
Vol.:(0123456789)1 3

Quality and User Experience (2020) 5:10
https://doi.org/10.1007/s41233-020-00039-w

REVIEW ARTICLE

Towards accurate models for predicting smartphone applications’ QoE
with data from a living lab study

Alexandre De Masi1  · Katarzyna Wac1,2

Received: 1 December 2019 / Published online: 4 October 2020
© The Author(s) 2020

Abstract
Progressively, smartphones have become the pocket Swiss army knife for everyone. They support their users needs to
accomplish tasks in numerous contexts. However, the applications executing those tasks are regularly not performing as
they should, and the user-perceived experience is altered. In this paper, we present our approach to model and predict the
Quality of Experience (QoE) of mobile applications used over WiFi or cellular network. We aimed to create predictive QoE
models and to derive recommendations for mobile application developers to create QoE aware applications. Previous works
on smartphone applications’ QoE prediction only focus on qualitative or quantitative data. We collected both qualitative
and quantitative data “in the wild“ through our living lab. We ran a 4-week-long study with 38 Android phone users. We
focused on frequently used and highly interactive applications. The participants rated their mobile applications’ expectation
and QoE and in various contexts resulting in a total of 6086 ratings. Simultaneously, our smartphone logger (mQoL-Log)
collected background information such as network information, user physical activity, battery statistics, and more. We apply
various data aggregation approaches and features selection processes to train multiple predictive QoE models. We obtain
better model performances using ratings acquired within 14.85 minutes after the application usage. Additionally, we boost
our models’ performance with the users expectation as a new feature. We create an on-device prediction model with on-
smartphone only features. We compare its performance metrics against the previous model. The on-device model performs
below the full features models. Surprisingly, among the following top three features: the intended task to accomplish with
the app, application’s name (e.g., WhatsApp, Spotify), and network Quality of Service (QoS), the user physical activity is
the most important feature (e.g., if walking). Finally, we share our recommendations with the application developers, and
we discuss the implications of QoE and expectations in mobile application design.

Keywords  Quality of experience · Context · Quality of service · Mobile applications expectation · Machine learning

Introduction

Smartphone applications are used all the time in various
contexts since their introduction. The majority of them
depend on an Internet connection and other factors, linked
to the smartphone hardware and software (e.g., processor,

memory, video buffer) to become an enjoyable experience
for the users. Quality of Experience (QoE) is defined by
[1] as “the degree of delight or annoyance of the user of an
application or a service”. QoE is profoundly shaped by the
user expectations [2], previous experiences (i.e., expecta-
tions), and Quality of Service (QoS), (e.g., network speed),
as well as other user contexts (e.g., mobility level). Collect-
ing samples of QoE rating has always been difficult due to
potentially confounding factors, including the user’s imme-
diate context. The majority of the QoE studies are done in-
lab or in-situ via crowdsourcing, where participants have to
execute tasks given by the researchers and later rate their
experience. The previous work focused on repetitive actions
orchestrated by the study authors, executed by the study par-
ticipant. Once finished, the action experience was rated and
collected.

Swiss National Science Foundation MIQmodel (157003, 2015-
2019) & H2020 WellCo (769765, 2018-2020).

 *	 Alexandre De Masi
	 alexandre.demasi@unige.ch

	 Katarzyna Wac
	 wac@di.ku.dk; katarzyna.wac@unige.ch

1	 University of Geneva, Geneva, Switzerland
2	 University of Copenhagen, Copenhagen, Denmark

http://orcid.org/0000-0002-8164-2931
http://crossmark.crossref.org/dialog/?doi=10.1007/s41233-020-00039-w&domain=pdf

	 Quality and User Experience (2020) 5:10

1 3

10  Page 2 of 18

In our work, we focus on collecting QoE and expecta-
tion ratings from living lab participants unobtrusively in
their daily life contexts. We propose a method to build
smartphone applications’ QoE prediction models with data
collected discreetly through a smartphone logger (mQoL-
Log) and assisted by the Ecological Momentary Assess-
ment (EMA) methodology “in the wild”. We focus on both
qualitative and quantitative research for modeling QoE.
This hybrid method added contextual information to design
a QoE prediction model. This approach enables us to make
recommendations to smartphone application developers. We
train multiple prediction models to predict “High” or “Low”
QoE. We perform extensive data wrangling and cleaning
to build better predicting models with higher performance
than our previous work [3]. We investigate different machine
learning algorithms, as previously shown to be used in the
literature [4].

Through our work, we present a path toward building an
accurate QoE model from a dataset obtained in-the-wild.
Contrary to an in-the-lab study, where researchers have full
control over the stimulus applied to their participants. In-
the-wild studies create new challenges, e.g., external fac-
tors influence the experiment. They have to be leveraged to
extract knowledge from the collected data.

Current smartphone sensing technologies and the recent
development in machine learning tools enable our path
toward predictive QoE models executed directly on the
smartphone. In the future, a smartphone should be able to
anticipate the change in its QoE and clearly notify its user
about the possible disappointment, (via, e.g., notification or
even a screen color change).

The process of building QoE predictive models requires
filtering and aggregating the raw data produced by the par-
ticipant. We review the quality of our rated applications’
QoE samples and the performances of our aggregation
solutions. We focus on the time between the application’s
usage event and its rating. We explore the unlabeled tasks
in the application and look into their usability to create an
improved model. We investigate the impact of expectation
on QoE and its correlation. We review the possibility of an
on-device prediction model and its shortcoming. We inves-
tigate the most predictive features from our models to derive
what factors affect smartphone applications’ QoE “in the
wild”. Once established, we create a model to predict QoE
based on these factors. To test the importance of various
features for the QoE model, the paper describes an itera-
tive model building methodology (i.e., including data filter-
ing and wrangling techniques, as well as model evaluation
metrics).

Modeling QoE “in the wild” requires data collection from
various perspectives. mQoL-Log allows for context moni-
toring on Android smartphones. It enables extensive data
collection of critical external factors linked to the participant

annotation and the observed experiences. Smartphone-based
context monitoring can become an issue if the privacy and
experience of the participants are impacted. Hence, we
design a study protocol to reduce the participant’s burden.
If the data collection endeavour has not been carefully
planned, the study can directly impact the user’s day to day
smartphone-based activities and experiences.

This paper is structured as follows: the related work is in
“Related work”. “The approach: user study” section intro-
duces our study, its protocol, and lists the data collected.
“Building QoE Prediction Models” section exposes the
methodology of our work, the construction of our QoE pre-
diction models, and shows its output. “Discussion” section
discuses the models, its results, and our findings. “Study
limitations” section presents the limitation of our study and
“Conclusions and future work areas” section concludes the
paper. In this paper, the term “accurate” refers to the QoE
models’ performance (high accuracy: value close to 1, low:
value close to 0), as used by the machine learning and QoE
community.

Related work

We focused our literature review on three main categories
of papers. Firstly we looked at past QoE studies with mobile
Internet devices. At that time, the most used mobile Inter-
net devices were laptops connected to broadband Internet.
Secondly, we investigated the works of quantifying QoE on
smartphones. We explored the works of applications’ QoE
on smartphones from framework to model. In our last cat-
egory, we reviewed the works linking expectation and QoE,
especially for smartphone as a platform.

Quantifying QoE on laptop

In 2011 [5] Schatz et al. assessed mobile broadband quality
in-situ and in-lab on laptops. The authors asked the par-
ticipant to browse websites and to download files, then rate
their experience. The network traffic was transferred from
the broadband operator to the authors’ network shaper. Their
following work the same year [6] mapped QoE ratings and
the acceptability of a web service. The previously cited
works were all done with instruction to rate tasks experi-
ence arranged by the authors. Their study setup modified
the typical experience of their participants. Casas et al.
[7] focused their work on the specific web services’ QoE
in 2012. In their study, they collected QoE rating’s from
Facebook browsing and Youtube usage “in the wild”. Their
33 participants used a laptop with a 3.5G mobile broadband
connection provided by the authors for 31 days. The traf-
fic was rerouted to the authors’ network before accessing
the Internet. They applied traffic shaping to influence the

Quality and User Experience (2020) 5:10	

1 3

Page 3 of 18  10

participants’ QoE. The participants rated the quality of the
connection and the overall experience on a MOS scale, as
well as the acceptability of the service. They focused their
approach on QoS metrics (e.g., downlink bandwidth, traffic
volume, video resolution) to compute MOS score expressing
QoE. They did not collect any context information except the
physical location of the participant (home, work, university,
outdoor and other) manually reported. Sackl et al. [8] in
2015 focused on Web QoE ratings of a photo gallery web-
site and on overall quality for three uses: browsing a news
website, uploading a large file and exploring different cities
in Google Maps in a laboratory setting. They modulated
the bandwidth and its stability to observe the participants
quality perception.

