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Abstract
Using sensors to monitor surface or subsurface traffic requires sensor placement, detection of traffic changes, and sensor 
power scheduling for improved efficiency. Of these capabilities, sensor power scheduling is one of the most important 
as the appropriate sensors must be selected for activation to respond to changes in the traffic. We present an adaptive 
power scheduling algorithm that uses the homogeneous equilibrium of a potential-field-based dynamical system to 
determine which sensors should be active. Our algorithm assumes a nearest neighbor topology, which makes additional 
assumptions about the placement of sensors. We formalize these conditions and construct a sensor placement algorithm 
to support our scheduling algorithm. To demonstrate the efficacy of our scheduling approach, we provide two distinc-
tive traffic detection algorithms that we combine with our placement and scheduling algorithm to test via simulation. 
We provide the simulation results that show in both cases, the adaptive scheduling algorithm behaves efficiently as 
compared to an area coverage approach , as well as an all-active path coverage approach.

Keywords  Autonomous power scheduling · Traffic monitor · Nearest neighbor topology · Mixed-integer linear 
programming (MILP) · Potential field

1  Introduction

The idea of using statically placed sensors to monitor geo-
graphical regions is well understood and has been applied 
to monitoring marine species [2], underwater vehicles [1], 
or more specifically, port security [16, 18]. Three facets to 
the problem of traffic monitoring are where to place the 
sensors, how to detect traffic distribution changes, and 
how to schedule sensors in response to traffic distribution 
changes. With respect to sensor placement, this problem is 
either solved as an area coverage problem [6, 7, 11, 19] or 
path coverage problem [14, 20]. As for the remaining fac-
ets, McIntyre and Hintz use information gain to determine 
sensor schedules for searching for unknown entities [17]. 
Others have considered the trade-off between accuracy 
and power with regard to scheduling sensors for tracking 

individual entities [12, 23]. Our scheduling approach, 
which we discuss in the next paragraph, considers detec-
tions from multiple entities.

Our main contribution to the traffic monitoring prob-
lem is to focus on the scheduling facet of traffic monitor-
ing. Simply stated, when a traffic distribution change is 
detected, a sensor scheduling algorithm must determine 
which sensors should be active and which should be inac-
tive. Our approach, which uses statically placed sensors, 
borrows ideas from robotic path planning for mobile sen-
sors [3, 15]. For mobile path planning, the velocity of the 
vehicle is proportional to the gradient of some potential 
function. Analogously, our approach assumes that the 
velocity of activating sensors is proportional to the gra-
dient of an attractive potential field. Solving the result-
ing ordinary differential equation (ODE) for mobile path 
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planning yields a path, while the solution of our ODE yields 
the indices of the sensors to be active. Thus, our approach 
combines elements of static and mobile sensors to create 
a new, unique sensor scheduling method.

However, if sensors are not present where the traffic has 
shifted, then no scheduling of sensors can satisfactorily 
monitor the traffic. Thus, sensor placement clearly impacts 
the ability of any sensor schedule algorithm. In this paper, 
we more formally state placement assumptions and use 
them to construct a sensor placement algorithm to sup-
port our adaptive scheduling algorithm. In particular, 
our sensor placement algorithm uses a nearest neighbor 
topology, which is a modification of [20]; our placement 
approach considers the placement of only sensors.

Sensor scheduling begins with detections of changes 
to traffic distributions. Without such indications, the sen-
sor scheduling algorithm cannot proceed. Therefore, we 
provide two unique traffic change detection algorithms 
that we now describe.

Our first traffic change detection approach relies on the 
following assumption: If traffic continuously shifts away 
from active sensors, then the total number of detections, 
which are the number of detections made by all active 
sensors, should decrease. To identify this event, we first use 
cubic b-splines as in [21] to smooth the noisy data of total 
detections. Using a uniform knot sequence, which guar-
antees C2 smoothness of the b-spline everywhere over its 
domain [9], we are able to compute all of the inflection 
points and choose the inflection point with the highest 
number of detections. If the number of detections drops 
below the number of detections associated with the inflec-
tion point, we label that event as a traffic change event.

Our second detection approach identifies a traffic 
change event as one in which the Hellinger distance 
between the previous and current detection distributions 
meets a specified threshold. The idea of using the Hell-
inger distance to compute the distance between distribu-
tions is an accepted technique as found in [13], in which 
the authors apply the Hellinger distance to distinguish 
distributions for classification problems.

