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Introduction
In network science, counting the number of motifs, which are small subgraphs, is an 
important task for understanding the characteristics of a graph. This technique has been 
studied for many years, starting with the work of Milo et  al. (2002), Wernicke (2005), 
Itzhack et al. (2007), Grochow and Kellis (2007), Ahmed et al. (2015), Pinar et al. (2017). 
There has also been considerable research on extending the concept of a motif. A motif-
role that defines the role of each node based on structural equivalence in motifs has 
been proposed, and promising results obtained using it have been reported (Ohnishi 
et al. 2010; McDonnell et al. 2014). Figure 1 shows 13 motifs and 30 roles for a directed 
3-node subgraph. In a directed graph, a connected subgraph consisting of three nodes is 
classified into one of 13 patterns based on the graph’s isomorphism. Furthermore, a node 
of the directed graph is classified into one of 30 patterns based on the structural equiva-
lence in the motif. Following existing research, this paper defines the node’s role as the 
position of its appearance in subgraphs as shown in Fig. 1. Using motif-based roles, we 
can infer, for example, that the node appearing as Role 13 plays the role of transmit-
ting information and that the node appearing as Role 24 plays the role of transmitting 
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received information to other nodes. Accordingly, extracting the motif-based role of 
each node can be applied, for example, in identifying important influencers in viral 
marketing.

Information diffusion over social networks can be treated as an uncertain graph, where 
the existence of edges between nodes is probabilistic. In the last few years, the study of 
uncertain graphs has attracted considerable attention in the field of network science. The 
counting of motifs and roles in uncertain graphs can facilitate a more detailed analysis 
of a given graph, and it is expected to be used in a wide range of fields such as market-
ing, urban planning, and protein analysis. For uncertain graphs with L uncertain edges, 
2L possible graphs need to be enumerated; in addition, the number of motifs (roles) for 
each of them needs to be counted, and the numbers with the weight of the occurrence 
probability of each possible graph need to be averaged. However, the number of possible 
graphs is very large, and even for small graphs it is difficult to compute the exact expec-
tation. Therefore, in general, sampling-based approximations have been adopted.

The LINC algorithm of Ma et  al. (2019) is a state-of-the-art technique for counting 
motifs in uncertain graphs. Instead of counting the number of motifs for all sample 
graphs from scratch, LINC focuses on the structural similarity between sample graphs, 
and it efficiently updates the number of motifs by considering only the difference edges 
between two sample graphs. In a situation of low uncertainty, that is, extremely high or 
low edge probability, LINC can compute the expected frequency more quickly than can 
naive sampling-based methods.

The aim of this study is to extract groups of nodes with similar motif-based roles, 
and promising results to this end have already been reported (Pržulj 2007; Guerrero 
et al. 2008; Ohnishi et al. 2010; McDonnell et al. 2014; Sarajlić et al. 2016). Therefore, 
this study follows these frameworks, which consist of three steps: counting motifs or 
roles and constructing feature vectors, calculating node similarity, and clustering nodes. 
In the context of an uncertain graph, we need to sample and ensemble either graphs, 
vectors, similarities, or clusters. It is important to evaluate the amounts of difference 
among the exact clustering results obtained by processing all possible graphs, depending 

Fig. 1  13 motifs and 30 roles for directed 3-node subgraphs
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on the steps at which sampling and ensembling are performed. In our previous study 
(Naito and Fushimi 2021), we proposed an efficient ensemble method, graph-ensemble, 
to ensemble possible graphs sampled from the given uncertain graph; it then gener-
ates a weighted graph we call an ensembled-graph, where the edge weight is the ratio of 
graphs with edge existence to the total number of sampled graphs; finally, the method 
counts the roles from this weighted graph by considering the edge weights. Experimen-
tal evaluations have compared the vector-ensemble and similarity-ensemble methods, 
both derived from the LINC algorithm, with the graph-ensemble method. The results 
show that the graph-ensemble method outputs similar results to the previous methods 
but much faster. On the other hand, the results of subsequent experiments show that 
the error of the graph-ensemble methods in presenting exact results is, to some extent, 
larger than the vector-ensemble and the similarity-ensemble methods. This is because 
the graph-ensemble method integrates sampled graphs and counts the roles from it; 
consequently, absent edges in some samples are eliminated by present edges in other 
samples and changes in the motif-roles cannot be considered. The vector-ensemble and 
similarity-ensemble methods count roles from each sampled graph, and thus changes in 
motif roles can be considered. Therefore, there is need for a method that is as efficient as 
the graph-ensemble method but also as effective as the vector-ensemble and similarity-
ensemble methods. In this study, we improve the error by making it as small as that of 
the vector-ensemble method. This is done by considering the change in role due to the 
probabilistic absence of edges at the expense of a certain degree of speed that is possible 
with the graph-ensemble method.

