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Abstract
This paper deals with the problem on determination of resistance forces impeding a drill string dragging in a deep cur-
vilinear bore-hole channel. The bore-hole axis geometry is considered to be prescribed discretely at its separate points 
with the use of the results of geophysical measurements (bore-hole navigation). A “3D stiff-string differential model” for 
simulation of the drag/torque phenomena accompanying hoisting, lowering and drilling operations is proposed. The 
system of ordinary differential equations is derived based on the theory of curvilinear flexible elastic rods. The transfer 
from the tabular to analytic description of the bore-hole trajectory geometry is performed with the application of the 
cubic spline interpolation. The elaborated approach can be used for simulation of the drill string dragging with rotation, 
its contact and frictional interaction with the bore-hole surface and prognostication of the string lock up situations. 
Numerical examples are presented to illustrate the proposed techniques advantages.
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List of symbols
a	� DS sliding velocity
ak , bk , ck , dk	� Interpolation coefficients
D	� Metric multiplier
DS	� Drill string
E	� Elasticity module
� (s)	� Vector of external distributed forces
�gr , � cont , � fr	� Vectors of distributed external forces of 

gravity, contact and friction
f (xi)	� Values of y(x) function at xi points
�(s)	� Principal vector of internal elastic forces
F(xi)	� Interpolated function
Fn , Fb , Ft	� Appropriate components of the � force
h	� Depth of the bore-hole
�, �, �	� Unit vectors of the Cartesian coordinate 

system
I	� Inertia moment of the DS tube
k(s)	� Natural parametrization of the bore-hole 

curvature

k(�)	� Dimensionless parametrization of the 
bore-hole curvature

kR	� Main curvature of a spatial curve
kT	� Torsion of a spatial curve
l 	� Horizontal distance
�(s)	� Vector of distributed external moment
�(s)	� Principal vector of internal elastic 

moments
Mn , Mb , Mt	� Appropriate components of the � 

moment
�, �, �	� Unit vectors of the Frenet trihedron
N	� Number of interpolation points
Oxyz	� Cartesian coordinate system
Pn(x)	� Interpolating polynomial
r	� External radius of the DS tube
�0	� Radius-vector of the bore-hole curve 

points
r1 , r2	� External and internal radii of the DS tube
s	� Natural parameter of the bore-hole curve
S	� Bore-hole trajectory length
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tz	� Appropriate component of the � vector
xi	� Discrete values of independent variable
yi	� Discrete values of the interpolated 

function
x0 , y0 , z0	� Planned coordinates of the bore-hole 

trajectory
�	� Linear weight of the DS tube
�	� Symbol of small variation
Δ	� Symbol of small increment
�	� Eccentricity of the hyperbola
�	� Dimentional parameter of the bore-hole 

curve
�	� Friction coefficient
�	� Ratio of the axial and circumferential 

velocities of the DS tube
�k(xk)	� Interpolating functions
�	� Angular velocity of the DS rotation
�	� Darboux vector

1  Introduction

One of the most important factors, impeding drilling the 
hyper deep and extensional bore-holes with curvilinear 
trajectories, is specified by the resistive (frictional) forces. 
In their generating, the great role is played by the bending 
stiffness of a drill string (DS), bore-hole tortuosity and its 
length, as well as by the type of the technological opera-
tion [3, 19]. These forces hamper permeability of the force 
on bit and torque on bit, provoke buckling of the drill 
string [6, 10] and can result in dead lock situations.

To predict and eliminate these effects, the mathematic 
models and software should be elaborated for simulation 
of the drilling processes in long 3D tortuous bores.

Appearance of these emergency situations is princi-
pally caused by three factors. First of all, this is the large 
length of the DSs. Under conditions of the geometric simi-
larity, they are equivalent to a human hair. Therefore, the 
phenomena, occurring at one end of a DS, can influence, 
poorly influence and do not influence on the effects, tak-
ing place at its other end. In mathematics, the equations, 
describing such effects, are named singularly perturbed. 
They are characterized by poorly converging solutions 
with the modes, possessing singularities in the shapes of 
boundary effects or internal irregularities.

The second factor is connected with the special char-
acter of frictional effects, showing themselves in tortu-
ous curvilinear bore-holes. The matter is that in them, 
the friction force depends on the pressure force between 
the contacting bodies. But in the curvilinear pieces of the 
trajectory, the pressure force is determined by the axial 
force of the DS tension and the bore curvature. In this 
case, it is said in mechanics that the friction forces have 

a multiplicative (i.e., they are multiplied) but not additive 
(they are not added) nature, as it occurs in sliding of one 
body on the shaggy plane surface of another one [19].

Finally, the third factor is associated with the fact that 
the problems on mathematic simulation of mechanical 
phenomena, attending the drilling processes, are mul-
tiparametric, as they depend on large number of geo-
metric and mechanic values. Therefore, the questions 
become very important which are associated with analysis 
of these phenomena under specific particular values of 
the constitutive parameters and establishment of general 
regularities of the proceeding processes. Some additional 
detrimental effects are generated by dynamic phenomena 
[18, 23].