Smartphone applications’ QoE

DeMoor et al. [9] in 2010 created a framework to quantify
mobile QoE for all smartphone applications in a living lab
setting. They evaluated the QoE of Java platform applica-
tions in the implementation of their framework. However,
they did not take into account the evolution in the cell-
phone landscape to smartphone and its generated services.
The mobile Java platform was getting obsolete at that time
(2010). The first Apple smartphone (iPhone) was released
in 2007; the first Android device (HTC Dream) was avail-
able in 2008. They advocated for long-term and user-centric
perspective QoE studies in living labs, without operation-
alizing it. The factors influencing mobile application QoE
are various, as shown by Ickin et al. [10] in 2012 with their
study assessing users’ perceived experience “in the wild”.
The ratings were provided at random times after any applica-
tion usage. The authors presented factors that impacted the
users’ QoE, as the application interface design, the perfor-
mance, the battery efficiency, the in-application features and
the application name. They also exposed user-centred ones
as connectivity cost, user routines, and user lifestyle. Other
attempts have been made for quantifying QoE on Android
OS smartphone devices. Chen et al. [11] in 2014 proposed
a tool to monitor multiple QoE factors, including a QoE-
aware User Interface (UI) controller injected in the Android
OS application, the overall network QoS of the device, and
the 4G/LTE modem state obtained by a cellular network
diagnosis tool from the modem chip maker. In the case of
video streaming on smartphones, Wamser et al. [12] in 2015
developed its Android OS application to collect QoE ratings
of Youtube videos. The participants were invited to their lab
to use specific smartphones connected to a WiFi network
for which the authors adjusted the network QoS, notably its
available bandwidth. The first study on QoE of mobile appli-
cations in real cellular networks was done by Casas et al.
[13, 14] in 2015. They later combined in-lab study results
from [15] and QoE ratings from a study “in the wild” about

various mobile services [16]. They focused mainly on QoS
and the annotation of their participants to derive bandwidth
thresholds for good/bad QoE on cellular networks. How-
ever, their participants were instructed to perform specific
tasks (e.g., watch a video on Youtube and explore a map
on Google Maps), possibly interfering with their normal
smartphone usage and creating a bias. They rated the QoE
of that specific task in the authors’ application. It collected
network flows information, e.g., Radio Access Technology
(RAT). The flow metrics are not available anymore without
root access on the Android OS. Google removed those API
as a security concern in 2016. The dataset from this study
was used later by Casas et al. [17] in 2017 to predict QoE
comparing different machine learning classifiers. Decision
Tree-based classifiers were proven to get the best results.
The authors followed with [4, 18] to predict QoE with the
benefit of ensemble models via their stacking approach [19].
In all their work, they did not integrate physical activity, user
habits (e.g., time spent in the application), expectation or
active network testing.

User’s expectation and QoE

Even though the expectation is pointed out in QoE mod-
els, its assessment in Internet-based services is rare. In
2012, Sackl et al. [20] proposed an experiment to test user
expectation and QoE on wireless 3G connection versus an
ADSL Internet access. The participants were directed to test
various internet usage scenarios, mainly browsing websites
and playing videos on a laptop. The authors modulated the
QoS and provided on-screen the Internet connection type
label (i.e., wireless 3G or wireline ADSL) to the user. They
showed that expectations, as QoE, are relying on usage sce-
narios and applications. However, their lab-based study did
not take into account how many of their participants used a
3G or ADSL in their day-to-day life. In their later work in
2014, Sackl et. al. [2] were able to improve two Web QoE
models (Google Maps and file download) using expectation
related data gathered via questionnaires before their in-lab
experiment. After each test, the participants rated the expe-
rienced quality using a 5-point Absolute Category Rating
(ACR) scale. The two models integrated two expectation
types: desired expectation, for the Google Maps application
and adequate expectation, for downloading online files. The
desired expectation is mostly constant over time, contrary
to the adequate expectation prone to change depending on
the current context [21]. The other input in the model was
the downlink bandwidth (DLBW). The authors targeted the
MOS rating given by their participants; as they integrated
users expectations in QoE assessment, they increased the
MOS prediction accuracy in their models. Sackl et al. [22] in
2017 investigated user expectations and QoE in the context
of networked multimedia. They showed how QoE could be

	 Quality and User Experience (2020) 5:10

1 3

10  Page 4 of 18

integrated into QoE research. They focus on expectations
before a task. Their experiments were lab-based in a con-
trolled environment. The expectation is often influenced by
the novelty of the user’s context and its past experiences
(i.e., fulfilment or disappointment).

The majority of the past work was in-lab, without taking
into account the importance of external contextual factors
influencing the QoE. The “in the wild” studies were not con-
ducted unobtrusively. They focused on network QoS (i.e.,
flow size and throughput) and did not integrate user behavior
in the application (e.g., time spent and task to accomplish)
and expectation. Given the state of the art, we are in a unique
position to provide insight to enable accurate modeling and
prediction of mobile QoE in a living lab setting in the users’
daily life contexts.

The approach: user study

To find the factors affecting smartphone applications’ QoE
“in the wild” and to create models to predict QoE, we con-
ducted a user study. We present our study protocol (“Study
protocol” section), then we describe the tools enabling us to
collect the data (“Ecological momentary assessment (EMA)/
MOS” section and “Smartphone-based data Collected” sec-
tion). Finally, we summarize the data acquired in the study
(“Collected data summary” section).

Study protocol

In our study, participants rated their smartphone appli-
cation usage QoE in a minimally intrusive manner on
their Android OS smartphones using our application.
Adult participants were recruited via an ad campaign on
the University of Geneva (UNIGE), Centre Universitaire
d’Informatique mailing list. We selected the ones using
Android OS smartphones for the longest and using a set of
apps from different categories that are highly interactive
and popular. The picked applications on the Google Play
Store were respectively in the top 5 for their categories:
messaging, social network, music, navigation, and Inter-
net browsing. The categories correspond to the listing on
the Google Play Store. They are Google Chrome, Google
Maps, Spotify, Instagram, Facebook, Facebook Messen-
ger, and WhatsApp. Those applications are used on mil-
lions of devices. Our selection was based on minimizing
the effect created by the introduction of new applications
to our participants (i.e., limiting bias) and to maximize
our recruiting pool. In our set of selected applications, we
found common tasks available to the user, even in appli-
cations from different categories. For example, it is possi-
ble to share content in all the applications. However, only
some allow listening to audio content: Spotify (song),

WhatsApp (voice message), Messenger (voice message),
and Facebook (song in the timeline). We recruited 38 par-
ticipants (15 females, two non-disclosed) along November
to December 2018 (P1-P38). The study ran for 28 con-
secutive days in two languages common at UNIGE, to
allow more people to join. The participants were invited
to install our homemade application mQoL-Lab which
integrated our data logger mQoL-Log.

Ecological momentary assessment (EMA)/MOS

EMAs originated in psychology as a momentary assessment
of an individual’s state or emotion [23], hence limiting errors
caused by memory effect on the ratings. EMAs were used
to gather QoE ratings “in the wild” [10]. We implemented
EMAs in our mQoL-Lab via surveys after a specific applica-
tion usage detected by mQoL-Log.

The number of EMAs triggered per day was limited to
12. EMAs were only launched in the waking hours (i.e.,
outside 21:00 to 7:00), and the time interval between two
consecutive EMAs was set up to 20 minutes. If the previ-
ous EMA was not filled when a new one is triggered, the
previous one was dismissed. Users replied to the surveys
by clicking on the notification at the screen’s top. The
EMA questions and their possible responses in our study
are available in Table 1. As shown below, some ques-
tions requested binary responses, other multiple choices.
Finally, for the QoE rating, we used the Mean Opinion
Score (MOS) [24], a subjective rating scale from 1 to 5
mapped to the following rating: poor (1), bad, fair, good,
excellent (5). The slider on the screen allowed for continu-
ous rating as it offered a higher definition on the nearest
target (e.g., 3.5 is between ’fair’ and ’good’, 3.8 is close to
’good’ for acceptability of a service [6]). On the applica-
tion level, the slider scale contains a two decimals digits
precision (e.g. 1.00 to 5.00). We round this information to
one decimal, as the participant does not see this level of
detail on his/her screen. Figure 1 represents a user select-
ing 5 on the MOS scale. The expectation questions are
new; in past work on expectation and QoE [22, 25], study
participants were asked to rank affirmations about their
expectation of specific Web service (e.g. “What do you
expect from a Video on Demand Provider?”). The pro-
vided questionnaires were modified for our use case, as
they advised in their work. We diverged by assessing the
user’s expectation fulfilment after the experience. Hence,
we investigated whether or not their expectation impacts
their experience. If so, does this factor impact QoE mod-
eling. In past studies, all the questions of the EMA were
the same regardless of the type of application, while our
third EMA question allowed us to understand the user’s
purpose in the app. We decide to reduce the number of

Quality and User Experience (2020) 5:10	

1 3

Page 5 of 18  10

classes by labeling each sample in terms of “High” QoE
MOS above 3.5 included and “Low” QoE MOS below
3.5, as recommended by the ITU-T [25] and previously
employed by Schatz et al. [6].