As an extension of the conference version of this work (Naito and Fushimi 2021), we 
propose the extended graph-ensemble method, add graphs to illustrate our experiments, 
and compare and evaluate the proposed method along with existing methods from the 
viewpoint of error. Furthermore, the pseudo-code related to our method is added.

This paper is organized as follows: “Related work” section introduces related research. 
“Problem framework” section   sets up the problem addressed in this study. “Existing 
methods” and “Proposed method: extended graph-ensemble method” sections describe 
the existing and proposed methods, and “Experimental evaluations” section   presents 
evaluation experiments using each method. Finally, “Conclusion” section summarizes 
this study and mentions future work.

Related work
In this study, we consider the problem of extracting motif-based roles for uncertain 
graph nodes. Therefore, we briefly discuss related work in terms of network motifs, role 
extraction, and uncertain graphs.

Network motifs

Motif counting techniques have been studied for many years, starting with the pio-
neering work of Milo et  al. (2002). Various algorithms in these techniques have been 
developed for different purposes (Wernicke 2005; Itzhack et al. 2007; Grochow and Kel-
lis 2007; Ahmed et al. 2015; Pinar et al. 2017). Wernicke proposed a hash-based algo-
rithm called ESU, which avoided the need for storing all subgraphs in a hash table and 
improved the efficiency of motif counting by not counting the same subgraph twice 
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(Wernicke 2005). Itzhack et  al. proposed an efficient algorithm to traverse a breadth-
first search tree with the target node as the root. It represents the existence of a link in 
a subgraph as a bit string, and it can efficiently identify motif patterns without checking 
the isomorphism of each subgraph (Itzhack et al. 2007). This study adopts the algorithm 
of Itzhack et al. for motif counting from sample graphs. Grochow and Kellis proposed an 
efficient algorithm for searching for a single motif (Grochow and Kellis 2007). This algo-
rithm constructs a partial mapping from a particular graph to a target motif. In addition, 
the algorithm introduces a method called symmetric-break to avoid multiple count-
ing of motifs, which greatly improves execution time. Ahmed et al. proposed a parallel 
algorithm for three- and four-node motifs that does not enumerate all motif instances 
but counts certain motifs, such as cliques and cycles, and uses the transition relations 
between motifs to compute all other motifs analytically (Ahmed et al. 2015). Pinar et al. 
proposed a divide-and-conquer algorithm that identifies the substructure of each found 
subgraph and divides it into smaller ones. Pinar et al. (2017). However, although it is a 
very efficient method, it cannot be applied to directed networks.

Role extraction

Extracting node roles from a network is an important research topic. Role extraction 
methods are largely divided into two types, graph-based and feature-based methods 
(Rossi and Ahmed 2015). Graph-based methods, such as concept and extraction algo-
rithms of regular equivalence (Everett and Borgatti 1994) and structural equivalence 
(Lorrain and White 1971) have been proposed. These concepts focus on local structures 
such as relationships among neighboring nodes similar to network motifs, but extracting 
exactly equivalent nodes is costly. More recently, by relaxing the concept of equivalence, 
many feature-based role discovery techniques have been proposed (Henderson et  al. 
2011, 2012; Rossi et al. 2012, 2013; Gilpin et al. 2013).

Feature-based methods transform the graph representation into a feature representa-
tion, so in that sense, our method belongs to this category. Some studies defined the 
motif-based roles (a.k.a orbits) and graphlet degree vector for each node, whose element 
is the number of roles (Pržulj 2007; Guerrero et al. 2008; McDonnell et al. 2014). Przulj 
constructed a vector of 73 kinds of orbits obtained from 2- to 5-node graphlets and 
attempted to quantify the similarity among graphs or nodes (Pržulj 2007). McDonnell 
et al. proposed a transformation matrix from motif-frequency vector to role-frequency 
vector to efficiently compute the number of roles for each node or the whole graph 
(McDonnell et al. 2014). Our study also defines the feature vector of each node based on 
the number of roles of each node, but we count the number of roles based on Itzhack’s 
algorithm, not McDonnell’s one.

