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Abstract
The i-vector framework has been widely used to summarize speaker-dependent information present in a speech signal. 
Considered the state-of-the-art in speaker verification for many years, its potential to estimate speech recording distortion/
quality has been overlooked. This paper is an attempt to fill this gap. We conduct a detailed analysis of how distortions are 
captured in the total variability space. We then propose a full-reference speech quality model based on i-vector similarities 
and three no-reference approaches. The first no-reference approach makes use of a single reference i-vector based on the 
average of i-vectors extracted from clean signals. A second approach relies on a vector quantizer codebook of representative 
clean speech i-vectors. Lastly, i-vectors and subjective ratings were used to train a no-reference deep neural network model 
for speech quality assessment. Four experiments have shown that the proposed methods, based on the i-vector speech repre-
sentation, are well-suited for assessing speech quality. Results show correlations with subjective quality judgments similar to 
those achieved with standardized instrumental algorithms, particularly for degradations caused by noise and reverberation.ϖ

Keywords  Speech quality assessment · Instrumental quality measurement · I-vector · Speech enhancement

Introduction

Estimating the perceived quality of existing and emerging 
multimedia services and applications is important, espe-
cially for providers seeking to optimize their services and 
maximize customer experience [1]. Real-time quality moni-
toring, for example, can help with network design and devel-
opment, as well as with online adaptation to assure that the 
end users’ expectations are met. As new services and tech-
nologies emerge, quality monitoring tools need to be able 
to characterize new artifacts and distortions that may arise.

Traditionally, subjective listening tests have been used 
and shown to be reliable [2]. In such a scenario, speech sig-
nals are presented to listeners (either naive or expert lis-
teners, depending on the application) who judge the signal 
quality on a 5-point scale. The mean opinion score (MOS), 
which represents the perceived speech quality after leveling 
out individual factors [3], is attained after averaging all par-
ticipant scores over a specific condition. Such subjective 
measurements, however, are not always feasible as they: (1) 
require many listeners; (2) can be laborious and time-con-
suming; (3) can be expensive; and (4) cannot be performed 
in real-time [4].

Instrumental quality measures, in turn, have been 
explored over the years to overcome these limitations. Instru-
mental measures are built to be highly correlated with sub-
jective listening MOS scores, thus effectively replacing the 
listener panel by a real-time computational algorithm. These 
instrumental measures can be classified as full-reference, if 
they require a reference signal, or no-reference, if they oper-
ate only on the tested signal to compute the quality measure-
ment. The International Telecommunication Union (ITU-T) 
has standardized several instrumental quality measures over 
the last couple of decades. The most widely recognized full-
reference measure is the ITU-T Recommendation P.862, or 
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Perceptual Evaluation of Speech Quality (PESQ) [5], origi-
nally developed for narrow-band speech and later upgraded 
for wideband signals [6]. Recently, PESQ was superseded 
by ITU-T Recommendation P.863, or Perceptual Objective 
Listening Quality Prediction (POLQA) [7, 8], to account 
for emerging distortions, such as those seen with speech 
enhancement algorithms [9]. On the no-reference side, the 
latest method is the ITU-T Recommendation P.563 [10], 
which has been developed for narrow-band speech transmis-
sion networks. Recent research has shown that ITU-T P.563 
does not perform well for conditions involving hands-free 
speech and speech enhancement algorithms [11, 12]; thus 
further innovations are still needed.

In this paper, we build upon the characteristics of the 
widely-used i-vector signal representation. The framework 
can be seen as a feature extraction procedure that depends 
basically on the observed speech signal, the universal back-
ground model (UBM) and the total variability matrix (or T 
matrix), which can be trained offline. We propose several 
new full-reference and no-reference instrumental quality 
measures applicable for hands-free speech, speech recorded 
in noisy real-world environments, and speech processed by 
enhancement algorithms. In particular, we expand the work 
in [13] to propose a full-reference measure based on the 
cosine similarity between the i-vector of a processed signal 
and the i-vector from its clean counterpart. Additionally, 
we explore three new no-reference variants, with two of 
them relying on different models of clean i-vector behav-
iour. I-vectors are computed from two different feature types, 
namely the traditional mel-frequency cepstral coefficients 
(MFCCs) and modulation spectral features (MSF). The lat-
ter have been shown useful in hands-free applications [14].

The main motivation behind this work lies in the fact 
that i-vectors are known to convey both channel and speaker 
information. Nevertheless, most research in the field has 
focused on the speaker characteristics of the representa-
tion (e.g., for speaker recognition) and channel effects have 
been usually discarded or overlooked. As shown in previ-
ous research [15, 16], however, the performance of i-vector 
based applications is severely affected by environmental fac-
tors, such as background noise and reverberation. To miti-
gate these channel effects, compensation techniques, such as 
linear discriminant analysis (LDA) and within class covari-
ance normalization (WCCN) [17], are commonly applied. 
Here, unlike previous work, we utilize this information as a 
correlate of perceived speech quality. Moreover, as i-vectors 
are mapped to a fixed length feature vector, regardless of the 
originating signal length, full-reference quality assessment 
can bypass time-alignment, which is a crucial and error-
prone step for PESQ and POLQA [3].

The remainder of this paper is organized as follows. Back-
ground and proposed method in section presents the pro-
posed method and background on the i-vector framework. 

Experimental setup in section describes the experimental setup 
and “Experimental results and discussion” in section presents 
the results and discussion. Lastly, conclusions are presented 
in “Conclusions and future work” section.

