
Vol.:(0123456789)

SN Applied Sciences (2019) 1:39 | https://doi.org/10.1007/s42452-018-0029-4

Research Article

Decentralized neuro‑fuzzy controllers of nonlinear quadruple tank 
system

M. A. Eltantawie1

© Springer Nature Switzerland AG 2018

Abstract
This paper presented two decentralized neuro-fuzzy controllers to control the level in lower two tanks in nonlinear 
quadruple tank system (QTS). The controllers are designed based on adaptive neuro-fuzzy inference system technique. 
The relation between inputs/outputs was proved using relative gain array, and then, we can divide the quadruple tank 
system into two subsystems and control each of them separately. The first controller is a neuro-fuzzy inverse nonlinear 
(NFIN) model, which predicts the voltage required to control the level to track the referred one. So, the voltage was fed to 
neuro-fuzzy forward nonlinear model (NFFN) to obtain the desired level. The second is neuro-fuzzy nonlinear gain sched-
uling PI controller, which is designed to control the nonlinear QTS at any operating point. The results show that the NFIN 
controller has a more accurate tracking level and less computational time in both minimum and non-minimum phases.

Keywords  ANFIS · Decentralized control · Neuro-fuzzy forward model · Neuro-fuzzy inverse model · Neuro-fuzzy gain 
scheduling PI controller

1  Introduction

Quadruple tank system (QTS) is broadly utilized as a part 
of a chemical and petroleum process. The framework is 
extremely unpredictable to control because of its nonlin-
earity and the higher connection between inputs/outputs. 
The levels of fluid in the two lower tanks should be con-
trolled and managed to achieve a specific reference level.

Examining this issue can be taken care of by numerous 
analyses for both minimum and non-minimum phases. 
The contrasts between minimum and non-minimum 
phase conduct for the QTS have been considered and con-
trolled by the decentralized PI controller by [1, 2].

Advanced control theory and techniques, for example, 
predictive control, genetic algorithm, sliding mode and 
neuro-fuzzy controllers can be designed to control QTS 
with more exact outcomes than traditional control strate-
gies. In [4], a multivariable predictive PID controller was 
executed on a four-tank system to modify the transmission 

zero to work in minimum and non-minimum phases. Kay-
acan and Kaynak [5] proposed a grey prediction-based 
fuzzy PID controller, while [6] presented a basic genetic 
algorithm (GA) technique for online auto tuning propor-
tional–integral–derivative (PID) parameters to control the 
fluid level in QTS.

In [7] in view of the Takagi–Sugeno–Kang (TSK) piece-
wise direct fuzzy modeling approach, a long-range predic-
tive control calculation for nonlinear QTS forms working 
over a wide range is proposed.

In [7] in view of the Takagi–Sugeno–Kang (TSK) piece-
wise direct fuzzy modeling approach, a long-range predic-
tive control calculation for nonlinear QTS forms working 
over a wide range is proposed.

Both the decentralized predictive and propor-
tional–integral (PI) controllers are planned by [8] for the 
QTS framework. A decoupling-based agreeable conveyed 
multi-parametric model predictive controller (MPC) is pro-
posed. The controllers are subjected to reference tracking 
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and disturbance dismissal, and the execution measures 
are looked at.

In the HD-MPC research, eight diverse MPC control-
lers were connected to the four-tank process plant. These 
controllers depended on various models and suppositions 
and give a wide perspective of the diverse distributed MPC 
plans [9].

Bristol [10] displayed an adequacy controller planned 
in view of a mix of state feedback and a sliding mode con-
troller for four-tank system utilizing fuzzy logic for non-
minimum phase mode. The sliding mode control (SMC) 
strategy is utilized to accomplish a quick transient reac-
tion, while the state feedback controller (SFC) can give 
zero stationary state errors.

Many of the researchers use the linear mathematical 
model to design a controller. The novelty of this paper is 
to use data of the nonlinear quadruple liquid-level tanks 
to create the neuro-fuzzy forward nonlinear (NFFN) model 
for quadruple tank system. In addition, the neuro-fuzzy 
inverse nonlinear (NFIN) model has been designed as a 
nonlinear controller and examined for different conditions 
for both minimum and non-minimum phases. Also, the 
required operating points for levels in tank 3, tank 4 and 
the voltages to both pump 1 and pump 2 from known 
levels in tank 1 and tank 2 are derived and implemented 
in neuro-fuzzy gain scheduling PI (NFGSPI) controller. The 
proposed controllers improve the performance of a multi 
variable nonlinear liquid-level system.

