formulation of knowledge for high-level
robot control in a controlled or well-defined environment.
However, in an unknown or highly dynamic environment,
the knowledge needs to be maintained in real-time, often
over vast distances. For these types of environments, the
methods discussed will prove to be computationally
expensive and error-prone and may be constrained by
communication bandwidths.

Similarly, learning high-level controllers using machine
learning techniques, such as Q-learning mentioned in
Sect. 2.2, will be sufficient in well-defined or controlled
environments. For environments such as these, effective
models can be learned. A degree of dynamism may be
catered for by learning a large number of models to cater
for as many scenarios as possible. However, if the environ-
ment is unknown or highly dynamic, the accuracy of the
models will be sub-optimal. Moreover, it is infeasible to
relearn a model in real-time, every time the environment
changes.

The AE-SPSO/AEFQ methodology introduced in this
study follows a real-time optimization approach, while a
machine learning methodology follows an a priori learning
approach. The main differences between the two meth-
odologies are:

e The modification and updating of the expert-knowl-
edge (missions, states and rules), which is used in the
optimization process is simplified, and therefore uses
less bandwidth and is less error-prone.

¢ No subjective user-defined state-transition probabili-
ties are required; instead probabilities are accurately
calculated from real-time evidence, received from the
environment.

e Anopen world assumption (OWA) (c.f. Sect. 3.1) is used
in the quantification process.

e State-transitions can be composite, i.e. multiple state-
transitions between the same two states, each statisti-
cally quantified using its own rules and with its own
actions.

e A re-usable high-level controller (FSA) is dynamically
created, step-by-step in real-time.

These differences are too significant to do a fair empiri-
cal comparison between a machine learning approach
and the AE-SPSO/AEFQ approach proposed in this study.
This is mainly due to the differences between the learning
approach followed by a machine learning methodology
and a real-time optimization approach followed the AE-
SPSO/AEFQ approach.

Therefore, the performance of the AE-SPSO/AEFQ meth-
odology will be evaluated experimentally, on two simu-
lated UAV benchmark problems.

SN Applied Sciences

A SPRINGER NATURE journal

3 Background

In this section, some characteristics of the knowledgebase
are discussed and an overview of the standard particle
swarm optimization algorithm and the set-based particle
swarm optimization algorithms is given.

3.1 Knowledgebase characteristics

The KB contains domain-specific and relevant knowledge,
required for decision-making, i.e. inference. In this study,
the KB is composed of the set of all state-transitions with
a trigger formula for each state-transition. The trigger for-
mula is composed of a conjunctive set of logic proposi-
tions. Inference, is defined as the CRP which uses the KB to
find the optimal policy to control the the UAV. The CRP is
directly influenced by the completeness and consistency
of the KB.

The KB is considered to be complete, if all possible
knowledge needed for inference is formulated within the
KB.This means each trigger formula is completely defined.

The KB is considered to be consistent, if there are no
changes made to any of the ground propositions during
inference. While consistency is not a requirement for the
representation of the knowledge in the KB, it is important
for efficient reasoning.

In addition, inference is performed, using either a closed
world assumption (CWA) or an open world assumption
(OWA) [26, 27]. The CWA assumes the knowledge about
the environment is complete and consistent. This means
that, unless it is known that a trigger formula is true, it
must be assumed to be false.

The OWA on the other hand, assumes that the knowl-
edge representing the environment is incomplete or
inconsistent. This means that if all knowledge is not explic-
itly specified, the truth of the trigger formula is considered
unknown, but not false. Therefore, a probability (“degree
of belief”) is statistically allocated to the trigger formula.

In a dynamic environment, the KB can never be com-
plete, as the domain expert could update the KB with
new or updated state-transitions or trigger formulae at
any time.

Also, the KB can never be consistent, as the evidence,
which will be applied to the trigger formula for fitness
quantification, constantly changes in real time.

Clearly, for a robot functioning in a dynamic and uncer-
tain environment, the OWA is the preferred approach
to follow. Therefore, the solution must enable simple,
dynamic and efficient maintenance of the KB and dynamic
and real-time reasoning for high-level robot control. Sec-
tion 4 below discusses the proposed methodology to
achieve this, in more detail.

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

3.2 Overview of standard particle swarm
optimization

Particle swarm optimization (PSO) is a stochastic optimi-
zation algorithm, which has been successfully applied to
optimization problems in the fields of engineering and
robotics [28-30]. PSO has been successfully applied to
problems where the search space is either continuous or
discrete.

Inspired by the movement and behaviour of a flock
of birds searching for food, Eberhart and Kennedy intro-
duced the standard particle swarm optimization (StdPSO)
algorithm [31]. The swarm of particles moves through a
D-dimensional solution space. The position of particle i in
the solution space represents a candidate solution, which
is defined as a solution vector, X; € RD.The optimality of
the candidate solution is determined by a fitness function,
f(Xi) € R.The particle’s velocity represents the step size
and direction of its movement and is defined by a vector
v; € RP. StdPSO iteratively updates each particle’s velocity
and position using the following equations:

Vit + 1) = wv(t) + ¢y (v;(0) — x;(0) + Gy (§;(0) — x;(D)
M

Xt + 1) = x;(t) + vt + 1) 2)

where v;(t) represents the jth element of the velocity
vector of particle i, at the tth iteration. An inertia weight
w is applied to the particle velocity. Two key compo-
nents of the velocity equation are, the cognitive com-
ponent, ¢;ry;(y;(t) — x;()), and the social component,
Coly; (f/j(t) - x,j(t)), where y;(t) represents the jth element
of the personal best vector of particle i at the tth iteration
and ,(t) represents the jth element of the global best vec-
tor of the swarm at the tth iteration. The term, x,-j(t), repre-
sents the jth element of the current position of particle i
at the tth iteration. The two positive real numbers ¢;and c,
are acceleration constants, used to scale the contributions
of the cognitive and social components. The random val-
ues, ry;, rp; ~ U(0, 1), add a stochastic element to the cogni-
tive and social components. A user-defined inertia weight,
w, is added to the current velocity [32], which, along with
the acceleration constants, balances the effect between
global search and local search.
The general fitness function for the PSO is defined as:

f:R"% >R (3)

For a minimization problem, the personal best position
at the next iteration is calculated as,

[y FFXE+) = F(y)
yit+1) = {Xi(t+ N if F(X(t+ 1) < f(y(t) @

and for a maximization problem, the personal best posi-
tion at the next iteration is calculated as,

_ [y X+ D) < ()
yilt+1) = {X;(H 1 if f(X(t+ 1)) > f(y,(D) ®)

For a minimization problem, the global best position at
the next iteration is calculated as,

. B0 if f(X(t+1) > f@)
y(t+1)_{Xi(t+1)if F(X(t+1)) < FHD) (©)

and for a maximization problem, the global best position
at the next iteration is calculated as,

) _ [y (Xt + 1) <FE)
y(t+1)_{X,-(t+1)iff(X,-(t+1))>f(j/(t)) @)

On conclusion of all iterations, all (or most) of the parti-
cles have converged on the best solution, which is repre-
sented by the global best vector.

3.3 Overview of set-based particle swarm
optimization

When the search space is discrete, the velocity and posi-
tion update Egs. (1) and (2) cannot be used without re-
definition. Langeveld and Engelbrecht [33] introduced
a generic, set-based PSO (SPSO), suitable for optimiza-
tion problems with a discrete search space. To remain
in accordance with standard PSO, velocity and position
update equations, are redefined in terms of set-based
operators. The set-based velocity equation is:

Vit + 1) =(c;r, ® (Yi(HEX(1)) @ (6r, ® (Y(eX,(1)))
® (c3r3 OF A1) @ (car, © Si(D)

(8)
where (¢;r; ® (Y;(H)©X(1))) is the cognitive com-
ponent and (c,r, ® (Y(H)©X(1))) is the social com-
ponent. Two additional components are added
to the standard PSO equation: cr; ©f A(t) and
Cra @ S, where A(t)=U\(X;®UY, (DU Y®)
and S;(t) = (X NY,t)nY(®)). The parameters are
¢, ¢, €[0,1]and ¢3, ¢, € [0, |U|]. The random numbers, r,
tor,, are random values sampled from a uniform distribu-
tion,i.e.ry, 1y, 13,1, ~ £2(0,1).