Background and proposed method

In this section, the proposed i-vector framework is presented. 
The steps to attain the features used to extract the i-vectors are 
also described. The measure used for estimating the distortion 
between reference and degraded signals is also discussed, as 
well as the effect of distortions on the i-vector representation.

The i‑vector framework

The i-vector framework was developed inspired by the joint 
factor analysis (JFA) model [18]. The JFA can be seen as 
a Gaussian distribution of speaker and session-dependent 
supervectors. It is assumed that most of the variance in the 
supervector population is due to hidden variables, namely 
speaker and channel factors [19]. Both frameworks consider 
speaker and channel variability to lie in a low-rank subspace. 
Each component can be represented by a low-dimensional 
set of factors, which operate along the principal dimensions 
(also known as the eigenspace) of the corresponding com-
ponent [20]. For JFA, this is represented as follows:

where m is the speaker- and channel-independent super-
vector, V the speaker eigen-voice matrix, D the diagonal 
residual matrix, U is the eigen-channel matrix, and y, z, x 
correspond to the low-dimensional eigen-voice, speaker-spe-
cific eigen-residual, and eigen-channel factors, respectively.

While the JFA approach models speaker and channel 
variability in separated subspaces, the i-vector framework 
considers only one subspace [15]. The argument for this new 
approach relies on the fact that channel factors estimated by 
JFA contain information about speakers, as shown in the 
experiments performed in [15]. The TV space, as for the 
JFA, is also defined by Gaussian mixture model (GMM) 
supervectors, which contain the mean values of a GMM uni-
versal background model (UBM) [20]. For instance, if the 
total number of mixture components is equal to K and the 
dimension of the acoustic feature vectors is denoted by F, 
then the supervector for a given recording is the concatena-
tion of the mean vectors associated with the mixture com-
ponents, which leads to a supervector of dimension KF. The 
supervector in the TV space can be represented as follows:

where M is the speaker- and channel-dependent supervector 
extracted from a specific recording, m is the independent 

(1)M = m + Vy + Ux + Dz

(2)M = m + Tw,
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supervector from the UBM, T corresponds to the total vari-
ability matrix trained with multiple recordings using the 
same procedure for learning the eigenvoice matrix [21], and 
w is a random vector with normal distribution, N(0, I). This 
vector is referred to either as the identity vector or i-vector, 
and conveys the total factors [20]. Note that m can be seen 
as a prior probability distribution for the speaker supervec-
tors, with the posterior probability distribution being derived 
from it in order to estimate speakers’ dependent supervectors 
lying in the same eigenspace [21].

Figure 1 depicts the steps involving the extraction of i-vec-
tors. Note that the framework ultimately maps a list of feature 
vectors into a fixed-length vector, w ∈ ℝ

D . These feature vec-
tors, denoted here as O = {ot}

N
t=1

, where ot ∈ ℝ
F , are extracted 

during the speech parameterization phase. In order to obtain w, 
a GMM model, � = ({pk}, {mk}, {�k}) , must be trained using 
multiple utterances. When such utterances come from different 
speakers, the model is referred to as a universal background 
model (UBM).

As depicted in Fig. 1, after training the GMM-UBM model, 
Baum-Welch statistics are extracted from each utterance u 
[22]. A total variability subspace is then learned and is used 
to estimate a low (and fixed) dimensional latent factor called 
the identity vector (i-vector) from adapted mean supervectors 
[23]. Note that the total factor w can be seen as the posterior 
distribution conditioned on the Baum-Welch statistics [15, 21], 
which is computed as follows:

(3)Nk =

L∑

l=1

P(k|yk, �)

(4)Fk =

L∑

l=1

P(k|yk, �)yk

where the k-th frame is represented by yk and L denotes the 
total number of frames extracted from a given utterance, and 
� is the UBM. The mean of the k-th mixture component is 
represented by mk . The posterior probability that the vector 
yk is generated from the mixture component k is given by 
P(k|yk, �) . Note that Eq. (3) and Eq. (4) represent the zero-th 
and first-order Baum-Welch statistics, respectively. Eq. (5) is 
the centralized version of Eq. (4) [15]. The i-vector is then 
attained by

with N(u) being a diagonal matrix of KF × KF dimension 
and F̃(u) is a supervector of dimension KF × 1 obtained by 
the concatenation of first-order Baum-Welch statistics F̃k 
for a given utterance u. A diagonal covariance matrix of 
KF × KF dimension is defined by Σ . Next, the two feature 
representations used to compute i-vectors are detailed.

Cepstrum parametrization

Mel-frequency cepstral coefficients (MFCC) have been 
widely used in speech applications for many years as they 
simulate the mel-scale present in the human cochlea [24]. 
Prior to their extraction, input speech signals re-sampled 
to 16 kHz are normalized to − 26 dBOV. The signals also 
undergo a pre-emphasis filter of coefficient 0.95, which is 
meant to balance low and high frequency magnitudes. A 
30-ms Hamming window with 50% overlap is applied before 
extracting the MFCCs. The Hamming window is used to 
remove edge effects [24]. The cepstral feature vector can 
then be extracted from each frame according to:

(5)F̃k =

L∑

l=1

P(k|yk, 𝜆)(yk − mk),

(6)w = (I + TtΣ−1N(u)T)−1TtΣ−1F̃(u),

Fig. 1   Block diagram describ-
ing the steps for i-vector 
extraction
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where cn is the n th mel-cepstral coefficient and Ym refers 
to the log-energy of the m th filter. In this work, a set of 13 
coefficients together with log energy, delta and delta-delta 
coefficients form the feature vector from each frame. As can 
be seen in (7), the MFCC representation is based on a short-
term log-power spectrum and a cosine transformation on 
the nonlinear mel scale of frequency. Note that although 
cepstral normalization is commonly performed to minimize 
channel effects, it was not applied here, as we are interested 
in capturing such channel/distortion information.