This paper is constructed as follow: Section 3 presents 
specification of quadruple tank process, nonlinear and lin-
ear model. Section 3 presents the neuro-fuzzy controller 
framework. The neuro-fuzzy gain scheduling PI controller 
is introduced in Sect. 4. Results and simulation are dis-
played in Sect. 5. Lastly, Sect. 6 is the conclusion.

2 � Quadruple tank processes

2.1 � System description

The quadruple tank system (QTS) is used to illustrate many 
concepts in MIMO systems. The quadruple tank laboratory 
equipment consists of four interacting tanks (1, 2, 3 and 
4), two-way valves, two pumps and a reservoir as shown 
in Fig. 1.

Tank 1 and tank 2 are in the lower, while tank 3 and 4 
in the upper. The flow is delivering to tanks 1 and 3 from 
a reservoir by pump 1, while pump 2 sucks the flow and 
delivers it to the other tanks. The two-way valves after each 
pumping are used to divide the flow to lower and upper 
tanks by a factor �i and

(
1 − �i

)
 which is fixed during the 

experiment. The input voltages v1 and v2 to the pumps are 
varied during the experiment according to the required 

controlled outputs (the liquid levels in the lower tanks 1 
and 2). A reservoir is used to accumulate the outgoing 
water from tank 1 and tank 2 and is present in the bottom.

The operation of QTS can be in two phases: minimum 
phase and non-minimum phase. The system starts oper-
ating in non-minimum phase when the fraction of liquid 
entering the lower tanks is less than that of upper tanks. 
Otherwise, the system starts operating in minimum phase 
when the fraction of liquid entering the upper tanks is less 
than that of lower tanks. The minimum phase and non-
minimum phase can be achieved as:

2.2 � Nonlinear quadruple tank model

The nonlinear model of QTS is based on mass balances for 
each tank and the differential equations are formulated as:

where Ai is the cross section of tank i, i = (1, 2, 3, 4); ai is the 
open cross section of the outlet line valve; hi is the water 
level; vi is the voltage applied to pump; kivi is the flow from 

minimumphase ∶ 1 <
(
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< 2
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< 1.

(1)
d

dt
h1(t) = −

a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

�1k1

A1

v1

(2)
d

dt
h2(t) = −

a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

�2k2

A2

v2

(3)
d

dt
h3(t) = −

a3

A3

√
2gh3 +

(1 − �2)k2

A3

v2

(4)d

dt
h4(t) = −

a4

A4

√
2gh4 +

�
1 − �1

�
k1

A4

v1

Fig. 1   Quadruple tank system
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the pump; γi is the position of the valve; and g is the gravi-
tational constant.

2.3 � Linear model

The linearized state-space model about operating point is 
given by Eq. (5).

The time constants Ti are

The required operating points for levels in tank 3, tank 4 
and the voltages to both pump 1 and pump 2 from known 
levels in tank 1 and tank 2 are given by Eq. (6).

According to Eqs. (6a–6b), a MATLAB program is created 
to calculate the operating point for a level in tanks 3 and 
4, and also the steady-state voltage inputs to pump 1 and 
pump 2.

The parameter values and steady-state operating points 
of the process are listed in Table 1 [3].

The transfer function matrix is given in Eq. (7) for mini-
mum phase and non-minimum phase operating points.
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2.4 � Decentralized by relative gain array (RGA)

Decentralized control is an entrenched way to compact with 
control the multi-input-multi-output MIMO plants. To outline 
a decentralized controller, matching between input–output 
must be dictated by RGA. The method exchanges of open-
loop and closed-loop control structures are assessed for all 
conceivable input/output pairings. The array will be a matrix 
with one row for each output variable and one column for 
each input variable in the MIMO framework [11]. A few prin-
ciples for blending determination can be expressed: the vari-
able pairings comparing to positive relative gains as near 
unity as conceivable ought to be favored. Negative relative 
gain much longer than unity ought to be evaded.

The relative gain array is defined as follow:

where × denotes the element-by-element product of the 
two matrices.

(RGA) the concept is employed to QTS to determine the 
input–output pairing for both minimum phase and non-
minimum phase.

For minimum phase system, λ11 is obtained as 1.4, so the 
pairing is determined as y1–u1 and y2–u2. But for the non-
minimum phase system, λ11 is obtained as − 0.64, so the suit-
able pairing is found as y1–u2 and y2–u1.

3 � Neuro‑fuzzy nonlinear control system

Neuro-fuzzy model is a nonparametric model for emu-
lating quadruple-level tank system. It is faster than the 
numerical model for keeping the error moderately little. 