The set-based position update equation is:

Xt+1)=XOHBEV{+1))

While the movement of particles through the search
space is governed by Egs. (1) and (2) for a continuous
search space, Egs. (8) and (9) govern the movement of
particles (sets) through a discrete set-based search space.

SN Applied Sciences

A SPRINGER NATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

The knowledge optimization process of the CRP will be
implemented using an improved SPSO algorithm.

4 Methodology

This CRP of an autonomous UAV (illustrated in Fig. 1), have
two main functions: cognition and reasoning. The cognition
component is tasked with the statistical optimization of the
knowledge from the KB, given the environmental evidence.
The reasoning component is tasked with selecting the opti-
mal action z*, from the optimized knowledgebase, KB. The
methodology is implemented in Algorithms 1-3.

4.1 Evidence definitions

Environmental evidence is defined as two sets, represent-
ing the mission parameters and evidence parameters.
The former is provided by the domain expert in relation
to a specific mission and the latter is sensory information
observed by the robot.

The runtime parameter is defined as,

4”:{(pq,(p5,...,(p;®r} (10)

where (plf,i =1, ., Ny is the runtime parameter represent-
ing the evidence observed in the environment.
The mission parameters are defined as,

dim={(p’1",(p’2”,...,(p;"¢m} (11)

where ¢ € [16™,ub™], j =1,.,nem defines the mission
parameter, constrained to specified lower and upper bounda-
ries. Both the mission and evidence parameters are used in the
calculation of constraint averages, and represent the dynamic
environmental information received by the robot’s CRP.

4.2 Knowledgebase definitions

The KB is defined as the set of state-transitions which gov-
erns the behaviour of the UAV:

CERES S (12)
where t, € KB, k = (1, ..., |KB|) represents a state-transi-
tion in the KB.

The state-transition is a tuple,
7 = (., A F)

where ¢ = {0,1} indicates whether the transition is
valid, n € Z* is an objective identifier assigned to the

SN Applied Sciences

A SPRINGER NATURE journal

transition, A = {a,, ...,a,,A} is a set of actions and
F={pypa .. ,p,,f} is the trigger formula for the transi-
tion, consisting of a set of simple logic propositions.

Each proposition p, € F, | = (1, ,nf) is defined by a
domain expert and is a tuple,

p= ((p,f, logical _operator, go]("> (13)

where the runtime and mission parameters are related by
alogical_operator, from the set {>, <, =}, to form simple
propositions of the form:

((p,f > (pj">, ((pf < (p}") and ((p§ = (p/’-") (14)

(Any non-numeric argument is discretized to a numeric
value, prior to quantification of F).

The indicator ¢, the objective identifier 5, the actions .4
and all the propositions p, are defined and maintained by
the domain expert.

4.3 Adaptive entropy fitness quantification
4.3.1 Model construction

In order to perform the quantification of a state-transition
T,, @ problem-specific model is constructed before it is
presented to the MEP equation for quantification. Given
a state-transition 1, € KB the model is formally defined
as atuple,

M, = (V,X,F,A) (15)

The set of variables are represented by
V={{v@}u,{v1”3’,v§,...vp}U{vf\,v?,...v’\}}where

Np Ny
vQis the query variable, v,f’, p=1,...,npis a predictor vari-
able, representing a proposition in the trigger formula and
VIA,/ =1,...,n,is an association variable. Note that, since
the propositions are independent, they will not have any
effect on the query variable, unless relevant associations
are defined between the query variable and appropriate
predictor variables. The associations are problem-specific
and are defined by the user.

Letm, = ‘{v@} U {vf’,vf,... vP }

m‘r
i andnTk = 2" then

am, xn, constraint matrix. X is the state space of the
trigger formula and defines all the joint statements of
{v@} U {vf’, vl .. vfp } A binary constraint function,

F(X =x;).i €n, and j € m_ assigns a boolean constraint
to each variable in the state space. Letn, = (1 +np +ny),
then vector F = (F;,Fy, ..., F,), ng = ny, are constraint
averages for each of the variables in V. The vector
A = (A1, A ... A,)Ny = Ny, represents the Lagrange mul-
tipliers, calculated for each variable in V, using (25).

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

Each constraint average F,, € F represents the degree
of belief in a proposition and is derived from real-time
information (evidence) received from the environment.
The constraint average follows the OWA, and is crucial for
the accurate quantification of the state-transition.

In this research study, the constraint average is calcu-
lated by interpreting a proposition as a degree of believe,
(probability), derived from a distance calculation. For
example, Fig. 2 illustrate two example state-transitions:

A constraint average for the proposition is calculated by
measuring the progress of the current runtime parameter
(plf, relative to the operational bounds of the mission task.
The result is a probability assigned to the proposition. Fig-
ure 3 illustrates the approach:

This approach ensures that the constraint average
accurately reflects relevant environmental evidence. This
also ensures that the fitness quantification of the trigger
formula for the state-transition is based on relevant and
correct environmental evidence.

The rule is translated into a probability as follows:

Firstly, given the proposition p,, calculate the total oper-
ation distance dj’", using the upper and lower bounds of

the mission argument:

djm = ub}" - Ib}" (16)

Proposition: Current height is less than operation height

AN N
[s2 | 12 » s3)
N4 1 N4
Motors On i Ascend

Rule: P =) <o)
where, @' e[lb/’”,ubf’} and

objectiveis ubf'

Fig.2 Example state-transitions with corresponding propositions

w;
(e <))

|
|
< %)

A

Calculate the current distance d_ of the runtime argu-
ment, (pjf with respect to the upper and lower bounds of
the mission parameter, ¢, according to the logical opera-
tion of the proposition:

o 1o i p = (o <o)
ubp =o' if py = (o} > o7)
d = a (17)
0; if py = ((p,f #(p}")
1; it pi = (o) = o))

Use (16) and (17) to calculate a real valued distance, in
the range [0, 1], for the proposition:
dr
1
Pr(p) = 25 (18)
j
where Pr(p;) represent the relative remaining distance of
@;, within the boundaries Ib/f" and ubj’.” as a probability.
Once the distances for each proposition have been calcu-
lated, the distances for each of the joint statements can be
calculated. To illustrate, let v® = p,, vi" = p;and Vi = p,,
then the state space consists of 23 = 8 joint statements.

Proposition: Current energy level is above minimum

N TN
[s4 } 32 » s5 |
N 1 N
Hover 1 Fly

Rule: P = (¢ir 2 (/’;n)
where, @' (t) € [lb:",ub/’”} and

objectiveis /b

ub?
(or <ub]) 1

| (o >1p})

Outside bounds

Operational range

Outside bounds

dy =uby ~Ib;!

Pr(p,)=(ub) -l)/}

Rt SR

Pr(p.)=(of —zb;")/d_;."