Modulation spectrum parameterization

The modulation spectrum corresponds to an auditory spec-
tro-temporal representation that captures long-term dynamics 
of the speech signal. It was shown in [26] that most speech 
content is concentrated under 20-Hz modulation frequency, 
whereas ambient artifacts, such as noise and reverberation, 
are beyond this threshold. Based on this insight, the authors 
proposed a measure called the speech-to-reverberation modu-
lation energy ratio (SRMR), which was found to correlate well 
with reverberation levels and speech intelligibility. Motivated 
by their findings, we explore the use of modulation spectral 
features (MSF) for i-vector extraction.

To compute the modulation spectral features, we followed 
the same processing pipeline proposed by [26] and depicted in 
Fig. 2. During the pre-processing step, the speech activity level 
is normalized to − 26 dBov (dB overload), thus eliminating 
unwanted energy variations caused by different loudness levels 
in the speech signal. Next, the pre-processed speech signal 
x̂(n) is filtered by a 23-channel gammatone filterbank, also 
simulating the cochlear processing [27]. The first filter of the 
filterbank is centered at 125 Hz and the last one at just below 
half of the sampling rate [26]. Each filter bandwidth follows 
the equivalent rectangular bandwidth (ERB) [27], which is an 
approximation of the bandwidths of the filters in human hear-
ing, as described below:

where fj represents the center frequency of the j-th filter. Q ear 
represents the asymptotic filter quality at high frequencies 

(7)cn =

M∑

m=1

[Ym]cos
[
�n

M

(
m −

1

2

)]
, n = 1, 2, 3, ...,N,

(8)ERBj =
fj

Q ear

+ B min ,

and B min is the minimum bandwidth for low frequencies. 
They are set, respectively, to 9.265 and 24.7.

The temporal envelope ej(n) is then computed from 
x̂j(n) , the output of the j-th acoustic filter, via the Hilbert 
transform:

where H{⋅} denotes the Hilbert Transform. Temporal enve-
lopes ej(n), j = 1,… , 23 are then windowed with a 256-ms 
Hamming window and shifts of 40 ms. The discrete Fourier 
transform F{⋅} of the temporal envelope ej(m;n) (m indexes 
the frame) is then computed in order to obtain the modula-
tion spectrum Ej(m, fm) , i.e.,

where m represents the m-th frame obtained after every 
Hamming window multiplication and fm designates modu-
lation frequency. The time variable n is dropped for conveni-
ence. Lastly, following recent physiological evidence of a 
modulation filterbank structure in the human auditory sys-
tem [28], an auditory-inspired modulation filterbank is fur-
ther used to group modulation frequencies into eight bands. 
These are denoted as Ej,k(m) , k = 1, ..., 8 , where j indexes 
the gammatone filter and k the modulation filter. Figure 3 
depicts the frequency response for the 8-channel modulation 
filterbank used in our experiments. Note that the filter center 
frequencies are equally spaced in the logarithmic scale from 
4 to 128 Hz.

(9)ej(n) =

√
x̂j(n)

2 +H{x̂j(n)}
2,

(10)Ej(m;fm) = |F(ej(m;n))|,

Fig. 2   Block diagram describing steps for computing the modulation spectrum representation

Fig. 3   Frequency responses of the 8-channel modulation filterbank, 
adapted from [25]
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Cosine similarity scoring

The cosine similarity measure has been widely used to com-
pare two supervectors in the total variability space [29]. It 
represents the angle between two total factor vectors, gener-
ated by (6) via the projection of two supervectors in the total 
variability space. The measure can be computed as follows:

where wref  is the i-vector extracted from the reference 
speech recording and wdeg is the i-vector representation for 
the degraded speech recording. Figure 4 represents the total 
variability space, comprising the speaker and channel factors 
for two speech recordings of the same speaker. Considering 
that the proposed model is full-reference, we can assume no 
speaker and speech variability in the two representations. 
That is, speech content will remain the same for the refer-
ence and degraded signal and only changes in the channel 
factors will be present, as depicted in Fig. 4. Note that when 
significant alterations occur in the channel factors, the angle 
between wref  and wdeg is expected to increase as well as the 
values of the cosine similarity. As such, the computation 
of the cosine similarity provides values close to 0 for high 
similarities and low distortions, and values close to 1 for low 
similarities and high distortions. Therefore, the similarities 
being captured are directly related to levels of distortions in 
the speech signal, as we show in the next section, and, thus, 
inversely proportional to speech quality.

Effects of distortions on the total variability 
subspace

In this section, we illustrate the impact of ambient noise 
on the i-vector representation to motivate our findings and 
hypotheses. For illustration purposes, we focus here only 
on reverberation and noise, as well as on MFCC features.