Smartphone‑based data collected

The mQoL-Log background phone logger [26] collected
various timestamped data. Our first trial study for smart-
phone applications’ QoE [27] indicated the importance of
the user’s actions to be accomplished inside an applica-
tion. The Table 2 includes the data collectors’ descriptions
and triggers. QoS is a part of QoE [1]. Hence, the network
related data were important. Once the participants finished
their application usage session, mQoL-Log performed a
network reachability test, also known as ping, to the appli-
cation server corresponding to the app. A ping provides
Round-Trip Time (RTT) [ms] data as an indication of the
QoS level. The RTT is the time that takes a packet to go
from the client through the network to the host, including
the time for the host reply to arrived at the client. The ping
is done six times, and the first is discarded in case it was
subjected to a DNS resolution. We set up a ping time out
threshold of 60 seconds. mQoL-Log stopped the test if the
threshold was met. The pings were executed at the beginning

Table 1   Study EMAs questions

Questions Answer Type Features

Did your usage of app name at use start
time went as expected?

Yes/No/I am not sure Single choice Expectation

How was your last usage session of app name at
use start time?

MOS 1 to 5 with a color scale from red to green Slider Application’s QoE

What action were you trying to accomplish? CONSUME content, SHARE or create content,
READ text message, WRITE text message, CON-
TROL an app (start/stop music), VIDEO call or
AUDIO call

Multiple choices Task

Did your last usage of app name at use start
time meet your expectations?

MOS 1 to 5 with a color scale from red to green Slider Expectation MOS

If something went wrong, please tell us more about
it

Text Free text entry Anecdotal

Fig. 1   User selecting QoE=5 on the scale after using (Google) Maps

Table 2   mQoL-Log: Background Logger Data Collection

Name Definition Trigger

Network WiFi level, WiFi BSSID, WiFi SSID, WiFi interface speed, Cell ID, Cell
operator, Cell strength, Cell radio access technology, Cell network code,
Internet connection status, netstat (TCP network statistics), IP address, Cell
bandwidth up and down stream, proxy information, domain name. Number
of packet and bytes sent and received on wireless interfaces, DNS’s IP
address, routing table information

Changes in network connection state and dur-
ing user app usage

Ping/RTT​ Active probing of the application used Internet server. A ping is executed 6
times. We derive statistics (mean, stdev, and variance) from this test.

When the app usage session starts

Battery Battery state (e.g., charging, full, discharging), battery level, battery tempera-
ture

Changes in battery state

App name Application name on the user screen Changes of the application on the screen
Physical activity User physical activity from the Google play services activity (still, tilting:

between two states, in-vehicle, on a bicycle, on foot, running)
Changes in the user activity

Touches Number of user touches on the screen and duration during a usage session Screen event-based: a new smartphone session

	 Quality and User Experience (2020) 5:10

1 3

10  Page 6 of 18

of the application usage, for which the QoE/EMA was being
triggered. Besides the RTT, another important QoS feature
is the overall network traffic of the smartphone. To gather
the network connection flows information (TCP and UDP,
source IP, destination IP, ports, TCP states), we collected the
output of the Linux netstat command, which did not need
root access (see details in “Features” section). We purposely
recorded the ones proven by the literature (in-lab and “in
the wild” on other platforms) to be an accurate indicator of
smartphone application’s QoE.

Collected data summary

The age distribution of the 38 participants is as follows.
Twenty-two were young adults (three between 18 and 20
year-olds and 19 between 21 and 29 year-olds), followed by
ten participants between 30 and 39 year-olds, two between
40 and 49 year-olds, two participants between 50 and 59
year-olds and two non-disclosed their age.

As the number of EMA per day was limited to 12, only
a maximum of 336 ratings could have been collected per
user. A minority of participants (N = 5) did use the designed
applications enough to trigger all the possible EMA per day.
The participants did not respond (’Ans’) to all the triggered
(’Trig’) EMAs. We obtained an average rate of assessments
Prate=75 ± 23% (where Prate is the number of provided rat-
ings /number of triggered EMAs per participant).Table 3
specify the mean ± std MOS score of the participants and
their Prate . Only 24 participants obtained a Prate higher than
the aggregated Prate . We collected 6308 EMAs. We obtain
6086 exploitable EMAs after filtering the incomplete and
erroneous EMAs (e.g., incomplete answers in one of the first
two questions), we remove 3.5% of EMAs.

We round up the distribution of the application usage
rating to the closest integer value and present the result in
Fig. 2. The aggregated distribution of those QoE rating is
as follows: 0.39% of 1, 0.89% of 2, 5.03% of 3, 20.22% of
4, and 73.45% of 5. The ratings display a high imbalance in
the dataset. The prevalence of “High” QoE MOS is 93.5%
and 6.5% of “Low” QoE for D38.

The network connection type distribution of our dataset is
available in Fig. 3. We defined handover as a change in the
networking technology (e.g., cellular to WiFi, WiFi to cel-
lular and EDGE to LTE). The “Handover” label covers the
Internet connection transition the cellular network technolo-
gies (e.g., LTE to HSPA+; horizontal) and between WiFi
and cellular network (vertical). Our application collected
samples whenever the phone was used, including samples
over cellular networks during the participants’ commute and
other mobility events. More than half of our dataset (61%)
was composed of QoE rating on a WiFi connection, fol-
lowed by 31% on LTE, 2% handover, 3% disconnected, 2%

on HSPA+ and the last 2% on EDGE, UMTS, HSPA, and
HSDPA.

We found that the participants’ physical activities during
the application to be “still” at 52%, followed by “on foot”
with 20%, “tilting” at 16%, “in vehicle” with 11%. The per
user distribution of activity is in Fig. 4.

The distribution of the intended action to accomplish
was as follows: 42% of “consuming content”, 24% “reading

Table 3   Study participation raw metrics

User ID MOS [mean ± sem] Trig [n] Ans [n] P
rate

 [%]

1 5.0 ± 0.02 131 27 20.6
2 3.88 ± 0.52 133 121 90.9
3 3.84 ± 0.62 313 271 86.5
4 3.88 ± 0.77 64 52 81.2
5 4.91 ± 0.46 309 290 93.8
6 4.96 ± 0.21 178 172 96.6
7 4.73 ± 0.75 92 87 94.5
8 4.0 ± 0.0 193 136 70.4
9 4.98 ± 0.16 213 196 92.0
10 4.91 ± 0.47 336 324 96.4
11 3.81 ± 0.55 230 200 86.9
12 4.98 ± 0.19 159 123 77.3
13 4.51 ± 0.87 347 318 91.6
14 4.86 ± 0.39 241 215 89.2
15 4.19 ± 0.67 380 120 31.5
16 4.9 ± 0.44 136 22 16.1
17 4.68 ± 0.53 251 145 57.7
18 4.91 ± 0.52 230 207 90.0
19 4.57 ± 0.77 298 223 74.8
20 4.24 ± 0.65 354 131 37.0
21 4.79 ± 0.57 150 139 92.6
22 4.96 ± 0.25 334 266 79.6
23 4.97 ± 0.33 289 185 64.0
24 4.95 ± 0.25 269 142 52.7
25 4.99 ± 0.21 504 369 73.2
26 3.59 ± 0.62 228 221 96.9
27 4.83 ± 0.59 126 110 87.3
28 4.9 ± 0.45 299 264 88.2
29 4.97 ± 0.2 318 277 87.1
30 4.84 ± 0.5 289 164 56.7
31 4.95 ± 0.33 232 188 81.0
32 4.93 ± 0.31 82 71 86.5
33 4.96 ± 0.4 184 160 86.9
34 4.0 ± 0.0 40 37 92.5
35 4.62 ± 0.68 78 72 92.3
36 4.79 ± 0.58 167 88 52.6
37 4.57 ± 0.76 184 134 72.8
38 4.05 ± 0.23 62 21 33.8
ALL 4.61 ± 0.43 222 ± 104 166 ± 89 75 ± 23
∑

8445 6308 74.7

Quality and User Experience (2020) 5:10	

1 3

Page 7 of 18  10

and writing messages”, 18% “reading messages” only, 6%
of non-labeled and 5% “write” only”. The remainder of the
dataset contains the actions like “audio”, “video”, “control
application”; in total less than 2%. “Low” QoE (MOS ∈
[1 to 3.5]) was more present for the non-labeled actions
like “consuming content” than for “reading and writing

messaging” and own single actions “writing messages”
and “reading messages”. “High” QoE was more prevalent
for more actions for all applications.

We observed the same rating behavior from the different
age categories, except for the oldest (50 to 59 years old)
- they all rated “High” QoE higher than 90% of the time.

Fig. 2   Application usage QoE/MOS rating distribution per participant

Fig. 3   Network connectivity distribution per a participant

Fig. 4   Physical Activity distribution per participant

	 Quality and User Experience (2020) 5:10

1 3

10  Page 8 of 18

The latter rate “High” QoE only in 84% of their applica-
tion usage. “time to reply” is defined as the amount of time
between the end of application usage and the moment when
the participant started to reply to our EMA, overall the mean
is 14.85 ± 0.95 minutes. The oldest group provided the rat-
ing the fastest, 94% lower than the mean “time to reply”
overall categories. The 30–39 group answered 91% under
the same threshold. The younger groups followed, 89% for
the 21–29 and 84% for the 18–20. The 40–49 group took
longer to answer. Only 77% of their ratings were given under
the threshold. On average, a study participant took more
time to rate “Low” QoE (1.02 ± 0.26 min, mean ± sem) than
“High” QoE (0.36 ± 0.05 min).