(8)RGA = G(0) ×
(
G(0)−1

)T

RGA =

[
1.4 −0.4

−0.4 1.4

]
minimumphase

RGA =

[
−0.64 1.6

1.6 −0.64

]
nonminimumphase

Table 1   Operating conditions for minimum and non-minimum 
phases

Operating point minimum 
phase

Operating point 
non-minimum 
phase

h
0

1
,h

0

2
12.4, 12.7 cm 12.6, 13.0 cm

k1 3.33 cm3/Vs 3.14 cm3/Vs
k2 3.35 cm3/Vs 3.29 cm3/Vs
�1, �2 0.7, 0.6 0.43, 0.34
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The neuro-fuzzy is a utilization of ANFIS (adaptive neuro-
fuzzy inference system). ANFIS demonstrates to utilize 
neuro-adaptive learning strategies, which are like those 
of neural systems, initially exhibited by Jang [12].

A block diagram of the decentralized neuro-fuzzy 
control for a quadruple liquid-level framework is shown 
in Fig. 2. The framework incorporates two subsystems: 
one for control level in tank 1 and the other for control 
level in tank 2. Every subsystem contains neuro-fuzzy 
forward nonlinear (NFFN) model in arrangement with a 
neuro-fuzzy inverse nonlinear (NFIN) controller. MATLAB 
programming is utilized to make the forward and inverse 
model and simulate the control framework. 

3.1 � Neuro‑fuzzy forward nonlinear (NFFN) model

3.1.1 � Training forward nonlinear model

The initial step in preparing NFFN pattern is to collect an 
arrangement of input/output data set. Given collected 
informational data, ANFIS can acquire an ideal dispersion 
of membership function by utilizing back propagation 
formula.

The QTS is isolated into two subsystems as indicated 
by the consequences of RGA. From data obtained from 
a test work, forcing arbitrary voltages in the vicinity of 0 
and 10 V to acquire 2000 data samples which separated to 
1000 focuses for training phase and residue 1000 samples 
focuses utilized for checking phase. Each NFFN subsystem 
has two inputs; the voltage input signal v(k), one sample 
delay of level yield h(k) and a solitary output h(k+1). Table 2 
demonstrates the input/output for all loops. 

Differentiation between NFFN model and theoretical 
model is shown in Figs. 3 and 4 for both minimum and 
non-minimum cases. Figures 5 and 6 demonstrate the 
inaccuracy between two models. It is noticed that the 
NFFN model and theoretical model are near each other, 
with a little measure of error which is under ± 2 mm in 
level in tank 1 and about ± 1 mm in level in tank 2 for the 
two stages.

3.1.2 � Neuro‑fuzzy inverse nonlinear (NFIN) model

Control of level in QTS is very important for all applica-
tions. The system is nonlinear and very complicated to 

Fig. 2   Simulation of decentralized neuro-fuzzy control system

Table 2   Input/output data for minimum and non-minimum phases

Phases Loops Inputs Output

Minimum v1–h1 v1(k), h1(k) h1(k+1)
v2–h2 v2(k), h2(k) h2(k+1)

Non-minimum v2–h1 v1(k), h2(k) h2(k+1)
v1–h2 v2(k), h1(k) h1(k+1)

Fig. 3   NFFN and experimental nonlinear model for minimum 
phase

Fig. 4   NFFN and experimental nonlinear model for non-minimum 
phase
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control due to multiple variables and interaction between 
inputs and outputs.

Decentralized technique selects the input–output 
pairing to be directly controlled; then, we can control 
the applied voltage which can directly control the flow 
to tanks through pumps. To achieve that, we must build 
an inverse model. It predicts the voltage required to be 
applied to the pump to produce the desired level (refer-
ence level).

Inverse learning is an application of ANFIS used for 
designing a neuro-fuzzy inverse model to be operated as 
a controller. The design process involves two phases: learn-
ing phase for which an online technique is used to train 

the controller. The controller inputs are the tank reference 
level at current time step hd(k), the tank level at the next 
time step h(k+1), while the voltage at current time step 
v(k) is the output.

The data obtained from experimental work is used to 
train the (NFNI) model as similar to NFFN model. Each 
input and output is with ten membership function and 
ten rules. The application phase has been used to generate 
the required level (reference level). In this phase, the inputs 
to NFNI controller are the level of the tank at current time 
step and reference level at the next time step. Figures 7 
and 8 show the voltage predicted by NFNI model to track 
the desired level for both phases.

4 � Neuro‑fuzzy gain scheduling PI controller

Gain scheduling is a linear parameter varying feedback 
regulator whose parameters changed as a function of 
operating conditions. Then, we use linear behavior con-
trollers for control nonlinear system.