(11)cos(�) =
wref ⋅ wdeg

||wref || ⋅ ||wdeg||
,

t‑distributed stochastic neighbor embedding

In order to visualize the similarities between high-dimen-
sional data points, it is convenient to map them into a 
two or three-dimensional space. Such projection must 
preserve the distances between data points, maintaining 
the structure of the high-dimensional data as much as pos-
sible. Note that in this process the interpretation of the 
coordinates becomes less important whereas the distances 
between data points and their clusterization carry out 
much more meaning. Here, we adopted a tool commonly 
used in machine learning, namely t-distributed stochastic 
neighbor embedding (t-SNE).

Different from reduction techniques, such as princi-
pal components analysis (PCA) that attempts to keep the 
low-dimensional representations of dissimilar data points 
far apart, the t-SNE method keeps the low-dimensional 
representations of very similar data points close together. 
According to [30], the t-SNE technique can capture local 
structure of the high-dimensional data and at the same 
time keep global structure such as the presence of clus-
ters at several scales. To achieve this, the method embeds 
high-dimensional data into a lower-dimension space, usu-
ally two or three dimensions, by minimizing the Kullback-
Leibler divergence between the joint probabilities of the 
low-dimensional embedding and the high-dimensional 
data. The joint probability for the high-dimensional data 
can be expressed as:

where xi and xj are data points and �i is the variance of the 
Gaussian distribution centered at xi . Note that the condi-
tional probability, p(xj|xi) , is assumed to be high for nearby 
data points, xi and xj , and low when xi and xj are far apart 
[30]. For the low-dimensional data, the joint probability 
takes the form of:

where yi and yj are data points for data where we assume that 
the conditional probability, q(xj|xi) , is high for nearby data 
points, yi and yj , and low when yi and yj are far apart [30].

The cost function of the t-SNE is given by:

where p(xi, xi) and p(yi, yi) are set to zero as modeling inter-
ests lie on pairwise similarities. It is important to mention 
that the t-SNE is an improved version of the Stochastic 

(12)p(xj, xi) =
exp(−��xi − xj��2∕2�2

i
)

∑
k≠l exp(−��xk − xl��2∕2�2

i
)
,

(13)q(xj, xi) =
exp(−��yi − yj��2)∑
k≠l exp(−��yk − yl��2)

,

(14)C =
∑

i

KL(Pi||Qi) =
∑

i

∑

j

p(xj, xi)log
p(xj, xi)

q(xj, xi)
,

Fig. 4   Representation of speaker- and channel-dependent supervec-
tors of two recordings from the same speaker where only the channel 
factors are affected
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Neighbor Embedding (SNE), which attempts to mitigate 
the so-called “crowded problem” encountered during the 
optimization [30].

Effects of background noise

Background noise plays an important role in the perception 
of speech quality. Therefore, it is expected that an instrumen-
tal quality measure will be sensitive to changes in signal-
to-noise ratios (SNR’s). To summarize how the proposed 
model captures these changes, Fig. 5 depicts the effects of 
ambient noise on the TV subspace. For this, we added back-
ground noise at different levels (0, 5, 10, 15 dB) to clean 
speech files. In the figure, “Ref” stands for the correspond-
ing reference clean speech signals. In order to visualize the 
similarities between data points (i.e., between i-vectors), we 
use t-SNE to embed high-dimensional i-vectors into two-
dimensional space. Hence, each dot indicates an i-vector 
extracted from a speech recording and projected onto a two-
dimensional space.

In Fig. 5, the recordings are labelled by SNR levels in 
the range of 0–15 dB (see different colors). The reference 
signal, which contains no distortions, is labelled as “Ref.” 
Note that the speech recordings with the same distortion 
levels are closely clustered. Moreover, as the SNR decreases, 
the clusters deviate from the clean speech cluster, with larger 
“distances” being seen for noisier cases. It is expected that 
the cosine similarity measure will be able to capture this 
distance information.

To give the reader more insights into the expected behav-
iour of the cosine similarity index, Fig. 7a provides the dis-
tribution of MOS as a function of SNR and Fig. 7b gives 
the cosine similarity as a function of SNR. As can be seen, 
cosine similarity is inversely proportional to SNR levels, 
which in turn are directly related to MOS.

Effects of reverberation

Reverberation is characterized by the reflections of the 
speech signal on surfaces (e.g., walls) and objects present 
in an enclosed environment [31]. This directly changes the 
frequency response of the speech signal [32], which can have 
either positive or negative effects on the perceived quality 
of the speech. Early reflections, for instance, are desired as 
they cause changes in the signal timbre or coloration [32]. 
Late reflections, however, provide unwanted distortions 
represented by temporal smearing of the speech signal. As 
reverberation may affect the perceived quality of the speech 
[31], it is also expected that an instrumental quality measure 
will be able to rank different levels of reverberation, i.e., the 
time required for a signal to decay by 60 dB (also referred 
to as reverberation time or T60 ) [33]. In Fig. 6, we show how 
different levels of reverberation are captured and represented 
in the TV space. For this, a small sample of clean speech 
files, each with different speech content, was convolved with 
a impulse response (IR) representing the following rever-
beration times: 0.25 s, 0.48 s and 0.8 s. In the figure, “Ref” 
stands for the corresponding reference clean speech signals. 
As previously, as reverberation levels increase, greater “dis-
tances” from the clean speech recordings are observed. Note, 
for instance, that the blue dots indicating recordings with T60 
= 0.80 s are farther away from the red dots, which represent 
i-vector from clean recordings, than the purple dots, repre-
senting i-vectors from recordings with T60 = 0.25 s. This is 
expected as blue dots are the recordings with the highest 
amount of reverberation.