Furthermore, some methods calculated the similarity between the vectors and clus-
tered the nodes into groups. Ohnishi et al. analyzed an inter-firm network using motif-
roles and found economically meaningful clusters of nodes (Ohnishi et al. 2010). Sarajlic 
et  al. discovered the core–broker–periphery structure from world trade networks and 
predicted the economic attributes of each country node (Sarajlić et  al. 2016). Follow-
ing the promising results of the above studies, our role extraction framework consists of 
counting roles, constructing feature vectors, calculating node-similarity, and clustering 
nodes.
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Uncertain graphs

Research on uncertain graphs has been pursued in a wide range of contexts. One 
important task is the extension of existing graph analysis methods, including node 
centrality, clustering, embedding, and motif counting, to uncertain graphs.

Pfeiffer et al. extended certain representative structural indices for the determinis-
tic graph, i.e., shortest path length, clustering coefficient, and betweenness central-
ity ranking, to uncertain graphs by introducing the expected value of each index for 
the occurrence probability of each possible graph (Pfeiffer and Neville 2011). Such 
a notion and sampling-based approximation have been widely used in subsequent 
research on uncertain graphs, including the work in this study.

Ceccarello et  al. developed a node clustering method for uncertain graphs and 
reduced the basic problem to k-center and k-median problems (Ceccarello et  al. 
2017). In this method, the distances between nodes are defined by the inverse of the 
connection probability among them, which is efficiently and accurately estimated by 
the Monte Carlo sampling method.

Hu et al. proposed an embedding method for uncertain graphs, which constructs 
a matrix of expected proximities of all node pairs in an uncertain graph and reduces 
the number of the matrix dimensionality via a matrix factorization technique to 
obtain low-dimensional vectors for the nodes [10]. This method uses the Jaccard 
coefficient for the set of adjacent nodes when calculating the expected proximity 
between nodes, that is, it calculates the similarity between nodes based on the local 
structure. Similarly, our method constructs vectors based on the expected num-
ber of motif roles, which represents the local structure. The procedure is reversed 
because the purpose of Hu’s method of obtaining a low-dimensional vector from the 
similarity between nodes and that of our method of obtaining a similarity matrix 
from a low-dimensional vector is different.

Motif counting for uncertain graphs has not yet been thoroughly studied. The fol-
lowing are some of the major studies on the subject. Tran et al. proposed a method 
to compute an unbiased estimator of the number of motifs from noisy and incom-
plete data, but the method assumes that all edges have uniform joint probabilities 
and does not apply to non-uniform probabilities (Tran et al. 2013).

Ma et al. proposed two sampling-based algorithms to obtain basic statistics such 
as the mean, variance, and probability distribution of motif counts (Ma et al. 2019). 
The first is a simple sampling method, called PGS, which samples a large number 
of possible graphs from uncertain graphs and counts the instances of a single motif 
from each sample graph. However, the method requires a sufficient number of 
samples to accurately estimate the average number of motifs based on Hoeffding’s 
inequality. The second, more efficient method, called LINC, uses the structural sim-
ilarity between sample graphs to update the frequency of motifs by examining only 
edge differences between consecutive samples. It outputs the same results as PGS 
but runs much faster when the same samples are used. In this work, we consider the 
LINC algorithm a state-of-the-art technique and propose a more efficient ensemble 
algorithm than those equipped with a role counting routine by LINC.
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Problem framework
This study deals with the problem of extracting node groups with similar motif-roles 
in uncertain graphs. For convenience of explanation, the case of role extraction based 
on a motif composed of three nodes and directed edges is described here; however, the 
method can be applied to role extraction based on a small k node motif that is not lim-
ited to k = 3, regardless of whether it is directed or undirected. Table 1 summarizes the 
nomenclature used in this paper. As for R, C, H, the calligraphic font of the capital letter 
represents the role vectors, the similarity matrix, and the affiliation matrix of an uncer-
tain graph; the bold font with subscript represents those of a deterministic graph sam-
pled from an uncertain graph; the bold font with over-bar shows those of the ensembled 
(averaged) version.

Motif‑role extraction

First, we formulate the problem of extracting a motif-role from the deterministic 
graph, G = (V, E). Here, V is a set of nodes, E is a set of edges, N = |V | is the number 
of nodes, and L = |E| is the number of edges. A motif is a graph with a few nodes and 
edges among them, and it is considered a building block of a large graph. For a set of 
nodes U ⊂ V  and edges among them F = (U ×U) ∩ E , we define g = (U, F) as a motif 
when g is a connected graph. In this study, we focus on the directed 3-node motif, i.e., 
|U | = 3 and |F | ≤ 6 . The number of patterns of edge-existence states between all pairs of 
U is 2|F | = 26 . Among these, 54 patterns are connected ones, and by coordinating them 
according to the graph-isomorphism, the number of subgraph patterns is 13, i.e., the 
number of patterns of a directed 3-node motif is 13 as shown in Fig. 1.