Because of this, the drilling technology for inclined and 
horizontal bore-holes is featured by its complexity and is 
not completely mature. The world statistics indicates that 
the accident rate is 1 in 3 for driving bore-holes of this type 
[16]. It is associated to a large extent with the complexity 
of mechanical and physical phenomena accompanying 
the drilling process and the lack of reliable methods of 
computer simulation that enables us to predict the emer-
gency situations and to prevent them beforehand.

The efforts to simulate the inclined drill problems with 
the use of computer models present considerable difficul-
ties determined by a number of factors [5, 11, 12, 14, 15, 
17]. Among them the relatively complex geometry of the 
drill string is the main concern. Being founded on the geo-
metrical similarity, the drill columns can be compared to 
a very flexible rod with negligible bending stiffness. Early, 
this circumstance permitted to simulate the internal and 
external forces acting on them with the use of simplified 
mathematical models based on the theory of absolutely 
flexible threads [1, 2, 21]. Analysis of these forces was per-
formed only on the basis of investigations of geometrical 
peculiarities of the bore-hole axis line without considering 
the contribution of elastic forces and contact effects gen-
erated during raising–lowering operations and rotation of 
the drill string. With the use of this approach, a number of 
researches on the designs of bore-holes with the simplest 
outlines have been presented [1, 20, 21].

In papers [4, 22], a more general approach called the 
minimum curvature method has been adopted, by con-
sidering the well axis outline as a smooth curve made 
up of segments of straight lines and circular or catenary 
curves. By this approach, explicit analytical equations were 
derived to model the drill string (thread) with tension 
and friction forces for tripping in and out operations. In 
addition, explicit expressions were developed for the drill 
column to include the effects of drag and torque under 
the combined axial motion and rotation. Using the equali-
ties, the total drag and torque were derived as the sum 
of their separate contributions from each section of the 
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hole. Different algorithms and software programs were 
presented. Several examples were prepared to demon-
strate the use of the analytical models. It was shown that 
any change of direction in the well path contributed to 
increased friction.

The conclusion achieved based on assumption of well 
trajectory smoothness and negligible bending stiffness of 
the drill string tube may underline the weakness of the 
theory used. In practice, the axial trajectories of bore-holes 
cannot be represented as lines with smooth geometry 
because of the geometrical imperfections involved in drill-
ing. They can be caused by distortions of the bit geometry, 
dynamic imbalance of the bottom-hole-assembly, and 
physical non-homogeneities of the drilled rock medium. 
These factors impact on mobility of the drill string inside 
that sort of bore-holes and can be investigated only with 
the use of 3D stiff string drag and toque models elabo-
rated on the basis of the theory of curvilinear flexible rods 
and methods of differential geometry. The model of that 
kind and software were elaborated by [7, 8]. Through their 
application, different examples of bore-holes with local-
ized spiral, harmonic, and irregular (dog leg) imperfections 
described by analytic correlations were considered. It was 
demonstrated that additional short-pitched tortuosities 
led to essential enlargement of contact and resistance 
forces, provoking decrease of the dill string mobility and 
appearance of dead lock states.

Yet, in practice, the situation is much more complicated. 
The point is that the imperfections incorporated into the 
bore-hole geometry during drilling are not well-ordered 
and cannot be represented by analytic correlations. They 
are established by means of geophysical measurements 
performed at separate points with certain step throughout 
the bore-hole axis line length and can be rendered only in 
a tabular (discrete) form.

Therefore, if to take into account that the effects of the 
DS bending can be described only with the use of differ-
ential equations based on the continuity hypotheses, it 
becomes evident that the geometry of the planned or 
drilled bore-holes must be restructured to the analytical 
form.

Considered below is the problem of computer simula-
tion of a drill string dragging with rotation in the chan-
nel of a curvilinear tortuous bore-hole with the center-
line prescribed in a tabular form. To create the analytical 
mathematic model of the DS dragging with allowance 
made for the resistance (gravity, contact, and friction) 
forces, the transfer from the discrete description of the 
bore-hole axis to its continuous (differentiable) presenta-
tion was performed. It was done via utilization of methods 
of spline interpolation, differential geometry, mechanics 
of structures, and methods of numerical integration. This 
smoothing of the trajectory geometry enabled us for the 

first time to create a universal 3D stiff string drag and 
torque model based on application of a spatial theory of 
elastic curvilinear flexible rods. With its application, the 
constitutive differential equations were deduced. They 
can be used for prognostication of resistance forces and 
exclusion of emergency (sticking) situations at the stages 
of the bore-hole design and drivage. The results of the 
performed computer analysis confirmed efficiency of the 
proposed approach.

2 � Analytic presentation of the bore‑hole 
axis line geometry

In the applied mathematics the interpolation procedure is 
associated with construction of an interpolating function, 
passing through the prescribed points of tabular data [13]. 
This procedure essence consists in prescription of a set of 
points xi ( 1 ≤ i ≤ N ) from some domain and assumption 
that the values of some desired function f  are known only 
at these points

The interpolation task consists in selection of some 
interpolating F(x) function, which satisfies conditions

and can be used instead of the sought—for function f (x).
In practice, usually a polynomial interpolation is used 

as it is easy to calculate derivatives of these functions with 
the help of analytical approaches. In this case, interpolat-
ing function F(x) is constructed as a linear combination of 
some polynomials

where �k(x) are some specified functions; ak are the 
unknown coefficients.