Label distribution verusus SNR levels

To give the reader more insights of the expected behaviour 
of the proposed instrumental measure, Fig.  7 provides the 

Fig. 5   i-Vector projection onto a 2-D space using t-SNE in the TV 
subspace at different levels of SNR

Fig. 6   i-vector disposition in the TV subspace at different levels of 
reverberation time (RT)
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distribution of MUSHRA scores [34] and cosine similarity 
according to values of SNR’s, which range from − 5 to 13 
dB, including clean signal (see condition “inf”). For this, we 
used the INRS dataset, which will be described in “Data-
base description” section. Note that, as mentioned before, 
cosine similarity is inversely proportional to perceived qual-
ity while the MUSHRA score is directly proportional to it. 
That is, while the MUSHRA score increases with the SNR, 
the proposed instrumental measure decreases. The best simi-
larity is achieved with “inf”, when no noise is present in 
the speech signal. This leads to the maximum MUSHRA 
scores of 100 and minimum cosine similarity of 0, as can 
be seen in Fig. 7b. Moreover, we observe a close trend in 
both distributions. For example, for the two lowest SNR’s 
(i.e. − 5 dB and − 2 dB) we also have the two lowest MOS, 
followed by a slight improvement on the perceived qual-
ity. We see a similar pattern with the proposed method, but 
with maximum values of cosine similarity for low SNR’s. Of 

course, we cannot assume by this that MUSHRA scores and 
our method are then correlated. However, we show in Fig. 8 
that there is a clear trend between our predictions and the 
MUSHRA scores for the same database. Note that Fig. 8a 
is the scatterplot for different levels of SNR while Fig. 8b is 
the scatterplot for different reverberation times.

Proposed methods

Given the insights mentioned above, four new instrumen-
tal measures are proposed, one full-reference and three no-
reference, as detailed next.

Full‑reference

This approach relies on the cosine similarity between i-vec-
tors extracted from the reference (clean) signal and i-vectors 

Fig. 7   Box-plot of (a) MUSHRA scores versus SNR and (b) cosine similarity verusus SNR

Fig. 8   Scatter-plots of MUSHRA scores versus cosine similarity metric for speech corrupted with (a) only noise and (b) only reverberation
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extracted from their degraded speech signal counterparts. 
This similarity index is used as a correlate of speech quality.

No‑reference: average reference model

As no-reference models do not have access to a refer-
ence signal, models of clean speech are required. The first 
approach proposed here models clean speech as an average 
i-vector computed from clean speech. More specifically, 
i-vectors are extracted from clean speech data (see Database 
description in section) and averaged to obtain one reference 
i-vector always to be used in the computation of the cosine 
similarity metric. As discussed in Effects of distortions on 
the total variability subspace section, larger distances from 
this average i-vector should indicate lower quality signals.

No‑reference: vector quantizer codebook reference model

Inspired by earlier works on instrumental speech quality 
measurement [35], the second proposed approach relies on 
a vector quantizer (VQ) codebook of reference i-vectors 
obtained from clean speech. This builds upon the previ-
ous “average i-vector” method in that a different reference 
i-vector is used for each processed signal. In particular, the 
i-vector that most closely resembles the degraded signal 
i-vector is used for computation of the cosine similarity 
distance. Here, the k-means algorithm is used to build the 
vector quantization codebook. We tested different values of 
k in the range of 5–500, and found that the optimal number 
usually represented the number of distortions in the datasets 
used in our experiments.

No‑reference: deep neural network reference model

Lastly, we are inspired by recent innovations in no-reference 
methods based on deep neural networks [12, 36]. Here, a 
DNN is trained to estimate MOS. In particular, a fully-con-
nected model with 400 input units (i.e., it receives i-vectors 
with 400 factors) and three hidden layers is used. The first 
hidden layer has 200 units, followed by 100 and 50 units. 
We adopted ReLU as the activation function and the out-
put unit is a simple linear function. We used dropout with 
0.2 rate and Adadelta as the optimization method. Dropout 
function is used as a regularizer to avoid over-fitting, and 
the Adadelta optimizer is used to dynamically update the 
learning rate and is suited to sparse data [37].

Experimental setup

In this section, the databases used in our experiments are 
presented, followed by a discussion on comparing subjective 
and objective speech quality scores. Then, details about the 

i-vector extraction are given and a description of the figures-
of-merit used is presented.

Database description

Three main datasets are used herein: (1) the noise speech 
database developed by [38], (2) the INRS audio quality 
dataset [39], and (3) the open-source noise speech corpus 
NOIZEUS [40]. The noise speech database is a clean and 
noisy parallel speech dataset, developed for the purpose of 
training speech enhancement algorithms, such as the speech 
enhancement generative adversarial network (SEGAN) [41]. 
It contains pairs of clean and noisy speech samples from 28 
speakers (14 males and 14 females), all from the same accent 
region (England), taken from the larger Voice Bank corpus 
[42]. The dataset is sampled at 48 kHz. For the purpose of 
our experiments, only clean utterances were used from this 
dataset and solely to train the i-vector framework (i.e., the 
GMM-UBM and total variability matrix), as well as two of 
our proposed no-reference approaches: (1) the one based 
on the reference i-vector, attained from the average of the 
extracted clean signals, and (2) the one based on the refer-
ence VQ codebook, also attained from the extracted clean 
signals. It is important to mention that the next two datasets 
are adopted to assess the models and none of their samples 
are used for training, except for the last experiment where a 
no-reference neural network based model is evaluated.