Role was first defined as the structural equivalence in the graph, and role discovery as 
any process that divides nodes into classes of structurally equivalent nodes (Lorrain and 

Table 1  Notation

Notation Description

G = (V, E) Deterministic graph or backbone graph

V, E Sets of nodes and edges

N = |V |, L = |E| Numbers of nodes and edges

g = (U, F) Motif, or connected subgraph

d̄ = L/N Average degree of each node

R,R, R̄ R-dimensional vectors of N nodes, i.e., N × R matrix

R Number of role patterns

C,C , C̄ N × N similarity matrix

H,H, H̄ N × K  affiliation matrix

K Number of role clusters

Γ (v) Set of adjacent nodes of node v

G = (G,p) Uncertain graph

p(e), p Edge-existence probability

Gs = (V , Es) Sampled graph of an uncertain graph

S Number of samples

Pr[G] Occurrence probability of graph G

δ() Kronecker delta function

Ds,s′ Set of edges that appear in Gs but not in Gs′ , and vice versa.
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White 1971). Relaxing this definition, in this study, according to the study by McDon-
nell et al. (2014), the role is defined based on the structural equivalence in the motif. In 
the directed 3-node motif, there are 30 types of roles as shown in Fig. 1. In this study, 
role extraction is accomplished by the following three steps: 1) constructing the role vec-
tor for each node, 2) calculating the similarity between role vectors for all node pairs, 
and 3) extracting node groups based on similarity (see Fig. 2). In the construction of the 
role vector for each node in step 1, the numbers of roles R are counted for each node 
v, and the appearance frequency is arranged in the R dimension vector rv . The ith ele-
ment in rv represents the number of times the node v appears as role i. In the case of the 
directed 3-node motif, the number of role types is R = 30 as shown in Fig. 1. The matrix 
in which the role vectors of all N nodes are arranged is expressed as R = [r1, . . . , rN ]

T , 
where rT represents the transpose of r . In step 2, the cosine similarity between role vec-
tors cu,v =

r
T
u rv

||ru||||rv ||
 is used to calculate the similarity of all node pairs. Let the similarity 

of all N × N  node pairs be the similarity matrix C = [cu,v]u∈V ,v∈V  . In step 3, all nodes 
are classified into K clusters by the greedy method of k-medoids clustering (Nemhauser 
et  al. 1978), which outputs the affiliation matrix H = [hu,k ]

K
u∈V ,K=1 , where hu,k = 1 if 

node u belongs to cluster k, otherwise hu,k = 0 . In this way, the role extraction process 
outputs K clusters, each of which consists of nodes with similar role vectors.

Uncertain graph

This study targets uncertain graphs, in which the existence of edges between nodes is 
probabilistically determined. The uncertain graph G = (G, p) is defined by the backbone 
graph G = (V, E), consisting of the node set V and the edge set E, and the existence prob-
ability of each edge p : E → (0, 1] . Since the uncertain graph can be expressed as a set 
of its possible graphs, it is expressed as G = {Gi = (V ,Ei);Ei ⊆ E} . Assuming that the 
number of uncertain edges is L, the number of possible graphs in the uncertain graph is 
2L = |G| . Following the related study, the occurrence probability Pr[Gi] for each possible 
graph Gi is calculated based on independent Bernoulli trials for all edges:

Motif‑role extraction in uncertain graph

Next, we formulate the problem of extracting the motif-role from the uncertain 
graph G . To solve the above role extraction problem exactly for uncertain graphs, 
it is necessary to perform the three previously listed steps for all possible graphs 
G = {Gi = (V ,Ei);Ei ⊆ E} and ensemble the results in consideration of the occurrence 
probability Pr[Gi] of each possible graph Gi as follows:

Pr[Gi] =

e∈Ei

p(e)

e∈E\Ei

(1− p(e)).

Fig. 2  Procedure of role extraction
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Here, � is an operator of the ensemble, and it indicates that the clustering result HG 
of each possible graph G is ensembled in consideration of the weight of the occur-
rence probability Pr[G]. To obtain an exact ensemble result for an uncertain graph 
with L uncertain edges, sampling and ensembling are required for the number of pos-
sible graphs 2L ; this process is difficult to implement even for a small graph. Therefore, 
approximation by sampling is generally adopted.