We defined the “screen session” as the amount of time
between the screen turning on, and the screen turns off auto-
matically (system timeout) or from a user’s action (manual
locking). Several applications are generally used one after
another during those sessions. We computed the mean time
spend inside the same screen session as 6.95 ± 0.2 min-
utes. On average, the users spent 2.34 ± 1.53 minutes in the
selected applications of this study. On average, a participant
rated 166 ± 89 application usage over the study period, over-
all 6 ± 3 per day. We name D38 the fully cleaned collected
dataset.

The youngest group spent more time than any other
groups (16.67 ± 2.46 minutes) in a session. Surprisingly,
the oldest group (50–59 years old) spent 11.12 ± 1.74 min-
utes, coming second. They are followed by the 21–29 group
with 6.76 ± 0.27 minutes. The 30–39 group spent on average
5.39 ± 0.47 minutes in “screen session”. Finally, the 40–49
group spent less time in the sessions (4.89 ± 0.57 minutes).

We investigated the users’ expectations distribution from
their answers to the first EMA question. Overall, only in 2%
of application usage session participants were not sure about
their expectations. We found that 95% of their application
usage session went as expected. In “Low” QoE application’s
session, 76% was unexpected. In “High” QoE application’s
session, we found 96% of expectation matched. We found
a moderate positive relationship [28] with a correlation
between the expectation and the QoE rating of 0.595.

Building QoE prediction models

Our goal is to predict the “High” or “Low” QoE of smart-
phone application usage based on the on-board data col-
lected from the smartphones labeled by the participants’
QoE ratings. The latter is used as a ground truth. We for-
mulate it as a classification problem. We start by selecting
features from our collected dataset (Table 2). The features
are the ones influencing the user while in an application
usage session, and hence they are the input data of our

model. We motivate our feature selection in the following
“Features” section. We apply the most appropriate learn-
ing practices during our modeling. We split our data into
training, validation (used for classifier hyperparameters’
optimization), and testing dataset before any oversam-
pling (no-leakage). We explore the features’ importance
in our prediction models. The importance is provided by
the eXtreme Gradient Boosting library [29] powering the
models. For each model, we report its predictive accuracy,
AUC, and recall to evaluate its performance in “Results”
section. For the previously listed metrics, values closest
to 1 are optimal.

Figure 6 summarizes our process pipeline. We went
through the pipeline eight times. The first time was to select
the best machine learning classifier for our QoE prediction
model. The other times, it was for building models with dif-
ferent input features and data aggregation methods.

Features

This section described part of Fig. 6, the data aggregation,
filtering, and wrangling blocks. From the different data col-
lected in the background, we select and aggregate features
centered on the beginning time of the application usage ses-
sion of interest, hypothesizing that these features relate to
user QoE. The time-based aggregation was done using a
time window of two minutes centered on the QoE rating.
This time window is selected based on the average time
spent by users in the applications selected in the study from
our dataset (2.34 ± 1.53 [min]). If data was unavailable for a
feature, we add one more minute (± 30 seconds before and
after the current time window) until data were found. During
the reprocessing of our dataset, we filter the data collected
via mQoL-Log to remove incomplete and erroneous data
(e.g., application usage session of ten hours).

We pick the networking features in our dataset. There-
fore, we perform feature engineering to extract informa-
tion from multiple features, e.g., knowing the IP address
allowed us to know if the application operated over IPv6
or IPv4. We extract the TCP states’ distinct count for each
app usage. The list of all the network features used in the
model is presented in Table 4. mQoL-Log recorded the
network changes as they occurred, even during the appli-
cation usage. Throughout the aggregation process of the
network features, the potential handover information was
encoded. Further, we aggregate the QoE rating with the
battery state, the application session duration, the applica-
tion name, and the task to fulfill the need of the participant
in the application. Additional external factors influencing
QoE are context-based. Hence, we select the features with
high context (e.g., physical activity).

Quality and User Experience (2020) 5:10	

1 3

Page 9 of 18  10

QoE/MOS classification

Following the work of [31], we normalize the QoE rating
values per each user. We use one-hot encoding on our cate-
gorical features (i.e., network type, application name, physi-
cal activity, and task) to prepare them for the classifiers.
We follow a classic machine learning method by randomly
selecting stratified 70% of our data as our training dataset.
The resulting 30% is split into two to obtain our valida-
tion dataset (15%) and testing dataset (15%). We conduct
a randomized search cross-validation ( cv = 20 ) to optimize
our model parameters. That means that the 70-15-15 split
has been run 20 times by repeating the random selection
of our training, validation and testing dataset, hence cover-
ing our entire dataset. This is called “random permutations
cross-validation (shuffle and split)” [32]. The distribution of
“High” and “Low” QoE ratings are preserved in the valida-
tion and testing dataset.

After each split, as presented in Fig. 6 we apply SMOTE
[33] on the training dataset to overcome the imbalance issue
via over-sampling. We perform down-sampling in our pre-
analysis. The models trained with smaller datasets are not
able to generalize as the ones after SMOTE. The training
dataset has 50% of “High” QoE labels (n = 3981, no rating
was lost), and 50% of “Low” QoE labels (n = 3981); we
gain 3702 “artificial” ratings. We scale our training dataset
to remove the mean and scaled to unit variance, as some
classifiers (e.g., K-nearest neighbors) have issues with data
of different unit sizes. This scaler is used on the validation
and testing dataset.

Classifier selection

The process in Fig. 6 is done in this section.
In the first pass through our process in Fig. 6, we investi-

gated the most accurate classification algorithm for our goal.
We ran a candid (non-optimized) 10x fold cross-validation
on our training and validation dataset to select the algorithm
with the best performance for our classification problem
between: k-nearest neighbors (KNN), decision tree (DT),
random forest (RF), logistic regression (LR), stochastic gra-
dient descent (SGD), Naive Bayes (NB), gradient boosting
(GB) and eXtreme Boosting Gradient (XBG).

We selected the Area Under the Curve (AUC) [0-1, no
dimension] as the metrics to find out the more accurate
classifier of our list. It expresses how accurate a model can
distinguish between classes (e.g., classifying the classes cor-
rectly with minimum confusion). It measures the entire two-
dimensional area underneath the receiver operating char-
acteristic curve (ROC). The ROC is a graph (x-axis: False
Positive Rate, y-axis: True Positive Rate) presenting the
classification model’s performance. The “accuracy” is the
fraction of predictions our models found out right, defined

for binary classification as the sum of true positives and true
negatives divided by the sum of true positives, true nega-
tives, false positives, and false negatives. The “precision” is
defined in % as the true positives divided by the sum of true
positives and false positives. It is the proportion of actually
correct positive identification. The “recall” is defined in %
as the true positives divided by the sum of true positives and
false negatives.

Table 5 shows the AUC of our classifiers on the vali-
dation dataset. We find that the XGB classifier performs
better in the AUC, accuracy and recall metrics. Hence, we
select XGB as the base classifier to predict the most accu-
rately “High” or “Low” QoE in this work. XBG has been
the most accurate algorithm used in classification problems
based on tabular datasets. Boosted tree algorithms, as XBG,
have shown their performance on QoE prediction in the past
work [34].

We tested eight data filtering and wrangling scenarios
(“Candid Model (XBG)” to “On-device prediction (OD)”
section) assuming we can obtain better prediction results on
our D38 dataset before applying SMOTE. The same classi-
fier is used in all the scenarios. This step of the process is
shown in Fig. 6 in the block “Model”. We examined in sec-
tion 5 the performance of all the models.

Candid model (XBG)

We run the same machine learning method as described in
“QoE/MOS Classification” section, with the same features
used in [3]. After the aggregation, we exploit the 6086 rat-
ings (D38) to train the model before SMOTE. We use this
model as our referent model (XBG), to compare the models
constructed with the filtered D38 dataset in the following
scenarios. On the contrary, from the more accurate model
presented in “Classifier selection” section, XBG’s hyper-
parameters are optimized. We present its performance in
Table 5.

Filter “time to reply” (TR)

Like in “Candid model (XBG)” section, we use the same
features, but in this scenario, we filter our dataset D38. Spe-
cifically, we remove the ratings were the user did not answer
to the EMA notification after a specific time threshold. We
determine the threshold per a dataset, as the mean overall
response time after the EMA was triggered. We remove
953 observations with a threshold at 14.85 minutes, leaving
us with 5133 ratings with a similar distribution 93.51% of
“High” QoE and 6.49% of “Low” QoE. Our hypothesis was
as follows. Participants’ ratings are influenced by the time
difference between the app use and its rating (EMA). Hence
by removing the ratings distant from the events, we antici-
pate achieving better performance for our model. We present

	 Quality and User Experience (2020) 5:10

1 3

10  Page 10 of 18

the distribution of the time to reply per user in Table 6. The
maximum times are so high as participants would reply in
the morning to a notification from the past day.