It issues from this equality that interpolating function 
F(x) should coincide with the desired f (x) function at some 
points xi . These conditions are reduced to system

But this approach has one essential disadvantage 
because the matrix of coefficients �k(xi) in Eq. (4) is poorly 
conditioned and, as a rule, solutions of system (4) have 
significant miscalculations. In this connection, the spline 
interpolations are of great utility in applied mathematics. 
Unlike the polynomial approximation, the spline interpo-
lation is constructed separately in every segment [ xk−1 , 

(1)f (xi) = yi (1 ≤ i ≤ N).

(2)F(xi) = yi (1 ≤ i ≤ N)

(3)F(x) =

N∑

k=1

ak �k(x),

(4)
N∑

k=1

ak �k(xi) = f (xi) = yi (1 ≤ i ≤ N).
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xk ], satisfying certain conditions of smoothness at node 
points xk . In computing mathematics, the most com-
monly encountered splines are cubic ones, which can be 
described by expression

here coefficients ak , bk , ck , dk are found from the condi-
tions of continuity of function P(x) and its first and second 
derivatives.

The noted properties of the cubic splines render them 
convenient for interpolation of the tabular data on the cur-
vilinear bore-hole axis geometry, because in this event, its 
curvature described by equalities [13]

is also continuous.
Here, x(s) , x(�) , y(s) , y(�),z(s) , z(�) are the axis line coor-

dinates; s is the natural parameter measured by the length 
of the axis line from some initial point till the current one; 
� is the dimensionless parameter; the symbol prime des-
ignates the derivative with respect to s ; the dot denotes 
the differentiation operation relative to �.

As the right parts of Eqs. (6) contain only the first and 
second derivatives (which are continuous), curvatures k(s) 
or k(�) are also continuous.

2.1 � 3D stiff string drag and torque model of the drill 
string axial motion with rotation

Assume that a drill string performs axial motion with rota-
tion inside a bore-hole cavity with curvilinear axial line. Its 
planned axis line is described by equation

where �, �, � are the unit vectors of the Cartesian coordi-
nate system Oxyz.

During the drilling process, the table of real val-
u e s  x(Si) = x0(Si) + � x(Si)  ,  y(Si) = y0(Si) + � y(Si)  , 
z(Si) = z0(Si) + � z(Si) of the real drilled bore-hole trajec-
tory points is formed through the use of geonavigation 
measurements. They are converted to analytic relations 
xi = xi(s) , yi = yi(s) , zi = zi(s) by interpolation with the 
cubic splines help within the limits of every segment 
Δ Si = Si+1 − Si = S∕(N − 1) throughout the bore-hole 
length 0 ≤ s ≤ S.

Assume that axis lines of the bore-hole and drill string 
coincide. There is a need to deduce the differential equa-
tions of quasi static equilibrium of the drill sting in its axial 
motion with rotation and to calculate internal forces and 

(5)Pk(x) = ak + bk(x − xk) +
ck

2
(x − xk)

2 +
dk

6
(x − xk)

3.

(6)

k(s) =
√
(x��)2 + (y��)2 + (z��)2 or

k(𝜗) =

�
(ẋ2 + ẏ2 + ż2)(ẍ2 + ÿ2 + z̈2) − (ẋẍ + ẏÿ + żz̈)2

(ẋ2 + ẏ2 + ż2)3

(7)�0 = �0(s) = x0� + y0� + z0�,

moments, as well as distributed external contact and fric-
tion forces, hindering its motion.

This problem has a distinctive feature associated with 
the consideration about coincidence of axial lines of the 
DS and bore-hole. Then, some of the components of the 
internal forces can be expressed immediately through the 
DS stiffness and the bore-hole geometry parameters. In 
mechanics of structures, the similar problems are known 
as inverse ones. Yet, at the same time, the internal axial 
force Ft(s) and torque Mt(s) in the DS are unknown and 
they should be calculated. Therefore, the considered prob-
lem is partially inverse and partially direct.

To deduce the constitutive equations of elastic deform-
ing a curvilinear rod, a concomitant reference frame mov-
ing along its axial line with parameter s change should be 
introduced. Study of these equations is most convenient 
with the use of the Frenet natural trihedron with unit vec-
tors of the principal normal � , binormal � , and tangent �.

At any cross-section of the DS, the principal vectors of 
internal forces �(s) and moments �(s) and the vectors of 
distributed external forces � (s) and moments �(s) satisfy 
the following equilibrium equations [9]

Since the Frenet reference frame rotates with its mov-
ing along the DS axis, the total derivatives d�∕ds , d�∕ds 
should be expressed in the following form

here d̃…∕ds is the local derivative; � is the Darboux vec-
tor, determined through the expression

With allowance made for Eq. (10), one can represent 
Eq. (8) as follows:

Consider that the process of the DS dragging inside the 
bore-hole channel is operated with constant axial velocity 
a and rotation velocity � . Then, the external distributed 
forces � (s) and moments �(s) can be represented by the 
equalities

here fgr is the gravity, fcont is the force of contact interaction 
between the surfaces of the DS and bore-hole, ffr is the 
force of friction interaction between these surfaces, mfr is 
the distributed moment of friction forces.

(8)
d�

ds
= − � ,

d�

ds
= − � × � −�.