We combine our adaptive scheduling algorithm with 
the sensor placement approach and two traffic detection 
algorithms to form two completely distinctive traffic moni-
toring solutions. Figure 1 shows the conceptual behavior 
of these two traffic monitoring solutions. We compare 
these two methods with an area coverage approach found 
in [11] and an all-active path coverage approach found 
in [20] using a Monte Carlo simulation. In particular, we 
compare the probability of detections and the efficiency 
detections of all four monitoring solutions.

Our paper is organized as follows. Section 2 describes 
the symbols that we use in this paper. Section 3 describes 
assumptions of our approach, while Sect. 4 describes the 

adaptive scheduling algorithm itself. In Sect. 5, we use the 
assumptions of 3 to construct a sensor placement algo-
rithm. We describe two traffic detection algorithms in 6. 
In Sect. 7, we include the simulation results and conclude 
with a summary in Sect. 8.

2 � Nomenclature

B	� Region in ℝ3 to be monitored
E 	� Entry boundary of traffic into the B
X 	� Exit boundary of traffic from the B
L 	� Left boundary of the B
R	� Right boundary of the B
�	� Element of B
pi	� Position of i-th sensor
Eenv	� m−vector representing the environment
�	� Environmental vector
�i	� i-th sensor detection function
Ri	� Maximum sensing range of the i-th sensor
Si	� Sensing volume of the i-th sensor
M	� Number of sensors
A	� Arrival traffic distribution
T (�)	� Traffic trajectory of a single entrant into B
s�	� Sensor with largest number of detections
s�+w	� Rightmost active sensor
x�+w	� Index of rightmost active sensor
s�−w	� Leftmost active sensor
x�−w	� Index of leftmost active sensor
U	� Arbitrary subset of ℝn

f	� Potential field
C2(U)	� Space of twice continuously differentiable 

functions over U
g	� Function belonging to C2(U)

x∗	� Desired goal of potential field
�	� Potential field proportionality constant
G(x)	� Jacobian of g
di	� Number of detections for a sensor si
�i	� Number of iterations with no detections for 

sensor si in active mode

Fig. 1   Ships (black diamonds) are generated from the traffic distri-
bution (green arrows). The ships move from top to bottom, passing 
over sensors, which are either active (transparent blue circles) or 
not active (opaque blue circles)
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�	� Maximum of �i
�i	� Number of iterations with no detections for a 

sensor si in standby mode
�	� Maximum of �i
d	� Depth of traffic
P	� Plane of traffic at depth d
S

′
i
	� Intersection of Si and P.

�	� Intersection of E  and P
P�	� Orthogonal projector of planar sensing 

regions onto �
�i	� Projection of S′ onto �
Ik	� Domain of �k||Ik||	� Length of interval Ik
�k	� Binary variable that indicates if elements of Ik 

belong to composite interval
I�1,…,�M

	� Composite interval
Lj	� Set containing intervals formed from the 

overlap of j intervals
F	� Objective function that estimates the prob-

ability of detection of all placed sensors
a	� Constant for uniform traffic distribution
Fj	� F evaluated over Lj
T	� Triangular mesh representing environmental 

effects on performance
Tjk	� Triangle belonging to T
NT	� Number of triangles in T
(xi , yi)	� Planar position of sensor si
bijk	� Binary variable that indicates if (xi , yi) belongs 

to Tjk
(xijk , yijk)	� Contribution from triangle Tjk to (xi , yi)
Xmin
jk

	� Minimum value of all xijk
Xmax
jk

	� Maximum value of all xijk
Ymin
jk

	� Minimum value of all yijk
Ymax
jk

	� Maximum value of all yijk
�jk	� x-Coefficient describing the hypotenuse of Tjk
�jk	� y-Coefficient describing the hypotenuse of Tjk
�jk	� Constant describing the hypotenuse of Tjk
Aijk	� Constant describing sensor performance
Bijk	� x-Coefficient describing sensor performance
Cijk	� y-Coefficient describing sensor performance
d1()̇	� L1-metric
R	� Sensor radius
Mmax	� Maximum difference of all y ∈ B