The INRS dataset, in turn, contains speech files sampled 
at 16 kHz and degraded by noise and reverberation. To this 
end, clean signals from the TIMIT database were corrupted 
with babble and factory noises at SNRs of − 2 dB, − 5 dB, 
1 dB, 4 dB, 7 dB and 13 dB. Noise signals were obtained 
from the NOISEX-92 dataset [43]. Reverberant utterances, 
in turn, were generated by convolving the clean utterances 
with 740 room impulse responses (RIR) with the following 
reverberation times ( T60 ): 0.3 s, 0.6 s, 0.9 s, 1.2 s and 1.5 s. 
For each T60 value, twenty different simulated RIRs (with 
different room geometry, source microphone positioning 
and absorption characteristics) were used. The RIRs were 
generated using an image-source method tool for simulat-
ing sound fields in virtual reverberant environments [44]. 
From the noisy signals, three speech DNN-based enhance-
ment models were used. The first uses a feed-forward neural 
network to estimate the spectral data. The second model pro-
poses the use of a feed-forward neural network in combina-
tion with arbitrary features to estimate a spectral mask. The 
final investigated enhancement model is based on spectral 
estimation through a context-aware recurrent neural network 
model. Details about these algorithms can be found in [39].

The listening test followed the MUSHRA methodology. 
Two different online listening tests are performed, one for 
the dereverberation (112 participants and 10 conditions) 
and one for the noise suppression (245 participants and 12 
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conditions). Both tests were MUSHRA-style tests where the 
output of all models (i.e., dereverberation or noise suppres-
sion), a hidden reference, a corrupted anchor, and the cor-
rupted signals were presented to each participant. A slider 
with their positions quantized as integers ranging from 0 to 
100 was used by the listeners to rate the signal quality. For 
each noise type, an anchor was the same stimulus corrupted 
with a 5 dB lower SNR. For the dereverberation conditions, 
in turn, the anchor was a signal convolved with an RIR with 
a T60 of 2 s. More details can be found in [39].

Lastly, the NOIZEUS database contains 30 IEEE sen-
tences recorded by three male and three female speakers 
in a sound-proof booth. The speech signals, sampled at 8 
kHz, are contaminated with eight different noise types taken 
from the AURORA database [45] and include car, train, bab-
ble, exhibition, restaurant, street, airport and station noises. 
Noise is added to the clean speech signals at SNRs of 0, 5, 
10 and 15 dB. In our experiments, a subset of NOIZEUS is 
considered and includes 4 noise types (i.e., babble, car, street 
and train) and two SNR levels (i.e., 5 and 10 dB). Thirteen 
speech noise-suppression algorithms are also applied to the 
corrupted samples; a complete list is available in [45].

The subjective test conducted was based on the ITU-T 
Recommendation P.835, which aims at reducing the listen-
ers’ uncertainty to which component (i.e., the speech signal, 
the background noise, or both) to take into account when rat-
ing the signal quality. To this end, listeners are instructed to 
first evaluate the speech signal alone using a five-point scale 
of signal distortion (SIG). Next, they attend to the back-
ground noise alone using a five-point background intrusive-
ness (BAK) scale, and lastly, they are instructed to focus on 
the overall effect using the five-point mean opinion score 
(OVRL) – [1 = bad, 2 = poor, 3 = fair, 4 =good, 5 = excel-
lent]. A total of 32 participants, between the ages of 18 and 
50, took part in the test. The interested reader is referred 
to [45] for more details about the subjective listening test, 
including the details regarding the SIG and BAK scales.

Comparing subjective and objective speech quality 
scores

Subjective listening tests can follow different scales. For 
example, ITU-T P.800 [2] describes the five-point absolute 
category rating (ACR) scale with ratings varying from bad 
to excellent, respectively. MUSHRA tests, on the other hand, 
rely on a 0–100 scale with lower values corresponding to 
poor quality and higher values to excellent. While the differ-
ent scales usually rank similarly, direct comparisons between 
them needs to be done carefully. Moreover, certain instru-
mental algorithms may be tuned and calibrated to a specific 
rating scale, thus comparing their outputs to any arbitrary 
subjective scale may be misleading. To avoid such issues, 
here we propose to use a third order monotonic polynomial 

mapping [46] to map objective and subjective ratings into 
the same scale prior to computation of the figures-of-merit. 
This mapping is applied to both proposed and benchmark 
instrumental measures.

i‑Vector framework setup

Once speech parameterization was performed, a Gaussian 
mixture model universal background model (GMM-UBM) 
with 1024 Gaussians was trained using 824 clean utterances 
from the noise speech database [42]. Five different total vari-
ability matrix T sizes were explored, namely containing 100, 
200, 300, 400 or 500 total factors. The motivation behind 
testing different TV subspaces was to obtain insight on what 
number of factors is optimal for speech quality assessment. 
After training, i-vectors were extracted from all recordings 
from the INRS and NOIZEUS datasets.

Figures‑of‑merit and benchmark algorithms

Here, the performance of the proposed and benchmark 
instrumental measures are assessed using two figures-of-
merit. The linear relationship between estimated quality 
and ground truth is computed using the Pearson correlation 
coefficient ( �Person ). We also consider the root mean-square 
error (RMSE) [47] to represent the error between predicted 
values and ground truths. As mentioned previously, figures-
of-merit are computed after a third-order monotonic map-
ping is applied to guarantee that instrumental and subjective 
ratings are in the same scale.