S

Fig. 3 Method for constraint average assignment to propositions

SN Applied Sciences

A SPRINGERNATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

The joint distances, for the predictor variables are calcu-
lated as follows:

dp1p2 = dp1 + dIL72 (19)
dyr=d, +(1-d,) (20)
A5y, = (1-d,) +d,, 1)
A5 =(1-d,)+ (1-d,) (22)

The overall distance d;, represented by the probability
distribution over all the propositions of the trigger for-
mula, is calculated by:

5 +dy, +

df = (d + dp1p2 P2P;

P1P2 dm) (23)

With all the joint distances of the joint statements avail-
able, the respective constraint averages can now be calcu-
lated. Firstly, the constraint averageF, of the query variable
P, is set to 1.0. The constraint averages for the predictor
and association variables are then set as follows:

Table 1 Model of illustrative example

i A B C AB AC ABC

1 1 1 1 1 1 1

2 1 1 0 1 0 0

3 1 0 1 0 1 0

4 1 0 0 0 0 0

5 0 1 1 0 0 0

6 0 1 0 0 0 0

7 0 0 1 0 0 0

8 0 0 0 0 0 0
(Fa) (Fe) (Fo) (Fae) (Facd (Fasc)
AW ’12)“3 ’14 AS)'6

mik AF(X=x;)
(alMy) = s—t—e H (26
Z(Ay, Agsoos Ay)

me,
T Y AF(X=x)
where Z(Ay, Ay, ... 4) = Y e

i=1
Z is the partition function which ensures the probabili-
ties are assigned between 0 and 1. The Lagrange multipli-

d; ' de ' d; '

F= <d (dp1pz + dP1P_2) (dp1pz + dp_1pz) (dpwpz + dp1p_z) (
- po’

d 4

[212) + dp_1pz) dp1pz) (24)

Next, the Lagrange multipliers are determined.

The duality between the Lagrange multipliers and the
user-defined constraint averages, allows the Legendre
transform to be used to derive the Lagrange multipliers:

M,
Luans = A = min (InZ(/11,/12,) = ,Z‘ Aij> (25)

The multipliers are derived by varying the values of 4,
while keeping the constraint average, f; fixed, until L,
reaches a minimum. Table 1 shows an example of a model
for a trigger formula containing two propositions, B and
C, including associations with the query variable A, i.e. AB,
AC, ABC.The model containsam,_ X n, boolean constraint
matrix, wherem, =3andn, =38.

Once the model is complete, the fitness quantification
can be performed.

4.3.2 Fitness quantification

Given the model /\/lfk, the probability distribution,
Q= <q1,q2, < Gpy)N =1y, over the variables (proposi-
tions) of the trigger formula can now be calculated. Given

them, xn_ constraint matrixandletien_andjem,,
the MEP is then formally defined as:

SN Applied Sciences

A SPRINGERNATURE journal

ersarerepresentedby 4, j = 1,..., kand Fj(X = x,)assigns
a real-world, domain-specific constraint, to the state i of
variable j.

(Refer to [34], chapters 24 and 25 for a detailed dis-
cussion on the mathematical derivation of the Legendre
transformation and the MEP formula).

Finally, the fitness of the state-transition 7, € KB is cal-
culated as,

f(Tk) =X Ch (27)

where ¢+ € 7, and ¢ = lindicate a valid state-transition and
v = Oindicate an invalid state-transition.

Note that any of the resulting probabilities (including
marginal probabilities) in the distribution Q may now be
used in the fitness quantification. However, in this study,
only g, will be used for fitness quantification, since its
value is conditioned on all the predictor variables, i.e.
propositions.

4.4 The AE-SPSO algorithm

The AE-SPSO algorithm is an improved variant of the SPSO
(c.f. Sect. 3.3). The AE-SPSO algorithm eliminates the ran-
dom removal of (potentially good) solutions from the
personal best- and global best sets. Moreover, an elitism

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

approach is added to the AE-SPSO to ensure the best per-
forming elements are retained in a scalable manner. The
AE-SPSO algorithm uses the same cognitive, social and
positioning components as those in Egs. (1) and (2). How-
ever, since the particle is a set of state-transitions, each
with a trigger formula, the algebraic operations of Egs. (1)
and (2) are not suitable and have to be redefined as set-
based operations:
Let:

X; be the current position of particle i, (i.e. the set of
state-transitions, 7).

Y; be the personal best position of particle i, (i.e. the
personal best set of state-transitions).

¥ be the global best position of the swarm (i.e. the
global best set of state-transitions).

¢4, ¢, be the cognitive and social accelerators respec-
tively.

then
Vi(t +1)= ry Ccog (dcog) U rZCsoc(dsoc) (28)
Xi(t+1)=max (X, Vvt + 1)) (29)
where

Cognitive difference : d_,,

tYu (Xi\Y,)

The difference between the particle’s personal best set
y;and the particle’s current set X; is defined as the unifica-
tion of Y; and the set-theoretic difference between Y; and
X;. That is, all the elements in the particle’s personal best
set are retained and the elements in X; which are notinY;
are included in the difference set.

Social difference : d,. = Y U (X\Y)

The difference between the swarm’s global best set ¥
and particle’s current set X; is defined as the unification of
¥ and the set-theoretic difference between ¥ and X;. That
is, all the elements the swarm’s best set is retained and
the elements in X; which are not in Y are included in the
difference set.

Cognitive velocity @ Vg4

: F(KB, 1y ¢y) U (deog)

The cognitive velocity is derived by the union of ¢, ran-
dom elements selected from the KB and the cognitive
difference set. For each c;, a random integer value r, is
selected from the range[1, |KB|] and the element (state-

transition) at index ryis added to d,,,.

Social velocity : Vg, @ f(KB,ry¢;) U (dioc)

The social velocity is derived by the union of ¢, ran-
dom elements from the KB and the social difference set.
For each ¢,, a random integer value r, is selected from the
range [1, |[KB|]and the element (state-transition) at index
r,is added tod

soc*

Farticle velocity @ Vi(t +1) = Vg U Vo,
The resulting velocity V;(t + 1) is the union of the ele-
ments of cognitive velocity v_,, and the elements of the

cog
social velocity v, ..

Particle position : X(t + 1) = max, (X; U Vi(t + 1))

Using the AEFQ algorithm (Algoritm 1), the fitness f (7,),
where 7, € X;, is calculated. In order to preserve the fittest
elements from one iteration to the next, an elitism param-
eter ¢, is introduced [48]. The elitist parameter € specifies
the number of fittest elements to include in the particle’s
new position set. The new position X;(t + 1) is derived by
selecting the top ¢ (fittest) elements from the union of the
current position x; and the velocity V;(t + 1). The selection
of the top € elements is denoted by max, (-).

Note the absence of the inertia weight applied to the
particle’s current velocity. In the standard PSO, the inertia
weight «, along with the accelerator constants ¢,, ¢, con-
trol the granularity of the exploration. In set-based PSO,
the accelerator constants c;, ¢, control the granularity by
specifying the size of the random set of new elements to
be added. Similarly, the inertia weight «, would specify
the size of the subset of elements (the inertia set) to be
selected from the velocity set. However, it would serve no
purpose to add the inertia set again, because when cal-
culating the new position set, the velocity set is already
added in full to the current position set. Therefore, when
calculating the difference sets d,, and d,,. at the next
iteration, the new position already includes the velocity
elements.

SN Applied Sciences

A SPRINGER NATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

Algorithm 1. AEFQ algorithm

1: Input :Runtime parameter @" eq. (10)
2: : Task parameter @™ eq. (11)
3: : State-transition 7y eq. (12)
4:
5: Output : Fitness quantification, [T eq. (26)
6:
7: Begin
8: Initialize model M, , given F € 7y eq. (15)
9: Calculate weighted constraint averages F eq. (24)
10: Calculate Lagrange multipliers A, given F eq. (25)
11: Calculate probability distribution Q, given A eg. (26)
12: Calculate the fitness /1, given Q eq. (27)
13: Return I1
14: End

The CRP is implemented according to the logical pro-
cesses defined by Algorithms 1-3. Algorithm 1 shows the
implementation of the adaptive entropy fitness quantifica-
tion method.