�+
i,i+1

	� yi+1 − yi , if yi+1 ≥ yi
�−
i,i+1

	� yi − yi+1 , if yi+1 < yi
gj(xi , yi)	� General linear constraint function
Nd	� Sequence of detections from discrete time 

events d1 to dN
D	� Smooth approximation of Nd

S	� Set of inflection points of D
p∗	� Time event for which the number of detec-

tions is maximal

h	� Distribution of detections over all sensors
�(k)	� Set of new detections over all sensors at k− th 

time step
h(k)	� Aggregated distribution of detections
d2(h, h(k))	� Hellinger distance
�	� Order of Hellinger distance
U[x, x + 2]	� Uniform random distribution defined over 

[x, x + 2]

�	� Homotopy parameter that varies influence 
between a static and dynamic uniform ran-
dom distribution

e	� Detection efficiency
Na	� Total amount of active time
Nt	� Total number of ships
Na	� Total number of active time units

3 � Assumptions

The overall goal of our adaptive scheduling algorithm is 
to use statically placed sensors in some volume B ⊂ ℝ

3 to 
adjust the sensor modes to monitor the movement of the 
traffic distribution. We now describe our sensor, field, and 
traffic distribution assumptions.

3.1 � Sensors and field

We identify the sensor modes as active, standby, and off. 
Our algorithm explicitly decides which sensors should be 
placed in the active state, thus allowing a sensor to make 
detections. Once active, the sensor remains active as long 
as it receives detections within � time units or is explicitly 
selected again by the scheduling algorithm. However, if 
no detections are received within � time units, the sensor 
shifts to the standby state. Once in the standby state, if 
the sensor receives detections, it can again be placed in 
the active state. If no detections are received for � time 
units, the sensor is placed in the off state, in which it can-
not receive any detections. However, once in the off state, 
a sensor cannot be placed in the active state again without 
being explicitly chosen by the scheduling algorithm.

For B = [0, dx] × [0, dy] × [0, dz] , we are assuming that 
traffic enters a single face of B denoted as E  and exits a dif-
ferent face denoted as X. Let us assume for � = (�x , �y , �z) , 
the entrance face is given as E = {� ∈ B ∶ �y = dy} and the 
exit face is given as X = {� ∈ B ∶ �y = 0}. Furthermore, we 
label the left face as L = {� ∈ B ∶ �x = 0} and the right 
face as R = {� ∈ B ∶ �x = dx}.

Using the field B,  we define our sensors in the follow-
ing way

Definition 1  (Sensor) For sensor position
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environmental vector e ∈ Eenv ⊂ Rm, and � ∈ B, the prob-
ability of detection at � is the spherically symmetric 
�i(pi , �, �) where �i ∶ B × Eenv × B → (0, 1]. The i− th sens-
ing volume is defined as

where radius Ri is the maximum range of the i− th sensor. 
We drop the explicit mention of pi and e for ease of exposi-
tion and refer to �i(�).

3.2 � Traffic

The arrival distribution is defined as A(�) ∶ E → [0, 1]. We 
define a traffic trajectory as a set of points T (�) ⊂ B with 
initial point �

0
∈ E  that intersects X, but does not inter-

sect L  and R. For this type of traffic scenario, we require

In other words, we want to avoid spatial gaps in coverage 
of the paths that traverse B,  which implies sensors must be 
placed so that every trajectory has a nonzero probability of 
intersecting at least one sensor region in the field.

The set of configurations that satisfy (3) would include 
both area coverage and path coverage algorithms. We con-
sider path coverage algorithms, and in particular, we focus 
on path coverage as provided by the nearest neighbor 
topology as it seems to provide adequate coverage of the 
traffic, but with a smaller number of sensors. We confirm 
this idea with our simulation results that we present later.

The configuration conditions are given as

Primarily, (4) and (5) establish a nearest neighbor type of 
topology. Inequalities (6) and (7) are boundary conditions 
that ensure complete sensor coverage near L  and R. 
Since we consider a nearest neighbor topological configu-
ration that satisfies (3), decreases in traffic through active 
sensor regions implies that the traffic has shifted to one of 
the inactive sensors. Note that with the nearest neighbor 
topology, if a traffic distribution change event occurs, our 
scheduling algorithm needs only to consider two possible 
search directions.