Correlations are reported on a per-condition basis, where 
all files under the same acoustic condition are first aver-
aged prior to correlation calculation. Table 1 describes the 
acoustic conditions present in the INRS dataset excluding 
references and anchors. Two noise types (babble and factory) 
are considered at six different SNR levels. Moreover, three 
enhancement algorithms were applied, referred to herein as 
Santos2018 [48], Williamson2017 [49] and Wu2016 [50]. 
Thus, for the noisy samples, an acoustic condition is defined 
by the noise type, processing status and SNR level, while 
for the reverberant samples, an acoustic condition is con-
figured by the processing status and the reverberation time 
( T60 ). The NOIZEUS dataset, on the other hand, presents 
four noise types: babble, car, street and train at two different 
SNR levels. For noise suppression, two algorithms based on 
the Wiener filter are tested, referred herein as Wavthre [51] 
and Tsoukalas [52]. Table 2 summarizes the conditions in 
the NOIZEUS database.

Lastly, to gauge the advantages of the proposed meth-
ods, two standard full-reference methods are used as 
benchmarks, i.e., wide-band mode ITU-T P.862.2 (PESQ) 
[6] and full-band mode ITU-T P.863 (POLQA) [7]. For 
the no-reference measures, the narrow-band ITU-T P.563 
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[10] and wide-band SRMR [31] are used as benchmarks. 
It is important to emphasize that no standardized wide-
band no-reference measure exists; thus the results reported 
herein for ITU-T P.563 are at somewhat of a disadvan-
tage, as the proposed method considers wide-band signals. 
For POLQA, a similar consideration must be made as the 
model has been used with wide-band signals, which is 
out of normal operation for the model. Notwithstanding, 
comparisons with PESQ and SRMR provide a more fair 
performance comparison to gauge the benefits of the pro-
posed method.

Experimental results and discussion

In this section, we describe our experiments and provide a 
discussion of the achieved results.

Experiment I: Full‑reference measurement

Table 3 presents the per-condition performances on the 
INRS database for the noise-only and reverberation-only 
settings (each condition also includes the enhanced coun-
terpart), as well as the performances on the NOIZEUS data-
set for noisy and enhanced speech. In the table, the perfor-
mances of the two benchmark full-reference algorithms are 
also presented for comparison purposes. As can be seen, 
i-vectors extracted from MSFs are able to better correlate 
with subjective ratings for the noise, reverberation, and 
enhanced conditions, whereas MFCC-based ones are not 
as effective for the enhancement case. For noise and rever-
beration conditions, a larger number of factors (400-500) 
resulted in the best results, whereas for enhancement alone, 

Table 1   Overview of the INRS speech quality dataset where acoustic conditions are presented for denoising and dereverberation processes, 
excluding reference files and anchors

Denoising Dereverberation

Noise type Enhancement algorithms SNR (dB) Enhancement algorithms T
60

Babble, Factory Unprocessed, Santos2018, Williamson2017, 
Wu2016

− 5
− 2
1
4
7
13

Unprocessed, Santos2018, Williamson2017, 
Wu2016

0.3 s

 0.6 s

 0.9 s

 1.2 s

 1.5 s

Table 2   Overview of the NOIZEUS speech quality dataset where 
acoustic conditions are presented for denoising, excluding references

Noise type Enhancement algorithms SNR

Babble, Car, Street, Train Unprocessed, Wavthre, 
Tsoukalas

5 dB 10 dB

Table 3   Per-condition 
performance of the proposed 
full-reference approach on the 
INRS and NOIZEUS databases. 
Numbers in subscript indicate 
the number of factors in the 
total variability space

Bold values indicate the best performance

Metrics INRS (MUSHRA) NOIZEUS (ACR)

Noise Reverb Noise Enhanced

�
Pearson

RMSE �
Pearson

RMSE �
Pearson

RMSE �
Pearson

RMSE

PESQ 0.95 7.32 0.92 9.58 0.93 0.12 0.90 0.13
POLQA 0.96 6.70 0.92 9.73 0.89 0.16 0.92 0.14
MFCC

100
0.94 8.42 0.90 11.16 0.98 0.20 0.49 0.28

MFCC
200

0.94 8.22 0.92 9.58 0.94 0.21 0.50 0.28
MFCC

300
0.94 8.17 0.92 9.90 0.97 0.21 0.60 0.28

MFCC
400

0.94 8.12 0.92 9.59 0.81 0.21 0.04 0.30
MFCC

500
0.95 7.97 0.92 9.55 0.76 0.28 0.02 0.30

MSF
100

0.93 8.96 0.94 8.06 0.97 0.11 0.82 0.22
MSF

200
0.89 11.78 0.94 8.24 0.98 0.12 0.82 0.24

MSF
300

0.93 9.43 0.93 8.68 0.98 0.13 0.87 0.22
MSF

400
0.94 8.10 0.93 8.80 0.71 0.31 0.24 0.29

MSF
500

0.94 8.37 0.93 8.84 0.83 0.28 0.61 0.27
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a smaller number of factors sufficed (200). Overall, MFCC-
based i-vectors showed to be more sensitive to the number 
of factors relative to MSF-based ones. Correlation values 
were in line with those obtained with the benchmarks, but 
with the added benefit of not requiring temporal alignment. 
In the case of the NOIZEUS dataset, the proposed method 
achieved slightly higher correlations, i.e., 0.98 for the noisy 
condition, when compared to the benchmarks. However, the 
performance of the proposed method (0.87) was not as good 
for the enhancement condition, with the best correlation, 
0.92, being achieved by POLQA.