(9)d�

ds
=

d̃�

ds
+� × �,

d�

ds
=

d̃�

ds
+� ×�.

(10)� = kR� + kT �.

(11)d̃�

ds
= −� × � − � ,

d̃�

ds
= −� ×� − � × � −�.

(12)� = �gr + � cont + � fr , � = �fr = �fr
�
�.
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It is convenient to represent the vector force values at 
the �, �, � basis

where bending moment Mb is

here � is the linear weight of the DS tube calculated with 
allowance made for the buoyancy effect of the mud, 
� is the friction coefficient, E is the elasticity module of 
the DS material, I  is the inertia moment of the DS tube 
cross-section.

Then, equilibrium Eq. (11) can be transformed to the 
scalar form:

Via the use of Eq. (16), internal shear forces Fn and Fb are 
expressed in the form:

Thereafter, distributed contact forces f cont
n

 and f cont
b

 are 
determined

Consider that the DS is being dragged with axial veloc-
ity a and rotates with angular velocity � . Then, the total 
friction force is [3]

(13)

� = Fn� + Fb� + Ft�, � = Mb� +Mt�,

�gr = −�nz� − �bz� − �tz�, � cont = f cont
n

� + f cont
n

�

� fr = ±�

√(
f cont
n

)2
+
(
f cont
b

)2
�,

(14)Mb = EIkR .

(15)

dFn

ds
= −kRFt + kT Fb − f gr

n
− f cont

n
,

dFb

ds
= −kT Fn − f

gr

b
− f cont

b
,

dFt

ds
= kRFn − f

gr

t − f fr
t
,

(16)

0 = −kRMt + EIkRkT + Fb,

dkR

ds
= −

1

EI
Fn,

dMt

ds
= −mfr

t
.

(17)Fn = −EI
dkR

ds
, Fb = kRMt − EIkRkT .

(18)
f cont
n

= −kRFt + kRkTMt − EIkRk
2

T
+ EI

d2kR

ds2
− f gr

n
,

f cont
b

= kRm
fr
t
+ 2EIk

T

dkR

ds
−Mt

dkR

ds
+ EIkR

dkT

ds
− f

gr

b
.

(19)|||
� fr
|||
= � |

|�
cont|

| = �

√(
f cont
n

)2
+
(
f cont
b

)2
.

and it is resolved to the lengthwise and rotary constituents 
[8]

here � is the Coulomb friction coefficient, r is the DS tube 
radius, signs “+” and “−” are selected depending on direc-
tions of the DS axial movement and rotation. Coefficient � 
is determined by mechanical properties of the tube mate-
rial, rock formation and mud viscosity. It can vary in some 
diapason depending on combination of these factors.

Based on Eqs. (13)–(18), the system of constitutive equa-
tions of the DS dragging with rotation is deduced as follows:

Under this approach, the problem of calculation of the 
bore-hole axis geometry parameters becomes the principal 
complexity. To determine the coefficients of the differential 
Eqs. (17)–(21), methods of differential geometry should be 
used for determination of the components of unit vectors 
�, �, � and magnitudes kR and kT . To define the first ones, 
the correlations

are used [13].
Here, R = 1∕kR is the curvature radius. It is calculated via 

the formula

After this, the kT torsion is found as follows:

It is apparent that the transformations represented by 
correlations (22)–(24) cannot be performed analytically. 
Therefore, in the elaborated software, they are fulfilled 
numerically at every discrete point si through the use of 
finite difference method:

(20)

f fr
t
= ±�f cont

a
√
a2 + (�r)2

, f fr
b
= ±�f cont

�r
√
a2 + (�r)2

.

(21)

dFt

ds
= kRFn + �tz ∓ �f cont

a
√
a2 + (�r)2

,

dMt

ds
= ∓�f cont

�r2
√
a2 + (�r)2

.

(22)� = d �∕ds, � = Rd�∕ds, � = � × �

(23)kR = 1∕R =

√(
d2x

ds2

)2

+

(
d2y

ds2

)2

+

(
d2z

ds2

)2

.

(24)kT = R2

|||
||||

x� y� z�

x�� y�� z��

x��� y��� z���

|||
||||

.
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Derivatives dkR∕ds , d2kR
/
ds2 , dkT∕ds used in Eqs. (17), 

(18) are calculated analogously

Since the geometric functions calculated with the use 
of Eqs. (22)–(26) are changing fast at the points of the vari-
ables �x , �y , �z irregularities, to achieve satisfactory con-
vergente of their computing, it is necessary to select suf-
ficiently small values of the Δs increments. In our analysis 
it was chosen to be S∕1000.

3 � Analysis of the numerical results 
of the generated resistance forces 
simulation

The elaborated techniques were used for numerical inves-
tigation of resistance forces generated in the channel of a 
bore-hole with geometric imperfections. Firstly, the case 
was considered when the planned trajectory of the bore-
hole was ideal and was represented by smooth planar 
hyperbolic curve x0(�) , y0(�) , z0(�) described by equali-
ties (Fig. 1)

(25)

tx
|
|i =

dx

ds

|
|
|
|i
=

xi+1 − xi−1

2Δs
, ty

|
|
|i
=

dy

ds

|
|
|
|i
=

yi+1 − yi−1

2Δs
, tz

|
|i =

dz

ds

|
|
|
|i
=

zi+1 − zi−1

2Δs
,

kR
|
|i =

√(
xi+1 − 2xi + xi−1

Δs2

)2

+

(
yi+1 − 2yi + yi−1

Δs2

)2

+

(
zi+1 − 2zi + zi−1

Δs2

)2

.