Unlabeled tasks (ULT)

As previously shared, 6% of the samples of D38 have unla-
belled tasks (i.e., the unanswered question for “What action
were you trying to accomplish?”) for a given application.
We try to fill those samples with the most common task a
user-selected per application during the study for D38. We
hypothesize that the influences of those samples could allow
for a more accurate predicting model. The most common
task per application are as follow: WhatsApp and Messenger
are used to “READ” and “WRITE” messages. Spotify for
consuming music. Chrome, Instagram, Maps, and Facebook
were used to “CONSUME” different types of content. We
attempt to derive a QoE model assuming that, as presented
later in the results section.

Filter features aggregation time (FA)

We propose to execute the same method used in Filter
”time to reply” section. However, instead of filtering the
time delta between the application usage and its rating, we
filter the dataset (D38) based on the time between the EMA
and the times the aggregated features were generated (e.g.,
win_div_net feature for the network data collection service).
As Android OS was terminating our data logger from time
to time, and since not all users allowed the application to
upload all the collected data to completion, we remove the
samples in which the features were collected too far-off the
rated event. We define the far-off threshold with a lower
bound and higher bound as Δ tmean±std for each data collec-
tion service, Δ t was the time difference between the event
and the time of collection for the data collection services as
described in Table 2. Each threshold was applied to its cor-
responding data collection services from Table 2. It reduce
the dataset to 4082 samples (2003 samples were removed).
Table 7 shows the respective thresholds in minutes per data
collection service. It represents the mean ± standard error
(sem). We do not test other cut-off thresholds.

Merged filter replies (TR) and features aggregation
(FA) time (TRFA)

We removed samples that matched two filters from two dif-
ferent blocks (aggregation and filtering) of our process pipe-
line (Fig. 6): the feature time aggregation (FA) from “Study
limitations” section and the time to the replied threshold

(TR) as described in “Discussion” section. For both filters,
the same previous thresholds are respectably applied. It
reduced our dataset from 6086 samples to 3701 samples.
The same features as before are used to train the model.

Meta‑features selection (MT)

From our previous modeling attempts (“Candid model
(XBG)” section– “Merged filter replies (TR) and features-
aggregation (FA) Time (TRFA)” section), we evaluate the
most predictive features and only used this subset for train-
ing our model. We aggregate all the models generated by
the 20 folds with random grid search for each of our previ-
ous attempts: filtering based on the time difference between
the event and the participants’ annotation (TR), filtering the
features based on time of collections (FA) and mapping the
non-labeled task (“Unlabeled tasks (ULT)” section, ULT).
We generate a total of 60 models ( 3 ∗ 20 folds). We extract
the importance of each feature for each model and computed
the mean ± std error for each. We select only the features
with average importance higher than 1% (arbitrary thresh-
old). The importance is available through the XGBoost
library used to train the model. Table 8 contains the fea-
tures and their importance. “Aggregated packets traffic stats”
represent the aggregation of the different features from the
packet statistics (i.e., the features with the suffix “_times”
in Table 4).

Expectation (EX)

As we found a moderate correlation between the expectation
and the perceived QoE (“Collected data summary” section),
we propose to use this information as an additional feature
in our new EX model. We use the same base features as
presented in XBG (“Candid model (XBG)” section). The
expectation is based on past application sessions, e.g., prior
knowledge about context and an event (i.e., “Low” QoE on
WhatsApp when connected to the university WiFi) [22].

On‑device prediction (OD)

We selected the features that could be used to predict QoE
directly on the device, transparently for the user. Some previ-
ously used features generated via feature engineering during
aggregation (i.e., packets traffic stats) or duration of applica-
tion usage are not information the Android OS application
can obtain. Hence, we decided to base our features for this
model with the ones from Table 8 and the features used to
train our candid model.

Quality and User Experience (2020) 5:10	

1 3

Page 11 of 18  10

At the time of this writing, Android OS version 10 has
been released in November 2019. It includes new security
measures. It is not possible to access the “netstat” command
output as before, and the priority of background service exe-
cution has been modified. A new limitation was introduced
with Android 10, the long-running background network
services are restricted by the system. Hence, we can not
use an active ping probe. We remove the features that could
not be integrated into an on-board smartphone model. The
on-board accessible features were as follows: battery level,
user physical activity, application, the task in the application,
Android network manager “is_connected” attribute, network
connection type, WiFi level, WiFi speed, cell strength, cell
bandwidth up and downstream.

Table 9 summarized all the features used in the previous
scenarios and with the closest related work, i.e., building a
smartphone application’s QoE prediction model [17]. As the
XBG, TR, FA, and ULT models share the same features but
used several aggregations and filtering methods, we group
them into one group G for the figure clarity.

Results

In this section, we summarise our past results from [3] and
present the output from our new scenarios (“Candid model
(XBG)” section– “On-device prediction” section).

Overview of previous work

In our past work [3], we had 33 participants and collected
5663 ratings. We build on QoE prediction model named
XBG

33
 . Its performance metrics are as follows AUC of

0.8388 ± 0.279 and accuracy 0.939 ± 0.007 %. We derived
the importance of the features in the most accurate XBG
classifier and found that the duration of application usage,
battery level, and QoS features, user’s tasks to be accom-
plished are relevant (e.g., send text versus consuming con-
tent), as well as the user physical activity (e.g., walking) to
predict QoE. The participant task, in the application itself,
is more important than the application used.

Scenarios’ results

We repeat the same process from “QoE/MOS classification”
section for all our scenarios, only using the XBG algorithm.
Hence, we train eight models with random hyperparameters
search with 20 cross-validations, done 20 times to cover the
full dataset.

We test the performance of our models with the test
datasets. Our results are shown in Table 10. It contains
the two main metrics we selected (AUC and accuracy), as
well as precision and recall. We want to validate our results

statistically. We apply a pairwise t-test to the metrics, as
they are normally distributed for all the scenarios. The null
hypothesis H0 is as follows: there is no statistically signifi-
cant difference between the scenarios’ metrics. Consider-
ing that we are making multiple comparisons, we have to
use the Bonferroni adjustment to select the correct cutoff
to determine whether H0 has to be strongly rejected. The
base alpha is 0.05, and adjusted (for 36 comparisons) is
� = 0.001 . If the p-values computed are inferior to � , H0 is
rejected. Hence the difference between the scenarios’ met-
rics is statistically significant.

The candid model XBG underperforms on both metrics
against the results presented in [3], which are negligible
(p-values for both metrics superior to 0.1) with differences
of 0.017 for AUC and 0.001 for accuracy. Filtering the time
difference between the event and the participant rating time
(i.e., scenario TR) allowed for more accurate models. The
model TR scores higher on AUC and accuracy.

The filtering based on the feature time (FA) aggregation
window data allowed for similar performance, FA’s AUC
is 0.001 higher than XBG’s. The model created with both
filters on the aggregated time and participants’ replies time
(scenario TRFA) TRFA scored between TR and FA on AUC
and the same pattern repeated for accuracy.

The models created with the unlabeled tasks (ULT) filled
by the most common task per app per user (ULT) performs
the worst on the AUC metric. The meta-features selection
filtering (MT) performance is only of 0.801 for AUC and
0.931 accuracy.1

Table 8 shows the selected features and their importance.
The “user accomplished task” is the most important feature.
The on-device prediction model OD scored on 0.76 on AUC
and 0.925 on accuracy. The “feasible” features selected for
this model did not allow for higher performance.

Integration expectation (EX) in our model is beneficial
to predict QoE, EX scores higher on all the metrics, with an
AUC of 0.874 ± 0.027, 0.956 ± 0.007 accuracy, 0.967 ±
0.006 for precision and a recall of 0.987 ± 0.004. We com-
pute the p-value for each metrics compared with the candid
scenario result (XBG), for all metrics except recall we found
p < 𝛼 ( pAUC = 8.900e-08, paccuracy = 8.049e-10 , pprecision =
1.415e-08 and precall = 0.028). Our last result showed that
expectation is linked to QoE for interactive application, dur-
ing a living lab study “in the wild”.

Overall, the better model to predict QoE is EX. We com-
pare AUC, accuracy and precision metrics of EX to all the
other models and found p < 𝛼 . For recall, the p-values from
the comparisons with XBG

33
,XBG,TR,ULT and FA are infe-

rior to �.

1  XBG, TR, FA, and ULT models.

	 Quality and User Experience (2020) 5:10

1 3

10  Page 12 of 18

Discussion

In this section, we discuss our findings from building QoE
prediction models with several different features, filtering,
and aggregation methods. First, we discuss the rating qual-
ity and their influence over our models (“Ratings quality”
section), then we argue about our features choices and aggre-
gation method (“Features wranglings” section). Then, we
discuss the performances and the implementation of our
on-device prediction model (“FOn-device prediction” sec-
tion). Finally, we share our recommendations for smartphone
application developers (“Recommendations for the applica-
tion developers” section).