We assume that the sensors will be able to commu-
nicate while not necessarily powered on with regard to 

(1)pi = (xi , yi , di) ∈ B,

(2)Si =
{
� ∈ B ∶ 𝜌i(pi , e, �) > 0, ‖‖pi − �

‖‖2 ≤ Ri
}
,

(3)T (�) ∩Sj ≠ � for all T (�)with �
0
∈ E.

(4)Si ∩Si+1 ≠ � for 1 ≤ i ≤ M,

(5)Si ∩Sj = � for j ≠ i − 1, i, i + 1,

(6)S1 ∩L ≠ �,

(7)SM ∩R ≠ �.

sensing. Note that the nearest neighbor sensor topology 
also has the benefit of supporting energy-efficient com-
munication peer-to-peer queries [10].

4 � Adaptive power scheduling algorithm

Now we describe our scheduling algorithm. Our algorithm 
begins with all sensors set to their active state. We then 
identify s� , which is the sensor with the largest number of 
detections and ensure that s�−w , … s� , … s�+w , are active 
and x�−w ,… x� ,… x�+w , are their corresponding sensor 
index values. As the traffic changes, we expect the sensor 
s� to also change. To determine which sensors should be 
selected for active state, we can solve the following

over the space of sensor indices for some attractive poten-
tial function f,  which has been used for robotic path plan-
ning [3, 15]. However, rather than path planning for mobile 
sensors, we use the solutions for this ODE to determine 
which static sensors should scheduled as active.

Although Eq. (8) is a single ODE, we consider higher 
dimensional potential functions of the form

with 𝜅 > 0 and �∗ is the desired goal, and show the choice 
of the rest point, namely, �∗ , is the asymptotic or long term 
solution for �

�
∈ ℝ

n.

Proposition 1  For �∗ ∈ U ⊂ ℝ
n , suppose that for g ∈ C2(U), 

�g

�xi
 is a strictly decreasing function for all 1 ≤ i ≤ n . For 

�̇ = ∇g(𝜅‖� − �∗‖2
2
) the rest point �∗ is asymptotically 

stable.

Proof  A simple computation shows

where

For �
�
∈ U, solutions exist and are unique as the right hand 

side is continuously differentiable and consequently, Lip-
schitz continuous on the neighborhood U. By the Cauchy-
Lipschitz existence and uniqueness theorem, the system 
will have unique solutions with initial conditions �

�
∈ U. 

The linearization of the right hand side yields

(8)ẋ = ∇f (x)

f (�) = g(�‖� − �
∗‖2

2
),

�̇ = 2𝜅G(�)(� − �
∗)

G(�) =

⎡
⎢⎢⎢⎣

�g(�‖�−�∗‖2
2
)

�x1
⋯ 0

⋮ ⋱ ⋮

0 ⋯
�g(�‖�−�∗‖2

2
)

�xn

⎤
⎥⎥⎥⎦
.
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which has all negative eigenvalues, since 𝜕g
𝜕xi

< 0 for all 

1 ≤ i ≤ n . By the spectral stability theorem [8], we see that 
�∗ is asymptotically stable. 	�  ◻

Proposition (1) shows that under a small number of 
assumptions, the model governed by Eq. (8) will produce 
solutions that in the limit, will converge to x∗ = xmax in a 
sufficiently small neighborhood, where xmax is the index 
corresponding to the sensor with the most detections. 
Therefore, when a traffic change is detected, we can 
assign x� = xmax , as xmax is the asymptotic solution for Eq. 
(8) when f is of the form g(�‖‖x − xmax

‖‖22). Algorithm (1) 
uses the asymptotically stable rest point for scheduling 
and shows the major steps of the scheduling algorithm.

(9)�̇ = 2𝜅G(�∗)�,

As earlier stated, we now describe a placement algo-
rithm that adheres to the conditions described by (4)–(3). 
This algorithm is later used to demonstrate the utility of our 
adaptive scheduling algorithm.
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5 � Sensor placement

The purpose of this section is to demonstrate how to create 
a placement algorithm that adheres to the constraints of our 
adaptive algorithm. Thus, we use the coverage Condition 
(3) to create an objective function that we constrain using 
Conditions (4)–(7) to determine the placement of sensors. 
We consider approaches for both homogeneous and het-
erogeneous environments.