Experiment II: No‑reference measurement based 
on average model

Table 4 shows the results attained using the simplest no-
reference measure, as well as the two no-reference bench-
marks. As expected, results are much lower than what can be 
achieved with a full-reference measure. Notwithstanding, the 
simple average i-vector model extracted from MSFs outper-
formed both benchmarks on the INRS database when 100, 
200 and 300 factors were adopted. The simple approach, 
however, was not capable of accurately tracking the qual-
ity of the enhanced signals in the NOIZEUS database, 
despite outperforming ITU-T P.563. I-vectors extracted from 
MFCCs, however, were able to quantify the distortions in 
the noise-only case for the NOIZEUS database and results 
in line with SRMR were achieved.

Overall, reverberation showed to be a harder problem. 
This was expected based on insights from Figs. 5 and 6. In 
fact, the projection of i-vectors is less clustered in the case 
of reverberation, thus making it harder to model using such 
a simple approach. Furthermore, it is interesting to note that, 

in this case (MSF features), performance is inversely propor-
tional to the number of factors.

Experiment III: No‑reference measurement based 
on VQ codebook

Table 5 provides results obtained with the VQ codebook-
based approach. We tested different numbers of clusters (i.e., 
10, 30 and 40) and we adopted 10 clusters, which seemed 
to be the optimal value. The performances are presented 
for both MFCCs and MSF-based systems. We can note 
that the proposed metric based on MSF-k10 provides more 
stable results throughout the tested conditions. Moreover, 
it presents competitive performance compared to the two 
benchmarks, SRMR and P.563, outperforming the latter for 
all tested conditions and SRMR in two situations. See the 
first and last columns with the respective correlations equal 
to − 0.72 and − 0.80. We can verify that distortions caused 
by reverberation and enhanced speech are more challenging 
to the proposed metric. In fact, the results were more reliable 
for distortions caused by noise for all the metrics, including 
the proposed MSF-k10.

Experiment IV: No‑reference measurement based 
on DNNs

In this experiment, the model is trained considering both 
noisy and reverberant samples. We randomly sampled 
70% of the examples in the INRS database to train. Dur-
ing training, 20% of these examples are used for validation. 
The remainder of the dataset is kept for testing. The results 
presented in Table 6 are based on the average value after 
running the experiment 10 times, randomly picking samples 

Table 4   Per-condition 
performance of the no-reference 
approach based on average 
of i-vectors for the INRS and 
NOIZEUS databases. Numbers 
in subscript indicate the 
number of factors in the Total 
Variability Space

Bold values indicate the best performance

Metrics INRS (MUSHRA) NOIZEUS (ACR)

Noise Reverb Noise Enhanced

�
Pearson

RMSE �
Pearson

RMSE �
Pearson

RMSE �
Pearson

RMSE

SRMR 0.70 20.55 0.48 23.01 0.89 0.24 0.72 0.32
P563 0.48 23.47 0.38 25.37 0.87 0.25 0.13 0.30
MFCC

100
0.13 25.63 0.19 24.94 0.81 0.28 0.04 0.30

MFCC
200

0.28 25.41 0.09 25.34 0.76 0.27 0.02 0.30
MFCC

300
0.63 20.78 0.22 24.76 0.39 0.30 0.03 0.30

MFCC
400

0.06 25.75 0.17 25.15 0.46 0.30 0.17 0.30
MFCC

500
0.57 23.39 0.20 24.94 0.43 0.30 0.77 0.29

MSF
100

0.90 12.97 0.67 19.78 0.82 0.28 0.24 0.29
MSF

200
0.84 16.84 0.38 23.57 0.83 0.28 0.61 0.27

MSF
300

0.80 17.54 0.61 20.95 0.37 0.31 0.53 0.27
MSF

400
0.55 22.84 0.44 23.20 0.19 0.31 0.58 0.28

MSF
500

0.53 23.89 0.44 23.50 0.58 0.29 0.17 0.29
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for the training and test sets. As can be seen, the best results 
are achieved by the MFCC-based i-vector with 400 fac-
tors, where correlations are higher than those achieved with 
PESQ and POLQA. Models based on MSFs and 300 factors 
achieved similar results to PESQ and POLQA. It is impor-
tant to emphasize that the obtained results may be somewhat 
optimistic, as the proposed method relied on a subset of the 
INRS database for training, whereas the benchmarks did 
not. Nonetheless, the achieved results are promising, as they 
show a no-reference method achieving comparable results to 
full-reference benchmarks.

Conclusions and future work

In this paper, we explored the use of i-vector speech rep-
resentations for instrumental quality measurement of 
noisy, reverberant and enhanced speech. The UBM and T 
matrix are normally trained offline. We show how the total 

variability space is capable of capturing ambient factors 
and one full-reference and three no-reference measures are 
proposed. Experimental results on two datasets showed the 
full-reference method achieving results in line with two 
standard benchmarks and bypassing the need for time align-
ment between reference and processed signals. On the same 
datasets, the three no-reference measures presented higher 
correlations with subjective quality scores compared to two 
no-reference benchmarks, thus showing their effectiveness 
in tracking the quality of hands-free and enhanced speech. 
As future work, we intend to investigate other strategies to 
improve the performance of the i-vector framework as a 
no-reference speech quality metric. We also intend to test 
the proposed method on an extended dataset with network 
impairments; of particular interest is the behaviour of the 
proposed method under temporal distortions.
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