Ratings quality

In light of our results, we saw that the annotators’ rating
quality varies from one to another. Users 1 and 8) always
provided the same ratings, even if they were rating differ-
ent applications, as seen by the distribution in Fig. 5. User
25 provided only one rating of “Low” QoE. The previous
assumption that those users’ ratings could be discarded to
obtain an increase in QoE model performances had been
wrong, as showed by our attempt with the TR model. A way
to solve this issue in our following studies would be to test
the participants with fake-EMAs. We could ask them to rate
a false application usage (e.g., with a wrong time or wrong
application name) and observe if they communicate about
the bogus questions.

Filtering the samples where the participants replied much
later after the application usage occurred resulted in better
models. The threshold for the rating reliability (i.e., the trust

Fig. 5   Applications distribution per participant

Fig. 6   QoE Modeling Process Pipeline

Quality and User Experience (2020) 5:10	

1 3

Page 13 of 18  10

in the participant annotation) was an answer provided within
14.85 minutes. The rating’s reliability is taken into account
before selecting the participant’s data for training a model.
Convincing the participant to provide a rating just after the
application usage is challenging.

Features wranglings

The model ULT scores less than the other models, as we
see the task accomplished in the application by the user is
the most important feature for QoE prediction, as far as we
are concerned. The importance of user tasks to accomplish
is ranked first in Table 8. Hence, our method to retrieve the
unlabeled task samples to train our model was wrong.

The MT model, trained with a reduced set of features,
obtaining higher accuracy and AUC than ULT. The meta-
features selection (“Meta-features Selection (MT)” section)
based on the features’ importance from the previous model
shows that eXtreme Gradient Boosting could automatically
select the essential features for building a model.

We compared our features with the ones from the related
work [17]. We saw a higher focus on system-based features
(i.e., QoS). Their models were solely trained on one appli-
cation per model, on cellular networks, with high precision
QoS data. We used more features based on the user needs in
the application and its context.

On‑device prediction

Machine learning prediction is often directly executed in
the cloud. But an Internet connection is not always avail-
able depending on the user’s context (e.g., mobile connec-
tion in a train tunnel is not available). Hence, we built an
on-device prediction model to mitigate this context strain.
The limited set of features available for making an on-
device prediction model does not perform as well as the
other models. The netstats command output was of high
importance feature in our past models. The knowledge of
the current TCP session states and UDP flows made the
models score better. Android has many APIs to query the

Table 4   Network features as collected via mQoL-Log during application usage

Features Description Type/Unit

is_connected Connection status from Android OS Boolean
Connection type Network connection type (Fig. 3) Categorical
WiFi level Signal strength of connected Access Point Float/dbm
WiFi speed WiFi interface speed Float/Mbps
Cell strength Signal strength of connected cell tower Float/dbm
Cellular down bandwidth Cell downstream bandwidth Float/Kbps
Cellular up bandwidth Cell upstream bandwidth Float/Kbps
win_div_net Aggregation window for network events around the application usage time Int/minutes
rxt_packets_time Packets received per seconds during win_div_net Float/pps
txt_packets_time Packets sent per seconds during win_div_net Float/pps
rxt_bytes_time Bytes received per seconds during win_div_net Float/Bps
txt_bytes_time Bytes sent per seconds during win_div_net Float/Bps
RTT

mean
Mean Round-Trip Time of the 5 pings Float/minutes

RTT
variance

variance Round-Trip Time of the 5 pings Float/minutes
Netstats: TCP states count during

win_div_net
LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-

WAIT-2, CLOSE-WAIT, CLOSING, TIME-WAIT, CLOSED [30]
Int/Categorical

Table 5   QoE prediction:
metrics on the validation
datasets for multiple common
classifiers

Classifier AUC​ Accuracy [%] Precision [%] Recall [%]

K-nearest neighbours (KNN) 0.796 ± 0.036 0.758 ± 0.014 0.969 ± 0.007 0.765 ± 0.014
Decision tree (DT) 0.612 ± 0.056 0.913 ± 0.016 0.952 ± 0.01 0.955 ± 0.012
Random forest (RF) 0.758 ± 0.029 0.908 ± 0.014 0.955 ± 0.01 0.946 ± 0.01
Logistic regression (LR) 0.775 ± 0.024 0.823 ± 0.008 0.967 ± 0.005 0.839 ± 0.01
Stochastic gradient descent (SGB) 0.773 ± 0.027 0.84 ± 0.006 0.964 ± 0.006 0.86 ± 0.005
Naive bayes (NB) 0.685 ± 0.019 0.087 ± 0.012 0.956 ± 0.039 0.021 ± 0.005
Gradient boosting (GB) 0.774 ± 0.027 0.916 ± 0.013 0.951 ± 0.011 0.959 ± 0.007
eXtreme boosting gradient (XBG) 0.816 ± 0.017 0.931 ± 0.01 0.952 ± 0.009 0.975 ± 0.006

	 Quality and User Experience (2020) 5:10

1 3

10  Page 14 of 18

network state, but none of them is fine-grained. We trained
another on-device model with ratings provided in the same
time-frame as the TR models’ thresholds. We observed the
same behavior as before. Namely, the models with filtered
response have higher accuracy. In this case (e.g., scenario
TR+OD), the model performs worse than the OD model
with 0.782 ± 0.027 in AUC, 0.932 ± 0.008 accuracy and

0.952 ± 0.007 precision but it obtains an increase of recall
with 0.977 ± 0.006.

On-device prediction resolve issues linked to data pri-
vacy, the input information does not leave the smartphone
and the XBG model runs directly on the mobile devices.
However, it has shortcomings. The device has to be powerful
enough to handle a high number of predictions simultane-
ously when the phone is processing its normal workload
(already running on-screen application and background ser-
vices). It also consumes extra energy and processor time.

Recommendations for the application developers

The application developer should optimize their application
to seamlessly handle “Low” QoE, depending on what the
user wants to accomplish with the application. “Low” QoE
ratings are higher when the user is ’writing’ and ’tilting’
between physical activity, hence with this information, the
developer could provide a better way of inputting text in
their messaging application (e.g., proposing predefined short
answer from a half screen size touch area). What is essen-
tial for an application developer is that with better QoE, a
user is more effective; spends less time on the application

Table 6   Times to Reply (TR) to EMAs per user

User ID Time to reply
mean ± sem
[min]

Minimum [min] Maximum [min]

1 32.11 ± 20.86 0.02 641.41
2 10.84 ± 10.86 0.02 666.18
3 7.14 ± 5.73 0.02 524.20
4 0.58 ± 0.14 0.01 4.11
5 12.25 ± 12.4 0.01 870.12
6 18.41 ± 16.89 0.01 774.19
7 3.5 ± 1.93 0.03 140.19
9 1.39 ± 0.87 0.02 50.16
10 6.64 ± 7.15 0.02 544.88
11 6.85 ± 2.64 0.01 112.61
12 14.53 ± 7.8 0.01 511.51
13 40.05 ± 30.29 0.03 1282.35
14 3.66 ± 2.7 0.01 203.57
15 21.85 ± 12.6 0.02 774.97
16 32.86 ± 31.29 0.01 1569.44
17 12.6 ± 11.96 0.01 755.89
18 27.47 ± 11.27 0.01 234.51
19 31.99 ± 21.11 0.03 813.43
20 6.76 ± 7.23 0.01 592.61
21 1.17 ± 0.86 0.01 59.88
22 2.45 ± 1.46 0.02 80.83
23 11.2 ± 8.48 0.02 515.09
24 5.96 ± 2.4 0.01 62.58
25 11.39 ± 11.19 0.02 543.64
26 23.41 ± 21.07 0.01 1006.80
27 28.51 ± 22.69 0.03 1088.75
28 6.32 ± 2.39 0.05 111.54
29 5.83 ± 5.53 0.02 553.98
30 6.56 ± 7.06 0.02 583.67
31 12.44 ± 8.96 0.01 551.27
32 15.33 ± 6.42 0.03 140.73
33 15.47 ± 9.25 0.01 551.64
34 15.84 ± 13.34 0.02 802.23
35 15.72 ± 14.33 0.01 794.24
36 4.98 ± 2.26 0.01 105.39
37 65.23 ± 42.98 0.03 1732.94
38 13.13 ± 12.54 0.01 768.73
D38 14.85 ± 0.95 0.02 ± 0.01 577.89 ± 0.54

Table 7   Aggregation Features (FA) Threshold in minutes for each
mQoL-Log service

mQoL-Log lollection services (Table 2) FA38 [min]

Network 0.56 ± 0.50
Ping/RTT​ 3.87 ± 0.53
Battery 0.11 ± 0.03
Physical activity 4.03 ± 0.22
Touches 0.56 ± 0.50

Table 8   Aggregated Features Importance from TR, FA and ULT 

Feature name table 2 , 4 Importance
mean ± sem [%]

On device
android feasi-
bility

Task 38.37 ± 2.64 ✓

Physical activity 9.03 ± 0.53 ✓

Application name 12.04 ± 0.77 ✓

Battery level 2.94 ± 0.12 ✓

Cell strength 4.70 ± 0.12 ✓

Network type 3.05 ± 0.45 ✓

is_connected 2.15 ± 0.10 ✓

Cellular down bandwidth 1.10 ± 0.11 ✓

Cellular Up bandwidth 1.75 ± 0.12 ✓

Aggregated packets traffic stats 1.20 ± 0.10
win_div_net 3.44 ± 0.12 ✓

Quality and User Experience (2020) 5:10	

1 3

Page 15 of 18  10

accomplishing the intended tasks faster, but potentially also
uses more features in an application.