(26)

dkR

ds

|
|||i
≈

(kR)i+1 − (kR)i−1

2Δs
,

d2kR

ds2

|||
||i
≈

(kR)i+1 − 2(kR)i + (kR)i−1

Δs2
,

dkT

ds

|||
|i
≈

(kT )i+1 − (kT )i−1

2Δs
.

(27)
x0 =

l(1 + �) cos �

1 + � cos�
, y0 = 0, z0 =

h sin �

1 + � cos �

(3�∕2 ≤ � ≤ 2�).

Its lower point A corresponds to initial values of con-
stitutive parameters � = 3�∕2 , s = 0 . At this end the drill-
ing bit is attached and during drilling operation the DS is 
loaded by axial force Ft(0) (FOB—force on bit) and torque 
Mt(0) (TOB—torque on bit). The DS is suspended at its top 
end B where � = 2� and s = S . Here, it is powered by driv-
ing force Ft(S) and torque Mt(S).

In Eq. (27), l = 8000 m is the horizontal distance between 
the lower and top points of the trajectory, h = 4000 m 
is the bore-hole depth, � is the hyperbola eccentricity, 
dimensionless parameter � is connected with natural 
parameter s through metric multiplier

Under these parameters values, the DS length measures

Then, the natural parameter s was introduced in lim-
its 0 ≤ s ≤ S and step Δs = S∕1000 of numeric integra-
tion was selected. Inside segment 0 ≤ s ≤ S , points 
si = Δs ⋅ (i − 1) ( 1 ≤ i ≤ n + 1 ) were preassigned. At these 
points, the corresponding values �i of parameter � were 
calculated with the help of formula

This enabled the coordinate values x0(�i) , y0(�i) , z0(�i) 
to be found through the use of Eq. (27) at every point �i 
(and accordingly, si ) and subsequently to transfer to pre-
setting the same values x0(si) , y0(si) , z0(si) at the same 
points si (Fig. 1). Thereupon, it became possible to calcu-
late all geometric characteristics (22)–(24) by finite differ-
ence approximations (25), (26) usage, to compute internal 
and external forces (17)–(20), and to integrate Eq. (21) by 
the Runge–Kutta method.

Initially, this approach was utilized to analysis of a trip-
ping out operation in a curvilinear bore-hole. It is char-
acterized by the feature connected with the same orien-
tations of the gravity f gr(s) and friction f fr(s) forces and 

(28)

D =
√
ẋ2 + ẏ2 + ż2 =

√
l2(1 + 𝜀)2 sin2 𝜗 + h2(cos 𝜗 + 𝜀)2

(1 + 𝜀 cos 𝜗)2
.

S =

2�

∫
3�∕2

D d� = 9220 m.

(29)�i =
3�

2
+

si

∫
0

1

D
ds.

Fig. 1   Geometric scheme of the planned bore-hole trajectory
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addition of their resisting effects. For these reason, the 
resistance forces achieve their maximal values.

The external and internal radii of the DS tube were 
assumed to be r1 = 0.08415m and r2 = 0.07415m , corre-
spondingly. Its material was steel with the elasticity mod-
ule E = 2.1 ⋅ 1011 Pa , the tube linear gravity determined 
taking into account the mud buoyancy effect was consid-
ered to equal � = 310.79N/m.

The calculations were performed at three values of 
the ratio � of the axial velocity a to the circumferential 
velocity � r1 of the points on the outer surface of the 
tube: � = a∕� r1 = 100, 2, and 0.01. The stated problem for 
Eq. (21) was solved by the Runge–Kutta method with the 
step value Δ s = S∕1000 . As a consequence of the per-
formed computations, the distribution diagrams for the 

external gravity, contact, and friction forces, as well as the 
internal elastic forces and moments were constructed.

After completion of this analysis, the supposition was 
done that during the bore-hole drivage, some geomet-
ric deviations � x(s) , � y(s) , � z(s) were allowed because of 
technological factors and the rock heterogeneity. These 
deviations were measured by the methods of geophysic 
navigation and processed in tabular form with the Δ sj step 
equal S∕70 = 131.7 m. Two cases of the tabular distortions 
were considered. The first set of their values is represented 
in Table 1. The second set can be gained by simple dou-
bling of the first values.

The graphic representation of the digital distortions 
� x(sj) , � y(sj) , � z(sj) is shown in Fig. 2.

It should be emphasized that though the distortions 
outlined on the basis of discrete tabular data are intro-
duced in the form of broken lines, in reality, they look like 
even differentiable (although, tortuous) curves.

With the aim to smoothen the digitally distorted tra-
jectories x0(sj) + � x(sj) , y0(sj) + � y(sj) , z0(sj) + � z(sj) , 
their spline interpolation (15) was performed. Schemes 
of their outlines for cases 1 and 2 are shown in Fig. 3a, b, 
correspondingly.