Note that, for simplicity, the sensory input is processed
as single set, rather than each individual input element.
Prior to the constraint average calculation (line 9), the

arguments of the trigger formula of the state-transition
are ground using the corresponding sensory input param-
eters. This automation of the grounding process simplifies
modification or creation of new propositions.

Algorithm 2 shows the process for finding the optimal
solution (state-transition), based on the fitness of the par-
ticle, determined by the AEFQ (Algorithm 1).

Algorithm 2. AE_SPSO algorithm

I: Input : Knowledgebase, KB
2: : Task parameters, @™
3: : Runtime parameters @
4:
5: Output : Optimal solution/s, IT*
6:
7: Begin
8: Initialize a swarm, S of N particles, each particle containing
9: n randomly selected state-transitions, 7, € KB
10:
11: Repeat //Activate the swarm
12: For each particle i in swarm S
13: For each state-transition 7;, € i
14: // Quantify the state-transition fitness
15: f(ry) = AEFQ(ty, @™, @) (Alg. 1)
16: Next state-transition
17:
18: Update particle’s velocity V; eq. (28)
19: Update particle’s position X; eq. (29)
20:
21: Next particle
22: Until stopping condition
23:
24: // Select the optimal state-transition/s
25: SetIl* = X;(t+ 1)
26: End
SN Applied Sciences

A SPRINGERNATURE journal

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

The CRP uses the optimal set of solutions (state-tran-
sitions) found by the AE-SPSO to select and execute the
relevant actions.

The code base of the AirSim/Unity simulator is C++and
the CRP were implemented using C#/NET (providing
simpler memory management and easier data structure
manipulation). To simplify future deployment of the CRP

Algorithm 3. CRP algorithm

1: Input : Knowledgebase, KB

// Execute the mission

2

3

4:

S: Begin
6

7 For each task, " € @™
8

// Domain expert knowledge
: Mission parameters, @™ with tasks, ¢;"
: Runtime parameters @ with evidence ,] //Defaults

: Repeat

9: Input all @] € @7 from sensory input
10:
11: // Find the optimal solution/s
12: [* = AE_SPSO(KB, @™, ®") (Alg. 2)
13:
14: /I Select and execute action/s from optimal solution/s
15: For each action 7, € IT*
16: For each action A € 1,
17: For each action a,, € A
18: Execute action a,,
19: Next action
20: Next state-transition
21: Until Task completed
22: Next Task
23: End

5 Experiment setup

The methodology is experimentally evaluated by simula-
tion, where a UAV autonomously execute two benchmark
missions, one simple and one more complex. The perfor-
mance measures for each of the benchmark missions are:

1. Success—measured by inspecting the completeness
of the learned FSA (digraph), for each mission and;

2. Reasoning—measured by inspecting the level of
velocity control of the UAV, based on reasoning about
the statistical fitness of each state-transition.

Hardware: The experiments were executed on an Intel i7
laptop computer with 2.97 GHz quad core CPU, 16 Gb RAM
and an Intel HD Graphics 4000 video adapter.

Software: The experiments were performed using the
AirSim/Unity simulation environment, running on the
Microsoft Windows 8.1 operating system.

Figure 4 illustrates the simulation’s software
architecture:

on a UAV platform, the CRP was functionally abstracted
from the simulation environment. Integration between
the AirSim/Unity simulator and the CRP was performed

Simulation Architecture

Windows 8.1
Unity Engine | |
v2018.2.17
AirSim
Simulator
(C++)
Q Mission2 |
Mission1 ‘ AirSim
| Drone Client Display
(C++)
Domain i
Expert .
Redis Database
UAV CRP
(CH)
Fig.4 Experiment platform architecture
SN Applied Sciences

A SPRINGERNATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

Fig.5 Benchmark mission 1

Fig.6 Benchmark mission 2

Home

1 I v
Collection Delivery Charging
Point Point Point

L 4 L >

l

oA,
1 11 11 v
Home Collection Delivery Charging
Point Point Point
[4 > > >

—

UAV; UAV,
ma m
UAV; UAV,
. a 8
Table 2 UAV states 5.2 Benchmark mission 2
S1—Motors off S2—Motors on S3—Ascending .
.]) From the Home (1) location, arm the motors, ascend to
>4—Hovering 55—Flying 56—Descending a specified operational height and fly to the Collection
i i i i
S7—Rotating S8—Acquiring cargo S9—Releasing cargo P P 9 Y

using a Redis Cache database. Expert data, such as mis-
sion data, were entered in extensible markup language

(XML) format.

5.1 Benchmark mission 1

From the Home (l) location, arm the motors, ascend to a
specified operational height and fly to the Charging point
(IV). Descend on the charging point and disarm the motors

(Fig. 5).

Table 3 UAV state-transitions

SN Applied Sciences

A SPRINGERNATURE journal

point (Il). Descend and collect the cargo, then ascend to
the specified operational height and fly to the Delivery
point (Ill). Descend at the delivery point and deliver the
cargo. Ascend to a new operational height and fly to the
Charging point (IV) for recharging. Descend on the charg-
ing point and disarm the motors (Fig. 6).

The UAV platform has nine states (Table 2).

The nine UAV states yields a KB of 81 possible state-
transitions (Table 3).

The KB is constructed as a square matrix, assuming a
transition from every state to every other state. Valid states
are defined by the domain expert, by setting an indica-
tor on the state-transition as well as defining a trigger
formula for each valid state-transition. Although some

sl s2 s3 s4 s5 s6 s7 s8 s9
s1 Y t, t3 t, t 1 t, 15 1)
52 to G t t tia s t SP) tig
s3 Yo o ty ty 3 o tys s ty
s4 T t t3 LEY LEP! t3; LEWS tss LEY
$5 t37 tag t39 ty ty e ty3 [tys
s6 ti ty7 tys ty t50 ts, ts, ts3 tsy
s7 ts5 tse ts; tsg tsg teo ts t62 te3
s8 tes tes tes te7 teg teo to th t7;
s9 t3 4 s e t77 t7g t79 tgo tg

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

04

00s
o puPY

0
7
8203
235
2

s
)

0.

0.,
780,
V8975 az5 075 075915

D
SSCending

Fig.7 FSA learned for benchmark mission 1

state-transitions can never be valid [e.g. from S5 (flying)
to S1 (Motors Off)], this approach makes it simpler for the
domain expert to activate new transitions. Valid state-
transitions for the experiments are marked in Table 3 as
shaded/italic/bold cells.

For each of the benchmark missions, an annotated
video of the simulation is recorded and published to
YouTube:

1. UAV benchmark mission 1 [35]
2. UAV benchmark mission 2 [36]

53

&
$

@Motors Off

=

6 Experiment results
6.1 Benchmark mission 1: results

Figure 7 shows the resulting FSA for benchmark mission
1, dynamically learned by the CRP from the KB (Table 3),
during the execution of mission 1. The node in bold shows
the start state, i.e. Motors Off.

Figure 8 provides a “zoomed” view showing the “fly”
state-transitions, and corresponding fitness of each, gen-
erated by the CRP.

Fig.8 A“zoomed”image of the iterative “fly” transition generated during mission 1

SN Applied Sciences

A SPRINGERNATURE journal

Research Article

SN Applied Sciences (2019) 1:

1684 | https://doi.org/10.1007/542452-019-1697-4

10
Iteration (Fly)

Velocity (m/s)
w S (5] o

N

HelloDrone

10 Velocity

1.47774e-05, -92, -10.0235)

92

92, -9.98151}

92, -9.99068)

9.99068

}.35938e-05, -81 9.50127}

} }.5201e-05 75.0018 9

3.5201e-05 v
Velocity 8

47.9209

ound optimum transition t4l

Swarm searching for optimal tr.
9.09098) tion t41

ound optimum trans

UAY flying
Target

Swarm s hing for optimal tr.

tion t41

ound optimum transi

I
I Velocity

10
Iteration (Fly)

iControl was successful 30 Vehicle=SimpleFiight
g(Object)

) SETTING PARENT GameWorld
ine.Debug:Log(Object)

SimpleFlight

rmed because it is not in Active, Ar

successful 30 Vehicle=Simpleflight

rmed because it is not in Active, Ar

was successful 30 Vehicle=SimpleFligh

already armed 30 Vehicle=SimpleFlight
9(Object)

UAVControl_v1.0

5 with probability Executing .

ansition for tas
s5 s9, with p Executing
ansition for ta

s5, with probability Executing

Fig. 10 UAV reducing its velocity as it approaches its target destinat

The learned FSA can be saved and, provided the mis-
sion and operational conditions remain the same, may
be used as high-level controller to execute similar, subse-
quent missions.