We propose three recommendations for the application
developer. They firstly should constantly and accurately
monitor the current user context. A change in physical activ-
ity, battery consumption, network type, or time spent in their
application are a great indicator of QoE. Android OS API
allows accessing those data in a simple way via APIs. Sec-
ondly, they should integrate a mitigation solution in the case

of “Low” QoE. If a model as ours is complex to orchestrate,
a cheaper solution for a heavy network application can be a
simple ping to their server. If the main action in their appli-
cation is impacted, they should provide real-time informa-
tion to the user concerning the issue (e.g., notification to
retry with a countdown). As we found out, the model built
with expectation as a feature performed better (higher AUC,
accuracy, recall, and precision); expectation plays a signifi-
cant role in QoE. Thirdly, the application developer should

Table 9   Model’s features per
scenario

Perspectives Features G
1 MT TRFA EX OD Casas

et. al.
[17]

Context Physical activity ✓ ✓ ✓ ✓ ✓

Location ✓

User Task ✓ ✓ ✓ ✓ ✓

Expectation ✓

Duration user session ✓ ✓ ✓

System Application name ✓ ✓ ✓ ✓ ✓ ✓

Battery level ✓ ✓ ✓ ✓ ✓

Cell strength ✓ ✓ ✓ ✓ ✓ ✓

Network type ✓ ✓ ✓ ✓ ✓ ✓

IP version ✓ ✓ ✓ ✓

is_connected ✓ ✓ ✓ ✓ ✓

Cellular down bandwidth ✓ ✓ ✓ ✓ ✓

Cellular up bandwidth ✓ ✓ ✓ ✓ ✓

Handover ✓ ✓ ✓

Netstats ✓ ✓ ✓

Aggregated packets traffic stats ✓ ✓ ✓ ✓

RTT
mean

✓ ✓ ✓

RTT
var

✓ ✓ ✓

WiFi level ✓ ✓ ✓ ✓

WiFi speed ✓ ✓ ✓ ✓

win_div_net ✓ ✓ ✓ ✓ ✓

Cell ID ✓

Cell Operator ✓

TCP flow ratio ✓

Duration flow ✓

Table 10   QoE Models
performance on test datasets for
each scenario

Scenario AUC​ Accuracy Precision [%] Recall [%]

XBG
33

[3] 0.829 ± 0.028 0.939 ± 0.008 0.953 ± 0.007 0.984 ± 0.004
XBG 0.812 ± 0.033 0.938 ± 0.007 0.952 ± 0.007 0.984 ± 0.004
TR 0.83 ± 0.033 0.938 ± 0.007 0.953 ± 0.006 0.983 ± 0.004
ULT 0.723 ± 0.034 0.929 ± 0.009 0.94 ± 0.009 0.987 ± 0.003
FA 0.813 ± 0.038 0.924 ± 0.008 0.94 ± 0.006 0.98 ± 0.008
TRFA 0.822 ± 0.041 0.926 ± 0.011 0.944 ± 0.01 0.978 ± 0.007
MT 0.801 ± 0.03 0.931 ± 0.008 0.949 ± 0.008 0.979 ± 0.005
EX 0.874 ± 0.027 0.956 ± 0.007 0.967 ± 0.006 0.987 ± 0.004
OD 0.76 ± 0.037 0.925 ± 0.01 0.95 ± 0.006 0.971 ± 0.01

	 Quality and User Experience (2020) 5:10

1 3

10  Page 16 of 18

use common design and usability patterns provided by the
OS maker to optimize expectations and, by doing so, QoE.

Modelling highlights

Quality and the quantity of data is vital in obtaining a repre-
sentative model. Our study focused on modeling the Qual-
ity of Experience of smartphone users, with their provided
ground truth and their smartphone’s data. Overall, the data
collection tools have to be tested under multiple contexts to
limit the loss of data caused by network instability and par-
ticipant environment. Once the data are acquired, their qual-
ity has to be controlled. It is evident from the models created
with reliable data e.g., given the higher availability of the
ground truth, one can obtain higher scoring models. Hence,
during modeling, the features’ selection, data wrangling,
and aggregation steps must be carefully executed to limit
model building constrains. The human aspects, such as the
user expectation, need to be conscientiously included in the
experiment design and the later data analysis. For example,
the memory from past application used experiences could
create bias when the participant assesses its momentary
experience. Thus, following those recommendations permit
the creation of QoE models from in-the-wild studies data.

Study limitations

We consider the following study limitations. First, related to
the devices used. This study was only possible on Android
OS devices, as data collection is more difficult on iOS. We
cannot thus generalize our findings for another operating
system platform. Additionally, the collection of the number
of frames dropped by an application’s UI would have been
a plus to understand the hardware status. New security pro-
tection and updated background service execution policy
are problematic for data collection without root access. The
policy occasionally killed our mQoL-Log collection services
to reduce the energy consumption on the smartphone. We
estimate we have lost 3.5% of valuable data as a result.

The second limitation was in our choice of applications.
We did not include high bandwidth need, which was stud-
ied by other [4], particularly video QoE consumption on
smartphones. The landscape of smartphone applications is
evolving each day with new innovative services, modeling
QoE for each new application, and their underlying features’
are not a scalable method. Hence, we tried to generalize QoE
prediction based on user action within an application. The
limitation is that the user’s momentary emotion and stress
level can influence the annotation of their application usage,
as well as a participant, can rate a “High” QoE application

usage negatively because of the content of the application.
The participants were told to avoid this effect, but then it
could still influence our models. Smartphone operating sys-
tem (OS) makers created APIs to obtain the user’s context
to allow application developers to write immersive “smart”
applications. We use those APIs to gather the participant’s
context. Hence, we trust the data validity provided by the
OS. Another limitation is the EMA’s questions. They could
leave room for interpretation. Hence, they should be updated
for our next study to remove this undesirable effect. Further-
more, the dataset collected does not contain a representative
population. The uneven age group distribution of our study
participants is a limitation of this work’s representativeness.
We could not make any conclusions based on demographic
information. The presented use case, as well as the tools lev-
eraged to collect the data, the smartphone hardware, and the
set of participants are specific to our study. As the reproduc-
ibility of our results can be challenged, the presented path
towards building smartphone application’s QoE models’ is
a first step toward accurate models. Overall, this and similar
in-the-wild studies are prone to such limitations, and the
number of participants (e.g., implying higher cost per a par-
ticipant), the study’s duration (i.e., much longer and intru-
sive than in-the-lab study) and the survey (EMA) respondent
fatigue may have further impacted our results.

Conclusions and future work areas

In this paper, we presented an attempt to model and predict
smartphone application QoE from a living lab study, with
38 participants for four weeks. We showed that collecting
in-situ QoE rating and collecting smartphone background
data enables us to use common machine learning techniques
to build an accurate predictive model for “High” and “Low”
QoE. We investigated multiple data filtering scenarios that
generated more accurate models in different scenarios. The
data preparation (e.g., filtering and aggregation) allowed an
improvement in our QoE models’ performance. The filtering
of the participant QoE ratings was overall beneficial to the
models. Namely, the models were performing better when
trained on ratings provided closer to the application usage
time. We investigated the factors influencing QoE in our
dataset. Our results showed that rating the application usage
session, just after the usage, permitted more reliable models.
The task to accomplish with the application, by the user, and
the application itself are important factors, testifying on the
difficulty of generalization for this type of all-application
QoE model, contrary to the per-app QoE model. We deter-
mined that application developers should have user expec-
tations in mind when designing an application. We found

Quality and User Experience (2020) 5:10	

1 3

Page 17 of 18  10

expectation based QoE models to perform better. The mobile
operating systems and their applications are more than ten-
years-old. Their users now have a high expectation of how
the application and the system will behave. We extended
our work to the challenging domain of on-device predic-
tion models, its difficulty, and its performance. Overall, our
hybrid qualitative and quantitative method performed accu-
rately to model QoE. In the future, we plan to implement a
production-ready pre-trained prediction model integrating
more features inside our Android application as the user’s
position (on-device only). The application will predict if, in
the near future (e.g., 5 minutes), the current QoE application
usage session will be “High” or “Low”. If the prediction
shifts because of the context (e.g., train inside a tunnel), the
application can inform the user and prepare itself for the
change. Those predictions, rated by the user, would allow us
to use reinforcement learning to enhance our model compa-
rable to recommendation systems. We also plan to integrate
other factors influencing living lab study and potentially the
collected data quality: the other aspects of the user’s context
(e.g., mental state), previous experience, surroundings, oper-
ating system updates, and newly available features.