5.1 � Objective function

In particular, the path coverage Condition (3) is satisfied for 
the case in which traffic moves through B at some depth 
d on a fixed plane P. Observe that while the depth of the 
traffic is fixed, the distance from bottomed sensors to the 
depth is not constant, as found in [20, 22]. In fact, a fixed 
depth gives a design variable that can be adjusted for vari-
ous scenarios, such as monitoring surface traffic, d = 0 or 
subsurface traffic, d < 0. Thus, we consider this type of sce-
nario and define two dimensional sensor regions as

centered at (xi , yi , d). We define the entrance bound-
ary as � = E ∩P and define the arrival distribution 
A(x) ∶ � → [0, 1].

Assuming that traffic moves in an orthogonal direction 
relative to � , for fixed x ∈ � and depth d,  we use the orthog-
onal projector P� to compute

which represents the maximum probability of detection at 
x ∈ � . Assuming no overlap of M sensors, we compute the 
maximum likelihood of detecting arriving traffic as

Since we are unlikely to know the exact distribution of A 
or all a priori changes, we will assume that A is a uniform 
distribution and write

Effectively, all positions are equally likely as the minimum 
variance solution, which will prevent the placement algo-
rithm from ignoring coverage gaps. Note that this formula-
tion of F assumes that there is no overlap of the sensors. To 
account for the overlap, we identify those intervals that are 
formed by overlapping intervals as I�1,⋯,�M

 where

(10)S
�
i
= Si ∩P,

(11)�i(x) ≜ P�(S
�
i
) = max

�=(x,y,d)∈S�
i

�i(�),

(12)F =

M∑
i=1

∫Ii

A(x)�i(x)dx.

(13)F = a

M∑
i=1

∫Ii

�i(x)dx.

and write the set containing intervals formed from the 
intersection of j intervals as

Using Lj we partition our objective function as

where

We now consider the objective function in both homo-
geneous and heterogeneous environments for the place-
ment of sensors.

5.2 � Homogeneous environment

In a homogeneous environment, �i(x) remains constant 
with respect to traffic at a particular depth. Furthermore, 
the length of the interval Ii is given as ||Ii|| = I for all �i . Con-
sequently, all of the �i are simple linear translations of each 
other. The next proposition shows that if we only place two 
sensors, and ||I1|| + ||I2|| ≤ |�|, then the two sensors must be 
placed such that I1 ∩ I2 = � to achieve an optimal placement.

Proposition 2  For an area B = [0, dx] × [0, dy] × [0, dz] ⊂ ℝ
3 

and homogeneous environment E, suppose that for two sen-
sors (as defined in Definition (1) with corresponding intervals 
Ii and Ij ,

The objective function F as defined in Eq. (17) is maximized 
if and only if int (Ii) ∩ int (Ij) = �, where int represents the 
interior of the interval.

Proof  Consider two sensors, si and sj and a uniform envi-
ronment E. We can write F as

Comparing the computation of F for the cases of inter-
val overlap and no interval overlap reveals the F will only 

(14)�k =

{
1 if x ∈ Ik
0 otherwise

(15)Lj = {I�1,…,�M
∶

M∑
i=1

�i = j}.

(16)F = a
∑
j

Fj ,

(17)Fj =
∑
I∈Lj

∫I

1 −

M∏
i=1

(1 − �i(x))
�i dx,

||Ii|| + |||Ij
||| ≤ |�|.

F = a

(
∫Ii

�i(x)dx + ∫Ij

�j(x)dx + ∫Ii∩Ij

� �(x)dx

)
.
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attain its maximum value if and only if there is no over-
lap. 	�  ◻

This proposition guarantees optimal placement as long as 
the sensors do not overlap. Satisfaction of the nearest neigh-
bor topology Conditions (4)–(7) imply necessary optimality 
if the sensors overlap only the boundaries. In other words, 
no complex planning technique is required for placement 
for this case. However, for the situation in which Conditions 
(4)–(7) can only be satisfied with overlapping sensors, or the 
environment is heterogeneous, we resort to more tractable 
computational methods.

5.3 � Heterogeneous environment

We consider the case in which sensor performance varies 
non-trivially as a function of a heterogeneous environment, 
as in Fig. 2. This is the type of environment found in [14], 
where the sensor performance varies as function of the envi-
ronment with an assumed constant sensor radius R. We now 
describe how to represent the sensor performance for such 
environments, as well as how to implement the configura-
tion conditions given by (4)–(7).