SN Applied Sciences

A SPRINGERNATURE journal

ion

Figure 9 shows the dynamic control of the velocity,
derived from the state-transition fitness. The graph shows
the reduction in velocity, in accordance with the reduction
in fitness of the “fly” state-transition, as the UAV nears its
destination.

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/s42452-019-1697-4

Research Article

Unity 20182.17f1 Personal (64bit) - DroneDemo.unity - UnityDemo - PC, Mac & Linux Standalone <DX11> - a

= {0.00196968, 91

z} = {0.00196681, S

0K

NEDCoords: (x,y.z} = (0.0019647

0K
INFDCoords: {x,y,7} {0.00196351
{0.00196273, 9
0 Velocity = 1
wv,z) = (0.00196248, ¢
= 0 Velocity =1
{0.0019
elocity = 1
(0.00196277, 9 98025}
t Altitude = B Velocity =1
s: {x,y,2} = {0.00196163, 90 -0.0353003}

v,z} (0.00196144, 90 0.00616506}

.z} = {0.00196595, 96 22, 0.0147719}

Swarm searching for optimal transition for task 22

d optimum transition t51: s6

Mazinize On Play | Mute Audio | Stats | Gizmos

nnot be
9(Object)
stApiControl was successful 30 Vehicle=SimpleFlight
ugiLog(Object)
58] Vehicle is already armed 30 Vehicle=SimpleFlight
gine.DebugiLog(Object)
il was not received, entering hover mode for safety
g(Object)
ing hover mods for safety.
pleflight
impleFiight
ight
rmed because it is not in Active, Ar
piControl was successful 30 Vehicle=SimpleFlight
9(Object)
icle is already armed 30 Vehicle=SimpleFlight

gine.Debug:Log(Object)
58] API call was not received, entering hover mode for safety!
g(Object)

State jsarmed 30 Vehicle=SimpleFlight
UnityEngine.Debug:Log(Object)

UAVControl v1_0

Descend
ability = 0.15 Executing

Off

Fig. 11 UAV reaching its destination and completing the mission

On the graph, the target destination (charging) of mis-
sion 1 can be seen at task 18. The graph shows that the
UAV proportionally reduces its velocity as it approaches
its destination.

Figures 10 and 11 show some key stages in the simula-
tion for benchmark mission 1. The window at the bottom
shows the CRP finding the optimal state-transitions and
sending the corresponding actions to the simulator. The
window on the left shows the results of the simulator as it
performs the actions received from the CRP.

Figure 10, shows the dynamic velocity adjustment of
the UAV, derived from the fitness probability, as the UAV
approaches its target. This behaviour is used to evaluate
performance measure 2.

As the UAV approaches its target, Pr<(pir < (pjm> is

reduced from 0.3 to 0.25 and the velocity of the UAV (indi-
cated in the window left) is adjusted accordingly from 8.00
t02.00 m/s.

Figure 11, shows the successful completion of the
mission. This behaviour is used to evaluate performance
measure 1.

When the UAV reached its target destination (the charg-
ing point), it descends and successfully completes the
mission.

[il 2151

6.2 Benchmark mission 2: results

Figure 12 shows the resulting FSA for benchmark mission
2, dynamically learned by the CRP from the KB (Table 3),
during the execution of the mission. The node in bold
shows the start state, i.e. Motors Off.

Figure 13 provides a “zoomed” view showing the “fly”
state-transitions, and corresponding fitness for each, gen-
erated by the CRP.

The graph in Fig. 14 shows the dynamic velocity con-
trol, derived from the state-transition fitness. The graph
shows the corresponding reduction in velocity every time
the UAV near its target.

On the graph, the three target destinations (collec-
tion, delivery and charging) of the missions can be seen
at tasks 7, 15, and 21. The graph shows that the UAV pro-
portionally reduces its velocity as it approaches each of
the destinations.

Figures 15 and 16 shows some key stages in the simula-
tion for benchmark mission 2. Figure 15 shows the UAV in
process of collecting its cargo.

Figure 16 shows the UAV adjusting its velocity in accord-
ance with the fitness of the state-transition, fly.

Figure 17 shows the UAV successfully delivering its
cargo.

SN Applied Sciences

A SPRINGERNATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

@,\@“OY\
*

A

o 0%1%2%0.4 o8k,
PR A%
R 7

—= 0/ 0)
= S
22, YN\

=
s
e

ﬁ)g’e
i
Ve

Fig. 12 FSA learned for benchmark mission 2

015 278

o4

Fascending

o
©
&

@Motors Off

¢
paunioy 000

o

Fig. 13 A“zoomed”image of the iterative “fly” transition generated during mission 2

6.3 Discussion
6.3.1 Performance

Overall, the experimental results (Figs. 7, 8,9, 10, 11, 12,
13,14, 15, 16, 17) shows that our approach works well for
real-time knowledge optimization for high-level control
in cognitive robotics.

The simulation was executed repeatedly, with consist-
ent results. Figures 7 and 8 (for benchmark mission 1)
and Figs. 12 and 13 (for benchmark mission 2) shows that
the approach successfully executed the expert-defined

SN Applied Sciences

A SPRINGERNATURE journal

missions. This success was also observed during the sim-
ulation. Figures 9 and 14, for benchmark mission 1 and 2
respectively, shows the successful reasoning for velocity
control, using statistical reasoning. The figures show the
corresponding velocity adjustment, based on the fitness
(probability) which is also shown in the zoomed Figs. 8 and
13 for the “fly” action.

In addition, conducting the experiments also showed
the following general benefits:

e Theapproach is less error prone and requires less band-
width to maintain because, in our approach, knowl-

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/s42452-019-1697-4

Research Article

=025

Fitness (FI!

10

20
Iteration (Fly)

Velocity (m/s)
» v o

w

10

UAY flying
arget

0K
INEDCoord:

UAY flying
Target

ocity

0K
INEDCoords: {x,y,z}
UF

flying
Té t = 9.1

0K
INEDCoords

UAY flying
Target: x

0K
INEDCoords: {x,y,z}
UAY flying. .
Target

HY

0K
NEDCoords: {x.vy,z
0K

INEDCoords

0K

INEDCoords 2116e

{x,y,2}
ound optimum transition t41

{x,y.2}

0K
INEDCoord

{3.64358e-06

UAY descending ound optimum transition t40
UAY descending. Velieits =1 und optimum transition t40
ok Swarm
INEDCoord: 3.91 ound optimum transition t33

s5 -> s5, with probability
rn searching for optimal transition for

searching for optimal transition for

20

Iteration (Fly)

'] SETTING PARENT GameWorld
Debug:Log(Object)

Collection
Point

it
Log(Object)

SETTING PARENT GameWorld
Log(Object)

] Collision Count: 0 Vehi
ebug:Log(Object)
rmed because it is not in Active, Ar

piControl was successful 30 Vehicle=SimpleFight
Log(Object)
o)] Vehicle is already armed 30 Vehicle=SimpleFlight
UnityEnginie Debug:Log(Object)

UAVControl_v1_0

0.15 ... Executing

task 5 :

Hover

with probability = 1 Executing

task 6 : Des

end

with probability = 0.15 Executing

Fig. 15 UAV collecting its cargo at the collection point

edge and missions are defined using a simple structure.
The trigger formula of state-transitions is constructed
as a simple conjunction of propositions, and is there-
fore more intuitive to the domain expert. Moreover,

the knowledgebase and missions can be modified
independently, reducing errors during the updating
process.