The proposed neuro-fuzzy gain scheduling PI (NFGSPI) 
controller-based design approach can be described as fol-
lows [13]:

1.	 Define the domain of interest in the state-space and 
set operating points within the domain of interest.

2.	 For each of the operating points, find the linearized 
model of the quadruple tank system as in Eq. (7) and 
then determine the PI controller parameters based on 
reference input.

3.	 Use data from step 2 to train an NFGSPI controller 
using ANFIS technique.

Fig. 5   The error between NFFN and experimental nonlinear models 
for minimum phase

Fig. 6   The error between NFFN and experimental nonlinear models 
for non-minimum phase

Fig. 7   The predicted voltage by NFNI model to track the desired 
level (minimum phase)
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	   ANFIS helps to construct and optimize the shape 
of MFs that can interpolate the gains with respect to 
several operating points in NFGSPI.

	   Because the ANFIS has a single output, then two 
FGSPIs have been constructed for each subsystem: 
one to determine gain kp and the other for obtaining 
gain ki.

4.	 Gains kp, ki which are outputs from FGSPI apply to the 
classical PI controller to generate the control signal. 
The proposed FGSPI controller scheme is shown in 
Fig. 9.

5 � Results

The two NF nonlinear controllers are constructed and 
simulated by utilizing MATLAB programming. The NF 
nonlinear controllers are executed for both the minimum 
and non-minimum cases. The framework needs to track 
the levels in tank 1 and tank 2 as indicated for different 
cases appeared in Table 3.

Figures 10, 11, 12, 13, 14, 15, 16 and 17 demonstrate 
the fluid-level reaction of utilizing NFIN and NFGSPI 
controllers for tank 1 and 2 separately. It is noticed that 
the two controllers can track the reference level for the 
two cases. Anyway the NFIN controller demonstrates a 
superior steady-state execution as contrasted to NFGSPI 
controller.

Fig. 8   The predicted voltage by NFNI model to track the desired 
level (non-minimum phase)

Fig. 9   Simulation of a neuro-fuzzy gain scheduling PI controller system

Table 3   Reference step points for different cases

Time (sec) Minimum phase Non-mini-
mum phase

h1 h2 h1 h2

Case 1 0–300 12 10 15 12
300–600 18 15 22 18
600–1000 25 11 9 11

Case 2 0–1000 20 10 10 10
1000–2000 25 10 15 10
2000–3000 11 10 11 10
3000–4000 18 10 14 10
4000–5000 9 10 9 10
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Besides, NFIN did not have to process the dynami-
cal nonlinear conditions as NFGSPI. Additionally, in the 
non-minimum phase which is more difficult to control, 
NFIN can get phenomenal and exact outcomes than 
NFGSPI.

6 � Conclusion

This paper presents a NF decentralized controllers for 
nonlinear quadruple tank system. The novelty of this 
paper is to use data from experimental test to create a 
forward neuro-fuzzy (FNF) model, which can describe 

Fig. 10   Predicted and a reference level in tanks 1 and 2 by NFNI 
controller for minimum phase (case 1)

Fig. 11   Predicted and a reference level in tanks 1 and 2 by NFNI 
controller for non-minimum phase (case 1)

Fig. 12   Predicted and a reference level in tanks 1 and 2 by NFNI 
controller for minimum phase (case 2)

Fig. 13   Predicted and a reference level in tanks 1 and 2 by NFNI for 
non-minimum phase (case 2)
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the system with high accuracy and coincides with the 
experimental data. Then, two controllers are presented: 
the first is NFIN model which used as a controller and 
the second is NFGSPI controller which built in light of 
planning PI controller picks up gains at various operat-
ing points. Both of the two nonlinear controllers have 
been examined by MATLAB programming for different 
conditions for both minimum and non-minimum phases. 
Simulation results show that the decentralized NFIN is 

effective than NFGSPI controller and has less response 
time and can track the desired level with minimum error 
approximately 2 mm. Thus, the proposed decentralized 
NFIN presented in this paper is superior in controlling 
nonlinear processes.
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Fig. 15   Predicted and a reference level in tanks 1 and 2 by NFGSPI 
controller for non-minimum phase (case 1)

Fig. 16   Predicted and a reference level in tanks 1 and 2 by NFGSPI 
controller for minimum phase (case 2)

Fig. 17   Predicted and a reference level in tanks 1 and 2 by NFGSPI 
controller for non-minimum phase (case 2)

Fig. 14   Predicted and a reference level in tanks 1 and 2 by NFGSPI 
controller for minimum phase (case 1)
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