We capture the effects of the environment on the sensor 
by using a triangular mesh and define our sensor locations 
using such a mesh. Let (xi , yi) denote the positions of the 
i− th sensor and for each triangle Tjk ∈ T , where T is the trian-
gular mesh with (NT + 1)2 grid points and 0 ≤ j, k ≤ NT . We 
represent the three sides of each triangle with the following 
constraints ∀1 ≤ i ≤ M, 0 ≤ j, k ≤ NT ,

(18)Xmin
jk

bijk ≤ xijk ≤Xmax
jk

bijk ,

(19)Ymin
jk

bijk ≤ yijk ≤Ymax
jk

bijk ,

where Constraint (18) gives the bounds for xijk , Constraint 
(19) gives the bounds for yijk , Constraint (20) is the hypot-
enuse constraint for the each triangle Tjk , and �jk , �jk , �jk 
are the coefficients of the hypotenuse of Tjk . The variables 
(xijk , yijk) represent potential locations of the i− th sensor in 
Tjk . To ensure that each sensor has a unique position, we 
impose the additional constraints

where Constraints (21) and (22) sum over all of the xijk and 
yijk , respectively, and we are guaranteed that

by Constraint (23), since bijk is a binary variable that equals 
1 when the point is within the triangle Tjk and 0 otherwise. 
Furthermore, summing all of the xijk and yijk yields the posi-
tion of the i− th sensor (xi , yi).

We represent the sensor performance pi(xi , yi) over the 
triangular mesh T as linear approximations given by the 
following constraints

where Aijk , Bijk , and Cijk , are the coefficients that describe 
the sensor performance function pi(xi , yi) over Tijk ∈ T .

As previously discussed, sensors are placed to minimize 
the risk of missed detections. Thus, the nearest neighbor 
and boundary conditions defined by (4)–(7) are converted 
to integer constraints as ∀1 ≤ i ≤ M − 1,

(20)�jkxijk + �jkyijk{≤,≥}�jk ,

(21)xi =
∑
j,k

xijk ,

(22)yi =
∑
j,k

yijk ,

(23)
∑
j,k

bijk = 1,

(xijk , yijk) ∈ Tijk

(24)
∀1 ≤ i ≤ M, 0 ≤ j, k ≤ NT ,

pijk(xi , yi) = Aijkbijk − Bijkxi − Cijkyi

(25)pi(xi , yi) =
∑
jk

pijk(xi , yi),

(26)xi ≤ xi+1,

(27)d1(pi , pi+1) = xi+1 − xi +
||yi+1 − yi

||,

(28)d1(pi , pi+1) = 2R,

(29)||yi+1 − yi
|| = �+

i,i+1
− �−

i,i+1
,

(30)0 ≤ �+
i,i+1

≤ biMmax ,

(31)0 ≤ �−
i,i+1

≤ (1 − bi)Mmax ,
Fig. 2   Sensor performance map. The regions represent the prob-
ability of detection as a function of the environment
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where pi = (xi , yi), and Mmax = maxy,y�∈B(y − y�) . Constraint 
(26) imposes a consecutive ordering on the sensors. Con-
straint (27) defines the distance between consecutive 
sensors and (28) ensures that the sensors are placed so as 
to reduce overlap between them while maintaining com-
plete coverage of incoming traffic. Constraint (29) defines 
the absolute value of the difference between the consecu-
tive y values. However, to support this representation, we 
need Constraints (30) and (31) so as to define the positive 
and negative values of differences in consecutive y values, 
respectively. The indicator variable bi is 1 if the difference 
is positive, and 0 otherwise. Constraint (32) ensures that 
leftmost edge of the first sensor begins at the left side of 
� , while Constraint (33) ensures that the rightmost edge of 
the last sensor coincides with the right side of � . Note that 
all of these constraints implement the desired configura-
tion conditions specified in (4)–(7).

We modify the objective function described in 17 to 
reduce the computational complexity that will be problem-
atic for this MILP problem. For our objective function, we 
only need support from L0 and L1, meaning that our objec-
tive function has the form of F = F0 + F1. However, we 
approximate F with only the first term, F0, and get

As such, we want to find the smallest M so as to

where gj(xi , yi) are linear constraint functions defined in 
this section. To find the smallest M,  we iterate from the 
smallest number of allowable sensors, and solve each 
problem until we find the set of sensors that maximizes the 
objective function while satisfying all of the constraints. 
Observe while the objective function seems relatively 
simple, we have MNT +M − 1 binary variables for M sen-
sors and NT  triangles in the mesh. As such, we employed 
a receding horizon heuristic similar to that found in [4] in 
which the best solution was chosen from solving several 
MILP problems defined over smaller subdivided regions 
of the original region.