One can see that because imperfections included into 
the bore-hole geometry are small in comparion with its 
over all dimension these trajectories visually remained 
nearly unchanged and do not practically differ from the 
ideal bore-hole represented in Fig. 1. However curvatures 
kR of these smoothened trajectories essentially distin-
guished between each other (Fig. 4).

This feature is explained by the fact that the curvature 
is determined as the second derivative of a line profile and 
it depends not only on the imperfection magnitude but 
also on its pitch.

In the upper run of the bore-hole, its geometry is not 
distorted, so curvature values in the right segments of the 

Table 1   Table values of increments � x(sj) , � y(sj) , and � z(sj) (case 1)

j sj (m) � xj (m) � yj (m) � zj (m)

1 0.0 0.0 0.0 0.0
2 626.9 0.2930 0.0 0.9561
3 1200.3 0.2989 − 1.0 − 0.9543
4 1726.5 − 3.0499 0.0 9.5236
5 2210.7 1.5568 8.0 − 4.7515
6 2657.5 4.7701 − 3.0 − 14.2210
7 3070.7 − 1.6246 − 18.0 4.7287
8 3453.8 − 9.9637 − 8.0 28.2970
9 3809.8 − 13.5851 0.0 37.6230
10 4141.1 − 10.4230 20.0 28.1310
11 4450.0 − 1.7778 38.0 4.6733
12 4738.7 5.4605 10.0 − 13.9710
13 5008.8 1.8643 − 18.0 − 4.6394
14 5261.8 − 3.8207 0.0 9.2413
15 5499.3 0.3166 5.0 − 0.9201
16 5722.4 − 0.4017 0.0 0.9158
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Fig. 2   Graphic representation of the bore-hole trajectory distortions (case 1)
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presented graphs are not large, though the planned trajec-
tory is maximum bent in this segment. In zone s < 6000 m, 
functions kR(s) acquired drastic perturbations. It is seen 
in Fig. 4 that the maximal value of this function exceeds 
0.0022 m−1 , for case 2, while it is under 0.0001 m−1 for the 
ideal trajectory. This is the reason of the contact ( f cont(s) ) 
and friction ( f fr(s) ) forces enlargement in this zone.

The constructed geometries were used for computer 
investigation of the external and internal forces acting on 
the DS during carrying out the tripping out operation. By 
virtue of the fact that the DS is free at its lower end, the 
initial conditions

were used for integration of Eq. (21).
Friction coefficient was assumed to be � = 0.2.The cal-

culations were performed for three ratios � of velocities of 
the axial and circumferential motions

In spite of large variations of these ratios all of them 
are realistic, as this parameter determines only proportion 
between the axial and circumferential velocities but not 
their absolute values. Indeed, value � = 100 does not mean 
that the axial velocity is very large but it points that the 
circumferential velocity is very small, though the first one 
is determined by the possibility of the driving mechanism. 

(30)Ft(3�∕2) = 0, Mt(3�∕2) = 0

� = a∕(�r1) = 100, 2, 0.01.

In the case � = 0.01 , vice versa, the DS rotation velocity is 
determined by the driving mechanism and axial velocity 
is small.

Fig. 3   Schematic of the bore-
hole axis built on the basic 
of the table data: a case 1; b 
case 2

a b
0 2000 4000 6000 8000

-4000

-2000

s, m

z, m

0

0 2000 4000 6000 8000
-4000

-2000

0

s, m

z, m

0 2000 4000 6000 8000
0

0.0005

0.001

0.0015

0.002

0.0025

Case2

Case 1

The segment
without distortions

s, m

1m−
Rk

Fig. 4   The axis line curvature kR graph plotted with the tabula data
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Fig. 5   The graph of the gravity force axis component f grt (s) (case 1, 
� = 100)
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In Fig. 5, the graph of the axial component f grt (s) of the 
distributed gravity is shown for the planned (ideal) trajec-
tory and case 1. In the lower end vicinity ( s = 0 ) this force 
is relatively small, thereupon it grows with s enlargement, 
acquiring some oscillations conditioned by the trajectory 
geometry distortions (curve 1). After transfer to the undis-
torted segment ( s > 6000 m), this curve became regular. 
At the top point ( s = S = 9220 m) this function is equal to 
the linear gravity � = 310.79N/m of the DS tube.

The values of the contact f cont(s) force for case 1 are 
outlined in Fig. 6. It has a maximum at top point s = S.

The function of the distributed axial friction force f fr
t
(s) 

(Fig. 7), determining the effect of the axial motion resistance, 
differs from the f cont(s) function only by coefficient � and sign.

Inasmuch as these forces locally depend on geometric 
properties of the bore-hole axis, they practically coincide 
in periphery zones of the trajectory for the considered 
cases of ideal and tortuous curves but they have noticea-
ble distinctions in the zone of tortuosity. In contrast, inter-
nal force Ft(s) and torque Mt(s) are integral characteristics, 
so their most pronounced distinctions are concentrated at 
the suspension point s = S.