SN Applied Sciences

A SPRINGERNATURE journal

Research Article SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

Q Unity 2018.2.17f1 Personal (64bit) - DroneDemo.unity - UnityDemo - PC, Mac & Linux Standalone <DX11> - g
HelloDrone - ° B [Ccoi: B o M accourt - M covers = M tavoue <)
MINEDCoords: (x,v, (7.19437e-06, -48.481, -0.997999) [ME SN SRS N PN e En Ollnapectartl [Console | =
Display 1 || Standalone (1024x768) ¢ Secale (s 0,83; Maximize On Play | Mute Audio |Stats | Gizmes = | | Clear || Collapse | lear on play |Errorpauze | Editor=| | 999+ 0| @51
0K i T [21:50:15] Did Hit E
NEDCoords: (x,y, {7.19466e-06, -48.481, -0.99799) [UnityEngine Debug:Log(Object)

[21:50:15] SETTING PARENT DRONE
UnityEngine DebugsLog(Object)

0l
hEDCUOr‘dS: Y, {7.19496e-06, -48.481, -0.997988} , [21:50:15] Collision com s 2 e

UnityEngine DebugsLog(Ob;

[21:50:15] Vehicle cannot be disarmed because it is not in Active, Ar
(Object)

0K

R . . - nityEngine.Debug:Logl
NEDCoords: (x,v.2) = (7.19525-06, ~48.481, -0.997988) T,
UnityEngine Debug:Log(Object)
UAY ascending. X) [21:50:15] Vehicle is already armed 30 Vehicle=SimpleFlight
Target Altitude 5 Velocity = 2 4+ UnityEngine.Debug:Log(Object)
 (FE ol a6 R
UnityEngine Debug:Log(Object

{2 S0rL S Vapdce et s msmmed because it is not in Active, Ar
UnityEngine DebugsLog(Object)

impleFiight

0K
INEDCoords: {x.v,z {7.19612¢-06, -48.481, -4.53905}

. o (1 [21:50: lS]leques(Aple\Uol was successful 30 Vehicle=SimpleFlight
UAY ascending i 1\ ~/ UnityEngine Debug:Log(Object)
larget Altitude = Velocity = 2 G A T [21:50:15] Vehicle is already armed 30 Vehicle=SimpleFlight
A UnityEngine Debug:Log(Object)
% 'Y o 1 [21:50:15] Did Ht
{7.19699e-06, -48.481, -4.95373) 14/ UnityEngine Debug:Log(Object)

[21:50:15] SETTING PARENT DRONE
UnityEngine .Debug:Log(Object)
[21:50:15] Collision Count: n vzhmle -SimpleFlight
UnityEngine.Debug:Log(Objec
[21:50:15) Vehicle cannot he d\sarmed because it is not in Active, Ar.
UnityEngine Debug:Log(Object)
[21:50:15] requestapiControl was successful 30 Vehicle=SimpleFiight
UnityEngine Debug:Log(Object)
[21:50:15] Vehice is already armed 30 Vehice
(x.y.2} .19785e-06, —48.481, —4.99466}) rone Dbl Ob i)
[21:50:15] Collision Count: 0 Vehicle=SimpleFlight
Uav flying) UnityEngine DebugiLoa(Object)
s _ _ " [21:50:15] Vehicle cannot be disarmed because it is not in Active, Ar’
Target: x = 7. 197850 06 v = 41 -4.99466 / UnityEngine Debug:Log(Object)
Velocity [21:50:15) requestApiControl was successful 30 Vehicle=SimpleFlight
< UnityEngine .Debug:Log(Object)
[21:50:15] Vehicle is already armed 30 Vehicle=SimpleFlight o
UnityEngine.Debug:Log(Object) v

*

19726e-06, -48 5 97794}

.19757e-06, -48.481, -4.99024}

impleFlight

0K
[INEDCoords: {x,y,z} = {8.50081e-05, -36.5183, -4.51338}

UAY flying. ..
Target: 8.50081e-05 51338
V; i 8

1 UAVControl v1.0 e

optimum transition t32: s&é —> s5, with probability .4 ... Executing

ok < searching for optimal transition for task 12 : Fly ...
NEDCoords: {x,y,z} = {0.00108234, -9.20939, -4.36415}

UAY flyin:

optimum transition t4l: s5 -> s5, with probability = 0.35 ... Executing ...

T T e searching for optimal transition for task 12 : Fly ...
ty = 2.24 R

optimum transition t4l: s5 -> s5, with probability .28 ... Executing ...

Fig. 16 UAV reducing its velocity as it approaches its target destination

<Q Unity 2018.2.17f1 Personal (64bit) - DroneDemo.unity - UnityDemo - PC, Mac & Linux Standalone <DX11> -a
HelloDrone - ° ~ N (G et - Mo M account - M iavers - Mlovout -

0K N ~ # Scene 5 Asset Store % Animator | € Game. | »= Olnspector | []Console | -

NEDCoords: (x,v,2) = (0.00113059, 17.2979, -4.41111} isplay 31| Standolons (102768) . eale Qe 0,83, axiniz On lay | Mt Audi | Scts | Giamas <L | LGar || Gellsps Cler o Ply [Eroppause | ar || 00955+ | 4,01 @51

. 1) [21:50:46] requestApiControl was successful 30 Vehicle=SimpleFlight *
UAY flying. .. , * UnityEngine Debug:Log(Object)
Target: x = 0.00113059 v = 47 z = —-4.41111 [21:50:46] Vehicle is alraady armed 30 Vehicle=SimpleFlight
Velocity = 1.84 | */ UnityEngine Debug:Log(Object)
2L 3ol L ca koot cocaed efarks havac modd e satey
UnityEngine.Debug:Log(Ob,
[21:50:46] Collision cuum 0 Vehlc\e-Slmv\aFlluht
UnityEngine.Debug:Log(Object)
[21:50:46] Vehicie cannot be disarmed because it is not in Active, Ar
/ UnityEngine.Debug:Log(Object)
[21:50:46] requestApiControl was successful 30 Vehicle=SimpleFiight
UnityEngine.Debug:Log(Object)
[21:50:46] Vehicle is already armed 30 Vehicle=SimpleFlight
UnityEngine Debug:Log(Object)
(21:50:46] APL cll was ot receved, entering hover mode for sfety
/ UnityEngine Debug:Log(Obje
[21:50:46] Did Hit
/ UnityEngine DebugiLoa(Object)

0K
NEDCoords: {x,y,z} = {0.00116688, 24.2759 40531}

UAY flyin:
Target: x = 0.00116688 y = 47 z = -4. 11
elocity = 1.6

0K Delivery
NEDCoords: (x,y,2) = (0.00120545, 30.7906 40536)

Point

UAY fluin:

-/ UnityEngine.Debug:Log(Object)
(21:50:46] Vehicle cannat be disarmed because it s not in Active, Ar
/ UnityEngine Debug:Log(Object)
[21:50:46] requestapiContral was successul 30 Vehicle=Simplerigh
UnityEngine.Debug:Log(Objes
[21:50:46] Vehicle is .!heady almed 30 Vehicle=SimpleFlight
/ UnityEngine.DebugiLog(Object)

0K
NEDCoords: (x,y,z} = (0.00123163, 36. 3 40311)

uav flyin.
Target: v

P
i o

arget: x = 0, 00120545 v = 47 z = ~4.4053 X) A [21:50:46] SETTING PARENT DRONE
Velocity = 1.44 e 1 UnityEngine Debug:Log(Object)
[21:50:46] Collision Count: 0 Vehicle=SimpleFlight