(32)x1 − R = 0

(33)xM + R = |�|,

(34)F ≈ 2Ra
∑
i

pi(xi , yi).

(35)
maximize

(x,y)∈B

M∑
i=1

pi(xi , yi)

subject to gj(xi , yi){=,≤}bj , j = 1…m,

6 � Traffic detection algorithms

We now describe two very distinctive traffic change detec-
tion algorithms. The first algorithm identifies traffic changes 
by using inflection points of a cubic b-spline representation 
of the data. The second algorithm uses the Hellinger dis-
tance to determine when the traffic distribution changes. 
These two different approaches, when combined with our 
adaptive scheduling and placement algorithms, demon-
strates the consistency of our adaptive approach as dis-
cussed in the next section.

6.1 � Inflection point detection algorithm

Suppose that sensors sj ,… , sk are actively detecting traffic 
moving through B. However, if the traffic distribution A shifts 
to the left or right, we want to detect this shift. Our approach 
assumes that if the traffic continuously moves away from 
active sensors, the total number of detections over time 
should decrease. This corresponds to a change in concavity 
in the number of detections over time that results in a loss 
of detections if no other sensors are activated. Our method 
of finding this change in concavity is to smooth potentially 
noisy data and numerically determine inflection points that 
satisfy the condition as described. Figure 3 demonstrates this 
idea conceptually.

Let the number of detections from all sensors be 
Nd = {d1,… dN}. We approximate Nd as a smooth function 
D(t) that captures the major trends in the data by using 
b-splines [9] as

(36)D(t) =

N+2∑
i=−1

d�
i
B
3
i
(t)

Fig. 3   Detecting a shift in the traffic distribution A by detecting the 
drop in number of detections
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where B3
i
(t) is defined over the knot sequence defined as 

Nk =
k

N+1
 for −3 ≤ k ≤ N + 4. We impose the conditions 

d�
−1

= d�
0
= d�

1
= d1, d

�
N
= d�

N+1
= d�

N+2
= dN , to clamp the 

spline at the endpoints, which has the effect of interpolat-
ing the data at the endpoints so that D(0) = d1 and 
D(1) = dN . Note that our b-spline representation does not 
intentionally interpolate the data anywhere else, as it uses 
the detection data over time as the control points of the 
associated cubic spline.

Let S = {� ∶ D
��(�) = 0} be the set of inflection points 

and let

If there exists q∗ such that q∗ ≠ p∗ and D(p∗) = D(q∗), then 
we identify this event as a change in traffic.

6.2 � Hellinger detection algorithm

The Hellinger detection algorithm constructs a distribu-
tion of detections over the sensors, which we denote as h. 
At the k− th time step, the new detections, denoted as �(k), 
are aggregated with h to form the new distribution h(k). We 
can compare these two distributions by computing the 
Hellinger distance, defined as

which is a special, normalized case of the �−order Hell-
inger distance considered in [5]. If d(h, h(k)) > 𝛼 for some 
threshold 𝛼 > 0, then the distributions are sufficiently 
different, h = �(k), and we identify this event as a traf-
fic change event. Otherwise, no change is detected and 
h = h(k).

7 � Simulation results

We compare four distinctive traffic monitoring solutions. 
The first, which we refer to as PF (Potential Field), uses the 
potential field based scheduling algorithm, the MILP place-
ment approach for heterogeneous environments, and the 
inflection point detection algorithm. The second method, 
which we refer to as PFH (Potential Field Hellinger) uses 
almost all of the same algorithms as PF, except that it 
uses the Hellinger based detection algorithm. The third 
method is MMC (Maximum Minimum Coverage), which is 
an area coverage algorithm that discretizes the field into 
grid points that are covered by sensors so as to minimize 
the probability of missing detections at each grid point 
[11]. The final method is AA (All Active), which is a path 

(37)p∗ = max
p∈S

D(p).