Acknowledgements  The authors thank the study’s participants and
funding agencies SNSF MIQmodel (157003), AAL GUARDIAN
(6-120-CP) and H2020 WellCo (769765).

Funding  Open access funding provided by University of Geneva.

Compliance with ethical standards 

Conflict of Interest  The authors declare that they have no conflicts of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Le Callet P, Möller S, Perkis A (2012) Qualinet white paper on
definitions of quality of experience. European network on quality
of experience in multimedia systems and services (COST Action
IC 1003), 3

	 2.	 Sackl A, Schatz R (2014) “Got what you want? Modeling expec-
tations to enhance web QoE prediction,” 2014 6th International
Workshop on Quality of Multimedia Experience. QoMEX
2014(1):57–58

	 3.	 De Masi A, Wac K (2019) “Predicting quality of experience of
popular mobile applications from a living lab study,” in 2019
Eleventh International Conference on Quality of Multimedia
Experience (QoMEX) (QoMEX 2019), (Berlin, Germany), June

	 4.	 Casas P, Seufert M, Wehner N, Schwind A, Wamser F (2018)
“Enhancing machine learning based qoe prediction by ensemble
models,” In: 2018 IEEE 38th International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 1642–1647, July

	 5.	 Schatz R, Egger S (2011) “Vienna surfing : assessing mobile
broadband quality in the field,” In:Proceedings of the first ACM
SIGCOMM workshop on Measurements up the stack - W-MUST
’11, (New York, New York, USA), p. 19, ACM Press, aug

	 6.	 Schatz R, Egger-Lampl S, Platzer A (2011) Poor, good enough
or even better? bridging the gap between acceptability and qoe of
mobile broadband data services. p. 06

	 7.	 Casas P, Sackl A, Egger S, Schatz R (2012) “YouTube & Face-
book Quality of Experience in mobile broadband networks,” 2012
IEEE Globecom Workshops. GC Wkshps 2012:1269–1274

	 8.	 Sackl A, Casas P, Schatz R, Janowski L, Irmer R (2015) Quantify-
ing the Impact of network bandwidth fluctuations and outages on
Web QoE. QoMEX 20:1–6

	 9.	 De Moor K, Ketyko I, Joseph W, Deryckere T, De Marez L, Mar-
tens L, Verleye G (2010) Proposed framework for evaluating qual-
ity of experience in a mobile, testbed-oriented living lab setting.
Mob Netw Appl 15(3):378–391

	10.	 Ickin S, Wac K, Fiedler M, Janowski L, Jin-Hyuk H, Dey AK,
Hong J-H, Dey AK (2012) Factors influencing quality of experi-
ence of commonly used mobile applications. Commun Mag IEEE
50:48–56

	11.	 Chen QA, Luo H, Rosen S, Mao ZM, Iyer K, Hui J, Sontineni K,
Lau K (2014) “QoE Doctor : Diagnosing Mobile App QoE with
Automated UI Control and Cross-layer Analysis,” In: Proceedings
of the 2014 Conference on Internet Measurement Conference -
IMC ’14, (New York, New York, USA), pp. 151–164, ACM Press,
nov

	12.	 Wamser F, Seufert M, Casas P, Irmer R, Tran-Gia P, Schatz
R, (2015) “YoMoApp: A tool for analyzing QoE of YouTube
HTTP adaptive streaming in mobile networks,” 2015 European
Conference on Networks and Communications, EuCNC 2015,
pp. 239–243,

	13.	 Casas P, Varela M, Fiadino P, Schiavone M, Rivas H, Schatz R
(2015) “On the analysis of QoE in cellular networks: From subjec-
tive tests to large-scale traffic measurements,” IWCMC 2015 - 11th
International Wireless Communications and Mobile Computing
Conference, pp. 37–42,

	14.	 Casas P, Seufert M, Wamser F, Gardlo B, Sackl A, Schatz R
(2016) Next to You: monitoring quality of experience in cellular
networks from the end-devices. IEEE Trans Netw Service Manage
13(2):181–96

	15.	 Casas P, Varela M, Fiadino P, Schiavone M, Rivas H, Schatz R
(2015) “On the analysis of qoe in cellular networks: From subjec-
tive tests to large-scale traffic measurements,”In: 2015 Interna-
tional Wireless Communications and Mobile Computing Confer-
ence (IWCMC), pp. 37–42, Aug

	16.	 Casas P, Gardlo B, Seufert M, Wamser F, Schatz R (2015) “Tam-
ing qoe in cellular networks: From subjective lab studies to meas-
urements in the field,” In: 2015 11th International Conference on
Network and Service Management (CNSM), pp. 237–245, Nov

	17.	 Casas P, D’Alconzo A, Wamser F, Seufert M, Gardlo B, Schwind
A, Tran-Gia P, Schatz (2017) “Predicting QoE in cellular networks
using machine learning and in-smartphone measurements,” 2017
9th International Conference on Quality of Multimedia Experi-
ence, QoMEX 2017, vol. 02152, pp. 3–8,

	18.	 Casas P (2018) “On the analysis of network measurements
through machine learning: The power of the crowd,” In: 2018

http://creativecommons.org/licenses/by/4.0/

	 Quality and User Experience (2020) 5:10

1 3

10  Page 18 of 18

Network Traffic Measurement and Analysis Conference (TMA),
pp. 1–8, June

	19.	 Casas P, Vanerio J, Fukuda K (2017) “Gml learning, a generic
machine learning model for network measurements analysis,” In:
2017 13th International Conference on Network and Service Man-
agement (CNSM), pp. 1–9, Nov

	20.	 Sackl A, Masuch K, Egger S, Schatz R (2012) “Wireless vs. wire-
line shootout: Howuser expectations influence quality of experi-
ence,” 2012 4th International Workshop on Quality of Multimedia
Experience, QoMEX 2012, pp. 148–149,

	21.	 Zeithaml V, Berry L, Parasuraman AP (1993) The nature and
determinant of customer expectation of service. J Acad Market
Sci 21:1–12

	22.	 Sackl A, Schatz R, Raake A (2017) More than I ever wanted or
just good enough? User expectations and subjective quality per-
ception in the context of networked multimedia services. Qual
User Exp 2(1):3

	23.	 Shiffman S, Stone AA, Hufford MR (2008) Ecological momentary
assessment. Ann Rev Clin Psychol 4(1):1–32

	24.	 ITU-T Recommendation P.800.1 (2007) Mean Opinion Score Ter-
minology. International Telecommunication Union, Geneva

	25.	 ITU-T Recommendation G.107 (2009) The E-model: a computa-
tional model for use in transmission planning. International Tel-
ecommunication Union, Geneva

	26.	 De Masi A, Ciman M, Gustarini M, Wac K (2016) “mqol smart
lab: Quality of life living lab for interdisciplinary experiments,”
In: Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16.
NY, USA), ACM, New York

	27.	 De Masi A, Wac K (2018) “You’re using this app for what? mqol
living lab study”, In: UbiComp/ISWC’18 Adjunct, UbiComp ’18.
ACM, New York, USA

	28.	 Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the
behavioral sciences. Houghton Mifflin

	29.	 Chen T, Guestrin C (2016) “XGBoost: A scalable tree boosting
system,” In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16,
(New York, NY, USA), pp. 785–794, ACM,

	30.	 Information Sciences Institute University of Southern California
(1981) Transmission control protocol. Internet Requests for Com-
ments RFC 793

	31.	 Larson R, Delespaul PAEG, Csikszentmihalyi M (1992) Analyz-
ing Experience Sampling data: a guide book for the perplexed.
Cambridge University Press, Cambridge, pp 58–78

	32.	 Arlot S, Celisse A (2010) A survey of cross-validation procedures
for model selection. Statist. Surv. 4:40–79

	33.	 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)
Smote: synthetic minority over-sampling technique. J Artif Intell
Res 16:321–357

	34.	 Casas P, Wassermann S (2017) “Improving qoe prediction in
mobile video through machine learning,” In: 2017 8th Interna-
tional Conference on the Network of the Future (NOF), pp. 1–7

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Towards accurate models for predicting smartphone applications’ QoE with data from a living lab study
	Abstract
	Introduction
	Related work
	Quantifying QoE on laptop
	Smartphone applications’ QoE
	User’s expectation and QoE

	The approach: user study
	Study protocol
	Ecological momentary assessment (EMA)MOS
	Smartphone-based data collected
	Collected data summary

	Building QoE prediction models
	Features
	QoEMOS classification
	Classifier selection
	Candid model (XBG)
	Filter “time to reply” (TR)
	Unlabeled tasks (ULT)
	Filter features aggregation time (FA)
	Merged filter replies (TR) and features aggregation (FA) time (TRFA)
	Meta-features selection (MT)
	Expectation (EX)
	On-device prediction (OD)

	Results
	Overview of previous work
	Scenarios’ results

	Discussion
	Ratings quality
	Features wranglings
	On-device prediction
	Recommendations for the application developers
	Modelling highlights

	Study limitations
	Conclusions and future work areas
	Acknowledgements
	References