[21:50:46] API call was not received, entering hover mode for safety)
/ UnityEngine.Debug:Log(Object)
[21:50:46] Collision Count: 0 Vehicle=SimpleFlight
-/ UnityEngine.Debug:Log(Object)
U e S O
(Obj

0K
INEDCoords: {x,y,z} = {0.00125881, 92 39916}

UnityEngine Debug:Log(

o =

el 0, "[‘175831 y =47 . L (1) [21:50: Gélrequesmplcon(vu\ was successful 30 Vehicle=SimpleFlight
elocity = 1. =+ UnityEngine.Debug:Log(Object)

o0 R e St s
*/ UnityEngine.Debug:Log(Obje

{x,y.z} = {0.00128267, 47. . —4.42283} 1) [28: SUM]APlclllwa;nu(rn}ewed en\mnqhovermndefursifa!yo

-~ UnityEngine Debug:Log(Objes
| UAVControl v1.0 - o IES

= {0.0014163, 47.4816, —4.442}
Found optimum transition t4l: s5 -> s5, with probability = 8.15 ... Executing ...

= (0.00192809, 47.2334, -4.42235) Swarm searching for optimal transition for task 13 : Hover

i iti 40: s5 > sh, wi bability = 1 ... Executi
 46.9649, -4 42631} Found optimum transition t40: s5 -> s&, with probability = 1 Executing

Swarm searching for optimal transition for task 14 : Descend ...

UAV descending. .

Target Altitude = -1 Velocity = 1 Found optimum transition t33: sk > s6, with probability = 0.15 ... Executing

- =

ntering haver mode for safety 30 Vehicle=Siml

Fig. 17 UAV successfully delivering its cargo

SN Applied Sciences

A SPRINGER NATURE journal

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/s42452-019-1697-4 Research Article

CRP Time (sec)

CRP Time (sec)

Fig.

CRP time for Benchmark Mission 1

0.12 |

o
BN
T

o

o

®
I

o

o

o)
I

o

o

=
I

o

o

V]
I

I CRP Time

15 20 25 30

Mission Task

CRP time for Benchmark Mission 2

02 ‘

©

o

3
I

o
N
T

0.05 —

I CRP Time

30 40 50

Mission Task

18 CRP time of benchmark missions

There is no re-learning of complex statistical reason-
ing models or networks whenever the knowledge or
evidence changes because, in our approach, potential
solutions are evaluated in real-time and a statistical
model for reasoning is generated in real-time by the
MEP.

Autonomous behaviour can be controlled more effec-
tively because in our approach, the probabilities and
marginal probabilities provided by the AEFQ algorithm
enables a finer control of the statistical fitness evalua-
tions of the state-transitions.

The high-level control provided by the CRP is more
representative of human cognition, because in our
approach, the OWA is followed. This means the action
of a state-transition may be less probable, but not
impossible. This gives the CRP powerful reasoning
capabilities.

The fitness of a state-transition is a true representation
of the environment because, the MEP applied in our
approach, guarantees an accurate probability assign-
ment, based only on the constraint averages derived
from the mission constraints and environmental evi-

dence. There are no other subjective control param-
eters or bias in the fitness quantification.

6.3.2 Time efficiency

The objective of this study is the real-time, high-level con-
trol provided by the CRP. Therefore, the time efficiency of
the CRP, i.e. the time taken by the AE-SPSO to find an opti-
mal solution for a mission task, is evaluated. Optimization
algorithms, including the PSO algorithm, is known for the
extensive time it takes to converge on an optimum. This is
especially true for large, multi-dimensional and real search
spaces. However, in our approach, the search space is finite
and discrete, allowing the AE-SPSO to find optimal solu-
tions in acceptable and sufficient time. Moreover, the con-
trol parameters of the AE-SPSO makes it easy to scale the
performance of the PSO when the search space increases.

Figure 18 shows the time the CRP took to find an opti-
mal solution for each of the tasks of each mission.

The average CRP time for benchmark mission 1 was
0.0785 s and for benchmark mission 2, the average
CRP time was 0.1477 s. These times were found to be

SN Applied Sciences

A SPRINGERNATURE journal

Research Article

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/542452-019-1697-4

completely suitable for the high-level control of the UAV,
while executing its missions.

The behaviour of the UAV in both benchmark missions
is demonstrated in the accompanying videos [35, 36].

6.3.3 Simulation constraints

The performance of the UAV may appear slow in the vid-
eos. This is because the complex integration architecture
of the AirSim simulator and the Unity games engine is not
optimal and causes a considerable time lag between the
simulator and the games engine. It was observed that,
at high velocity, the UAV would overshoot its target des-
tination in the Unity games engine. This resulted in the
target position parameters reported by the AirSim to be
inconsistent from that reported by the games engine. This
caused the UAV to wrongly interpret its position and there-
fore miss its objectives.

To improve the performance, a delay was explicitly
implemented between the execution of mission tasks,
in order to give the games engine and simulator time to
synchronise. Assisted by the explicit delay, the UAV would
autonomously correct its positioning, by repeating the
task (see Figs. 8 and 13), while constantly reducing its
velocity according to the fitness of the task. At low velocity,
the positioning of the UAV was quite accurate and it could
achieve its objectives. With the autonomous velocity con-
trol, the UAV was able to successfully reach the charging
station in benchmark mission 1 and was able to success-
fully collect and deliver its cargo in benchmark mission 2.
It should be noted that this is a simulation problem which,
is unlikely to occur in a real-world scenario.

7 Conclusion and future work

In real-world scenarios, semi-autonomous systems, such
as exploratory robots, operate in environments which
may constantly change. Therefore, it must be trivial and
computationally inexpensive to alter a robot’s behaviour,
by updating its KB and/or mission objectives in real-time.
This is especially important for remotely deployed robotic
systems, such as extra-terrestrial exploration robots, where
communication time and bandwidth are at a premium.
In this research study, an approach which combines
expert knowledge and a cognitive reasoning process was
introduced. The approach simplifies the management of
the knowledgebase by domain experts, while providing
the system with autonomous reasoning, by optimizing
the knowledge, given the real-time environmental knowl-
edge. The approach presented here introduces a simple
knowledgebase structure, which is easy to maintain and
less error-prone. The results of the research also show that,

SN Applied Sciences

A SPRINGER NATURE journal

the robot can successfully execute its missions by opti-
mizing the expert-provided knowledge and dynamically
and progressively generating and executing a high-level
controller.

Further study could extend this approach by investigat-
ing multi-objective knowledge optimization in order to
generate parallel FSA's with specific sub-task objectives.
This will be useful for high-level control of a robotic system
with multiple capabilities. For example, a FSA for flight-
control, a FSA for camera control and a FSA for gripper
control.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creativeco
mmons.org/licenses/by/4.0/), which permits unrestricted use, distri-
bution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