(38)d2
�
h, h(k)

�
=

1

2

M�
i=1

�√
hi −

�
h
(k)

i

�2

,

coverage method in which all sensors are active based 
upon the method found in [20]. All sensors are placed in 
an active state, since the arrival distribution is unknown. 
The AA method uses the same sensor positions as PFH and 
PH; keeping the same positions allows for comparison of 
the different scheduling strategies. Sample output of both 
our placement algorithm and that of MMC can be seen in 
Figs. 4 and 5, respectively.

For each run of the simulation, we sample traffic from 
the distribution

where 0 ≤ � ≤ 1 is a homotopy parameter that regulates 
the influence of a temporally adjustable distribution 
U[x, x + 2] with constant speed of 1 unit of distance per 
unit of time and a static uniform distribution U[0, 20]. We 
chose these two distributions to see how well our schedul-
ing approach works with a known mobile distribution, as 

(39)(1 − �)U[x, x + 2] + �U[0, 20]

Fig. 4   Sensor positions using the sensor placement algorithm with 
sensor radius R = 1 as described in Sect. 5. The green circles repre-
sent sensor regions

Fig. 5   Maximum minimum coverage of an area with sensor radius 
R = 1 using 334 sensors
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well as how it is affected as the underlying traffic distribu-
tion deforms to a completely static distribution defined for 
the entire boundary � . For each homotopy value, we make 
30 simulation runs in which all four methods use the same 
traffic distribution, as well as the same traffic samples. To 
compare all four approaches, we estimate the probability 
of detections, as well as efficiency, which we define as

where Nd is the total number of detected ships, Nt is the 
total number of ships, and Na is the total number of active 
time units for all sensors.

Figure 6 shows the probability of detected ships for all 
four methods. For PFH, we set � = .5. Not surprisingly, the 
area coverage approach had the highest probability of 
detected ships. The AA path coverage method does quite 
well with regard to the other path coverage methods that 
we compare as determined by the probability of detec-
tions. We also see that both the PF and PFH methods are 
comparable with respect to the probability of detections. 
As � → 1, we see a small decrease in the performance 
of both the PF and PFH methods, which we attribute to 
an increasing probability of traffic appearing outside of 
U[x, x + 2] . The same trend is also seen in Fig. 7 which 
shows the efficiency of all methods. However, both PF and 
PFH are clearly more efficient than MMC, which is caused 
by the large number of sensors used by MMC. Both meth-
ods are also more efficient than AA, since all of the sensors 
using the AA method waste more time actively waiting for 
detections that do not occur.

Figure 8 shows no significant difference for the PF and 
PFH method. However, Fig. 9 shows that if we decrease � to 

(40)e =
Nd

NtNa

,

.1, we see a change in performance; the PFH method per-
forms more efficiently than the PF method. As � controls 
the sensitivity of the Hellinger-based detector algorithm, 
it is tempting to always set the sensitivity to something 
small. If the sensor placement algorithm is developed to 
favor sensor performance, as is the case with our sensor 
placement algorithm, then small � values are desired. 
However, in the case where another sensor placement 
algorithm chooses sensor positions that yield a large 
variance in the quality of sensor performance, smaller � 
values may be problematic for the following reason. If � 
is chosen where any change in the distribution results 
in a traffic change detection, then the scheduling algo-
rithm could unnecessarily choose to activate a sensor of 
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Fig. 6   Probability of detection, with � = .5 for the Hellinger-based 
traffic change detection method
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Fig. 7   Efficiency, � = .5 for the Hellinger-based traffic change 
detection method
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a poorer quality than the currently active sensor. This is a 
conjecture whose validation is the subject of future work. 
Nonetheless, the higher efficiency results of both PF and 
PFH methods as compared to both MMC and AA meth-
ods demonstrate the consistent efficiency of our adaptive 
scheduling algorithm.

8 � Summary

We have provided a potential field based algorithm that 
works very well with regard to efficient monitoring of 
traffic. This algorithm is general and requires a sensor 
placement algorithm and a traffic detection algorithm. 
To demonstrate the utility of this algorithm, we created 
a sensor placement algorithm, two traffic change detec-
tion algorithms, and combined these algorithms to cre-
ate two distinctive traffic monitoring solutions that use 
the same placement algorithm. We compared our traffic 
monitoring solutions to an area coverage method and all-
active path coverage method using a homotopy method 
to vary the influence of a static and a mobile distribution. 
Our results demonstrated the efficiency of our approach, 
which we believe has wide application to both sea and 
land domains.
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