As is evident from Eqs. (21) for the internal axial force 
Ft(s) , its value is basically determined by balance of axial 
g r a v i t y  fo rc e  � tz  a n d  a x i a l  f r i c t i o n  fo rc e 
� f conta

�√
a2 + (� r1)

2  . In tripping out, these forces are 

added and the effect of resisting to axial motion is ampli-
fied. During tripping in operation, the external distributed 
forces have different signs and they are striving to neutral-
ize each other. The graphs of this force for the tripping out 

operation under condition � = 100 are shown in Fig. 8. 
Curves Id, 1, and 2 correspond to the planned (ideal) tra-
jectory and cases 1 and 2. As evident from the illustration, 
even the small imperfections like these cause noticeable 
enlargement of the Ft(s) force. The torque function (Fig. 9) 
has analogous properties.

As may be inferred from the calculation results, the pro-
files of functions Ft(s) and Mt(s) are characterized primarily 
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Fig. 6   The graph of the contact force f cont(s) (case 1, � = 100)
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Fig. 8   Graphs of internal axial force Ft(s) (tripping out, � = 100)
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by ratio � and the form of technological operation (trip-
ping in/out and drilling). Clearly, the � reduction is asso-
ciated with axial velocity decrease and increase of the 
circumferential velocity. Therefore, it causes reduction of 
axial force Ft(s) and enlargement of torque Mt(s) (compare 
Fig. 8 for � = 100 and Figs. 10, 12 for � = 2 and � = 0.01 , as 
well as Figs. 9, 11, 13).

These results are of immediate interest to practice 
because values Ft(S) and Mt(S) are the force and torque 
applied to the DS top which are required for realiza-
tion of the DS lifting and rotating. With enlargement 

of the rotation velocity � ( � = a∕(� r1) = 2 ), the lifting 
force Ft(S) diminishes and driving torque Mt(S) increases 
(Figs. 10, 11).

As previously, the curves labeled Id, 1, and 2 correspond 
to the ideal geometry and cases 1 and 2. The possibility to 
regulate the forces, resisting to axial motion of the DS, by 
way of its concurrent rotation is underlined by the numeri-
cal calculation performed at � = a∕(� r1) = 0.01 (Figs. 12, 
13).

Then, the DS is lifted with very small velocity a and 
rotates with high angular velocity � . This driving regime 
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Fig. 9   Graphs of torque Mt(s) (tripping out, � = 100)
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Fig. 10   Graphs of internal axial force Ft(s) (tripping out, � = 2)
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Fig. 11   Graphs of torque Mt(s) (tripping out, � = 2)
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Fig. 12   Graphs of internal axial force Ft(s) (tripping out, � = 0.01)
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is typified by very small components of axial friction, there-
fore the resistance effect is conditioned predominantly by 
the gravity force. Owing to this, as is shown by [7], if to 
ignore friction forces in a smooth curvilinear bore-hole 
with any geometrical outline, the axial force F(S) acting 
on the DS at the suspension point is equal to the gravity 
force acting on a vertical DS of length h . In our case

The values Fid
t
(S) of this force in the bore-hole with 

planned (ideal) geometry and appropriate forces Fim
t
(S) 

in the bore-holes with tabular imperfections, as well as 
the values of torques Mid

t
(S) and Mim

t
(S) are presented in 

Table 2.
These data attest that the axial force required for the DS 

lifting can be essentially reduced through its additional 
rotation.

The elaborated techniques and gained results permit 
one to perform computer modeling of the one of critical 

(31)Fid
t
(S) = � h = 1244.84 kN.

effects accompanying the tripping out operation. So, if 
during the tripping out process with the prescribed ratio 
� = a∕(� r1) the calculated Ft(S) force value required 
for the DS hoisting falls out the limits of its magnitude 
admitted by the technological conditions or conditions 
of strength, then the tripping out operation is not realiz-
able. In this case, it is necessary to enlarge the DS rotation 
velocity or to change the operation technology. When 
these effects are not feasible, the DS is called to be deadly 
locked.

The aforesaid dead lock situation appears when the 
power of the rig drive device is not sufficient to overcome 
the gravity and resistance forces acting on the DS. Another 
emergency situation can occur during tripping in opera-
tion. It arises when the gravity forces cannot overcome 
friction forces. At this situation it is needed to overload 
the DS at its top point or to change the technological 
regime. This operation also can be simulated with the use 
of Eq. (21), though now, sign “+” should be chosen before 
the friction force.

The obtained results testify that the investigated bore-
hole is rather steep and because of this the emergency 
situations connected with the DS sticking do not appear 
during simulation the tripping in operations. They were 
again considered at the ratio � values: � = 100, 2, and 0.01. 
Here, directions of the gravity axis component f grt (s) and 
friction force f fr

t
(s) are in opposition, which is why they 

neutralize each other even in axial motion with very slow 
rotation. In Figs. 14 and 15 the Ft(s) and Mt(s) functions are 
demonstrated for tripping in operation at ratio � = 100 . As 
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Fig. 13   Graphs of torque Mt(s) (tripping out, � = 0.01)

Table 2   Values of axial force Ft(S) and torque Mt(S) at the suspen-
sion point during the operation of tripping out with rotation

� Case Fid(S) (kN) Fim(S) (kN) Mid(S) (kN m) Mim(S) (kN m)

100 1 1871.542 1966.500 0.531 0.610
2 2177.468 0.787

2 1 1797.498 1874.292 23.427 26.648
2 2045.775 33.839

0.01 1 1244.814 1245.125 47.336 49.950
2 1245.900 56.461
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Fig. 14   Graphs of internal axial force Ft(s) (tripping in, � = 100)
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may be seen, the tortuosity influence on these functions 
is not essential in this case.