References

1. Van Harmelen FL, LifschitzV, Porter B (2008) Handbook of knowl-
edge representation, 1st edn. Elsevier, Amsterdam
2. Baars BJG, Nicole M (2012) Fundamentals of cognitive neurosci-
ence—a beginner’s guide. Elsevier, Amsterdam
3. Antsaklis PJ, Rahnama A (2018) Control and machine intelli-
gence for system autonomy. J Intell Robot Syst 91:23-34
4, Perico DH, Homem TPD, Almeida AC, Silva 1J, Vilao CO, Ferreira
VN, Bianchi RAC (2018) Humanoid robot framework for research
on cognitive robotics. J Control Autom Electr Syst 29:470-479
5. Hernandez Garcia D, Monje CA, Balaguer C (2017) Task oriented
control of a humanoid robot through the implementation of a
cognitive architecture. J Intell Robot Syst 85:3-25
6. Schiffer S (2016) Integrating qualitative reasoning and human-
robot interaction in domestic service robotics. Kl Kiinstliche
Intelligenz 30:257-265
7. Drenjanac D, Tomic SDK, Kuhn E (2015) A semantic framework
for modeling adaptive autonomy in task allocation in robotic
fleets. In: 2015 IEEE 24th international conference on enabling
technologies: infrastructure for collaborative enterprises (WET-
ICE), pp 15-20
8. Martinez-Tenor A, Fernandez-Madrigal JA, Cruz-Martin A,
Gonzélez-Jiménez J (2018) Towards a common implementation
of reinforcement learning for multiple robotic tasks. Expert Syst
Appl 100:246-259
9. Hong A, Igharoro O, Liu Y, Niroui F, Nejat G, Benhabib B (2018)
Investigating human-robot teams for learning-based semi-
autonomous control in urban search and rescue environments.
JIntell Robot Syst 94:669-686
10. Sampedro C, Rodriguez-Ramos A, Bavle H, Carrio A, de la Puente
P, Campoy P (2018) A fully-autonomous aerial robot for search
and rescue applications in indoor environments using learning-
based techniques. J Intell Robot Syst 95:601-627
11. Rishwaraj G, Ponnambalam SG (2017) Integrated trust based
control system for multirobot systems: development and experi-
mentation in real environment. Expert Syst Appl 86:177-189
12. Getoor L, Grant J (2006) PRL: a probabilistic relational language.
Mach Learn 62:7-31
13. Muggleton S, De Raedt L (1994) Inductive logic programming:
theory and methods. J Log Program 19:629-679

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/5s42452-019-1697-4

Research Article

14.

20.

21.

22.

23.

24,

25.

26.

Van Laer W, Dehaspe L (1994) Applications of a logical discovery
engine. In: Proceedings of the AAAI workshop on knowledge
discovery in databases, pp 263-274

. Wellman MP, Breese JS, Goldman RP (1992) From knowledge

bases to decision models. Knowl Eng Rev 7:35-53

. Wang DZ, ChenYY, Goldberg S, Grant C, Li K (2012) Automatic

knowledge base construction using probabilistic extraction,
deductive reasoning, and human feedback. In: Presented at the
proceedings of the joint workshop on automatic knowledge
base construction and web-scale knowledge extraction, Mon-
treal, Canada, 2012

. Quinlan JR (1990) Learning logical definitions from relations.

Mach Learn 5:239-266

Luis MVJ, Holguin GA, Mauricio HL (2018) A methodology for
movement planning in autonomous systems with multiple
agents. In: 2018 IEEE 2nd Colombian conference on robotics
and automation (CCRA), 2018, pp 1-6

. Shoukry Y, Nuzzo P, Balkan A, Saha |, Sangiovanni-Vincentelli AL,

Seshia SA, Pappas GJ, Tabuada P (2017) Linear temporal logic
motion planning for teams of underactuated robots using satis-
fiability modulo convex programming. In: 2017 IEEE 56th annual
conference on decision and control (CDC), 2017, pp 1132-1137
Kamil F, Hong TS, Khaksar W, Moghrabiah MY, Zulkifli N,
Ahmad SA (2017) New robot navigation algorithm for arbitrary
unknown dynamic environments based on future prediction
and priority behavior. Expert Syst Appl 86:274-291
Tenorio-Gonzélez AC, Morales EF (2018) Automatic discovery of
concepts and actions. Expert Syst Appl 92:192-205

Meyer P-J, Dimarogonas DV (2019) Hierarchical decomposi-
tion of LTL synthesis problem for nonlinear control systems.
IEEE Trans Autom Control 64(11):4676-4683. https://doi.
org/10.1109/TAC.2019.2902643

Bellman R (1957) A markovian decision process. Indiana Univ
Math J 6:679-684

Rodriguez-Ramos A, Sampedro C, Bavle H, de la Puente P, Cam-
poy P (2019) A deep reinforcement learning strategy for UAV
autonomous landing on a moving platform. J Intell Robot Syst
93:351-366

Low ES, Ong P, Cheah KC (2019) Solving the optimal path plan-
ning of a mobile robot using improved Q-learning. Rob Auton
Syst 115:143-161

Brass S, Lipeck UW (1989) Specifying closed world assumptions
for logic databases. In: Demetrovics J, Thalheim B (eds) MFDBS

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

89: 2nd symposium on mathematical fundamentals of database
systems Visegrad, Hungary, June 26-30, 1989 proceedings.
Springer, Berlin, pp 68-84

Biba M (2009) Integrating logic and statistics—novel algorithms
in markov logic networks. VDM Verlag Dr Muller Aktiengesells-
chaft & Co. KG, Saarbriicken

Das PK, Sahoo BM, Behera HS, Vashisht S (2016) An improved
particle swarm optimization for multi-robot path planning. In:
2016 international conference on innovation and challenges in
cyber security (ICICCS-INBUSH), 2016, pp 97-106

Cai Q, Long T, Wang Z, Wen Y, Kou J (2016) Multiple paths
planning for UAVs using particle swarm optimization with
sequential niche technique. Chin Control Decis Conf (CCDC)
2016:4730-4734

Walha C, Bezine H, Alimi AM (2013) A multi-objective particle
swarm optimization approach to robotic grasping. In: 2013
international conference on individual and collective behaviors
in robotics (ICBR), 2013, pp 120-125

Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: Proceedings of the sixth international sym-
posium on micro machine and human science, 1995. MHS'95,
pp 39-43

Yuhui S, Eberhart R (1998) A modified particle swarm optimizer.
In: The 1998 IEEE international conference on evolutionary com-
putation proceedings, 1998. IEEE world congress on computa-
tional intelligence, 1998, pp 69-73

Wei-Neng C, Jun Z, Chung HSH, Wen-Liang Z, Wei-gang W, Yu-
Hui S (2010) A novel set-based particle swarm optimization
method for discrete optimization problems. IEEE Trans Evol
Comput 14:278-300

Blower DJ (2013) Information processing—the maximum
entropy principle volume two: createspace independent pub-
lishing platform, 2013

De Jager D (2019) UAV benchmark mission 1 [Video (mp4)].
https://youtu.be/pBZD1yOH19E

De Jager D (2019) UAV benchmark mission 2 [Video (mp4)].
https://youtu.be/JV_foGDWTsU

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

SN Applied Sciences

A SPRINGERNATURE journal

https://doi.org/10.1109/TAC.2019.2902643
https://doi.org/10.1109/TAC.2019.2902643
https://youtu.be/pBZD1yOH19E
https://youtu.be/JV_f9GDWTsU

	A particle swarm optimization approach using adaptive entropy-based fitness quantification of expert knowledge for high-level, real-time cognitive robotic control
	Abstract
	1 Introduction
	1.1 Problem description
	1.2 Proposed solution

	2 Related work
	2.1 Knowledge representation
	2.2 Cognitive reasoning
	2.3 Critical review

	3 Background
	3.1 Knowledgebase characteristics
	3.2 Overview of standard particle swarm optimization
	3.3 Overview of set-based particle swarm optimization

	4 Methodology
	4.1 Evidence definitions
	4.2 Knowledgebase definitions
	4.3 Adaptive entropy fitness quantification
	4.3.1 Model construction
	4.3.2 Fitness quantification

	4.4 The AE-SPSO algorithm

	5 Experiment setup
	5.1 Benchmark mission 1
	5.2 Benchmark mission 2

	6 Experiment results
	6.1 Benchmark mission 1: results
	6.2 Benchmark mission 2: results
	6.3 Discussion
	6.3.1 Performance
	6.3.2 Time efficiency
	6.3.3 Simulation constraints

	7 Conclusion and future work
	References