The rotation velocity increase insignificantly affects 
the Ft(s) force but leads to increase of the Mt(s) function 
(Figs. 16, 17).

This peculiarity retains its validity also for the regime 
with ratio � = 0.01 (Figs. 18, 19).

Particular emphasis can be placed on the effect pre-
sented in Fig. 18. Here, the DS slides down slowly along its 

axis as � = 0.01 . Because of this, friction force f fr
t
(s) is small, 

the DS slides practically without any resistance what solver 
and it is prestressed only by gravity force f grt (s) . Since, Ft(s) 
is integral function of f grt (s) which has comparatively small 
fluctuations with tortuosity addition (Fig. 5), its profiles in 
Fig. 18 practically coincide.

These features can be traced also with the use of 
Table 3. It follows from these data that if angular velocity 
� is large ( � = 0.01 ), values Mt(S) are maximum and do not 
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Fig. 15   Graphs of torque Mt(s) (tripping in, � = 100)
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Fig. 16   Graphs of internal axial force Ft(s) (tripping in, � = 2)
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Fig. 17   Graphs of torque Mt(s) (tripping in, � = 2)
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Fig. 18   Graphs of internal axial force Ft(s) (tripping in, � = 0.01)
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practically depend on the regime of the realized operation 
(tripping out or in) and the tortuosity values (case 1 or 2). 
Comparison of data in Tables 2 and 3 suggests that in this 
case, the Ft(S) force value tends to limit value (31).

At the same time, the Mt(S) torque induced at the sus-
pension point essentially depends on the angular velocity 
value. It is small for small � values, whether the first or 
second regimes are realized. These peculiarities validate 
the conclusion that the resistance forces and torques in 
a curvilinear bore-hole with geometric imperfections can 
be regulated by the value � choice.

Thus, the elaborated approach enabled us for the first 
time to state and solve the important applied problem 
associated with the computer modeling friction effects 
impeding dragging drill strings in real tortuous bore-holes 
with geometry prescribed in tabular form through the use 
of results of geophysical survey. The mathematic models 
of the tripping in/out operations and drilling are based 
on the scientific methods of applied mathematics (the 

algorithms of spline interpolation and discrete integra-
tion), differential geometry (moving trihedrons), mechan-
ics of structures (theory of curvilinear flexible rods), and 
theoretical mechanics (contact constraints and frictional 
interactions). With using the worked models and created 
software, it became possible to pioneer the solution of the 
multiparametric problems of simulating the resistance 
forces, generated by the elastic, gravitational, contact, 
and frictional influences. The states when the axial force, 
produced by the driving mechanism at the DS top, cannot 
overcome these resistance forces or the DS tube strength 
is not sufficient to bear the necessary internal axial forces 
are equivalent to dead locks.

The developed software is more universal in com-
parison with other known computer products because it 
allowed us to take into account and vary the parameters of 
the DS length and bending stiffness, the bore-hole curva-
ture and its 3D tortuosity, the technological regimes (trip-
ping in/out and drilling) and ways of their realization (axial 
motion and sliding with rotation). But the most important 
feature of the elaborabed approach is that it is suitable 
for its application to real field conditions when the bore-
hole trajectory is prescribed in tabular form by the data of 
geophysical measurements.

4 � Conclusions

1.	 With the use of the nonlinear theory of curvilinear elas-
tic rods, the 3D stiff-string drag and torque model for 
computer analysis of contact and friction distributed 
forces generated during tripping in and out operations 
in drilling deep directed bore-holes is elaborated.

2.	 It is assumed that the trajectory of the bore-hole 
axis line (though continuous in reality) is set in a dis-
crete (tabular) form by the values of its coordinates 
at separate points found by the methods of the bore-
hole navigation. Transition to the analytic form of the 
geometry prescription is performed on the basis of the 
3D cubic spline interpolation method.

3.	 The numerical analysis shows that the external dis-
tributed contact and resistance (frictional) forces and 
moments generated during the drilling operations 
performance essentially depend on the bore-hole 
axis tortuosity and they can be regulated by a special 
choice of the ratio between the velocities of the drill 
string dragging and rotation.

4.	 The elaborated techniques can be applied to the 
computer identification of distributed forces combi-
nations impeding drill string movabilily and, by doing 
so, increasing energy consumption, intensifying the 
DS wear, and overloading its structural elements. It 
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Fig. 19   Graphs of torque Mt(s) (tripping in, � = 0.01)

Table 3   Values of axial force Ft(S) and torque Mt(S) at the suspen-
sion point during the operation of tripping in with rotation

� Case Fid(S) (kN) Fim(S) (kN) Mid(S) (kN m) Mim(S) (kN m)

100 1 725.269 719.835 − 0.432 − 0.436
2 706.194 − 0.448

2 1 775.840 769.648 − 19.458 − 19.719
2 754.200 − 20.368

0.01 1 1233.549 1233.246 − 47.236 − 49.779
2 1232.489 − 56.126
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gives also the possibility to recognize the dead lock 
situations when the rig engine power is not sufficient 
to break through the generated force drag.
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