Existing methods
This section describes four ensemble methods that sample possible graphs from an 
uncertain graph and output clustering results. As shown in Fig.  3, four ensemble 
methods use S possible graphs, {G1, . . . ,GS} , sampled from the given uncertain graph 
G . The graph-ensemble method ensembles sampled graphs, generates a weighted 
graph Ḡ , and counts motif-roles from the weighted graph. The vector-ensemble 
method ensembles role vectors {R1, . . . ,RS} obtained from each sampled graph and 
generates an averaged role matrix (vectors) R̄ . The similarity-ensemble method 
ensembles similarity matrices {C1, . . . ,CS} calculated from each role matrix (vectors) 
and generates an averaged similarity matrix C̄ . The cluster-ensemble method ensem-
bles affiliation matrices {H1, . . . ,HS} obtained from each similarity matrix and gener-
ates an ensembled affiliation matrix H̄ , which is a clustering result. When sampling 
many graphs, i.e., S ≃ 2L , the ensembled results, Ḡ , R̄ , C̄ and H̄ become close to the 
true results G , R , C and H . The details of these existing methods are described in the 
following subsections.

H = �
G∈G

(HG; Pr[G]).

Fig. 3  Four ensemble methods
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Graph‑ensemble method

First, we explain the graph ensemble method proposed in our previous study 
(Naito and Fushimi 2021). The procedure for outputting the similarity matrix C̄ 
in the graph ensemble method (hereinafter, the GE method) is shown in Algo-
rithm  1. In the GE method, ensembling is performed on a group of sample 
graphs {G1, . . . ,GS}, Gs = (V ,Es), Es ⊆ E to generate an ensembled graph Ḡ (see 
Algorithm 2):

Here, Ḡ = (V , Ē, p̄) is a weighted graph with weights p̄(e) =
∑S

s=1 δ(e ∈ Es)/S , which 
means the sample probability of edge e appearing in S sample graphs, and δ(cond) is a 
Boolean function that returns 1 if the condition cond is True and 0 if it is False.

Next, for an ensembled graph Ḡ , we search for connected-triples based 
on the algorithm of Itzhack et  al. (2007) (Algorithm  3). In Algorithm  3, 
Γ (u) = {v; (u, v) ∈ Ē ∧ (v,u) ∈ Ē} at Line 6 stands for a set of adjacent nodes of node 
u, and Γ̄ (u) at Line 7 is a set of nodes searched for in the for-loop at Line 6. That 
is, Γ (u) \ Γ̄ (u) at Line 8 represents a set of adjacent nodes of node u that are not 
searched for at Line 6. Then, in the searched for connected-triples G(m) , the role of 
each node is identified and counted in consideration of the weight p̄(e) . By aligning 
the number of roles for each node and regarding it as a vector, we construct (N × R) 
role vectors (matrix) R̄ (Algorithm  4). In detail, (1) we represent the presence or 

G = �
G∈G

(G; Pr[G]) ≃ �
s=1

S(Gs; 1/S) = Ḡ.
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absence of 6 edges between the 3 nodes u, v, w of a connected-triple G(m) by the 6-bit 
bit string bu via the motif2bits function; (2) we obtain the role number i ← Rcode(bu) 
from the dictionary Rcode , which is a correspondence table between the bit string 
and the role number; (3) we add an occurrence probability Pr[G(m)] to the ith element 
of the role vector of node u, r̄u,i , where Pr[G(m)] ←

∏

e∈E(m) p(e)
∏

e∈E\E(m) (1− p(e)) is 
the occurrence probability of connected-triple G(m) calculated based on the presence/
absence of 6 edges and their probabilities of existence. For directed 3-node motifs, by 
bit-shifting the bit string bu focused on node u, the bit strings bv ,bw focused on the 
other 2 nodes v, w can be obtained. For motifs with more than 3 nodes, this is not a 
simple bit shift, but the bit string can be obtained in a similar manner.

After constructing the role vectors of each node, H̄ is output by classifying each node 
into clusters based on the matrix C̄ , whose elements are the similarity between the role 
vectors. In this method, the ensembled graph Ḡ is obtained by ensembling S graphs with 
L edges. Let p be the average edge existence probability, where the expected number of 
edges in each sample graph is pL; accordingly, an ensembled graph can be obtained with 
O(SpL). For one ensembled graph, the connected three nodes are searched for accord-
ing to the algorithm of Itzhack et al., and the number of roles of all N nodes is counted. 
Therefore, as with the computational complexity of the 3-node motif count, when the 
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average degree is d̄ , the ensemble role vectors R̄ is obtained with a computational com-
plexity of O(Nd̄2)).

Vector‑ensemble method

The role-vector-ensemble method (hereinafter, VE method) generates an ensembled role 
vector R̄ by averaging the role vector {R1, . . . ,RS} obtained from the sample graph Gs:

Then, the cosine similarity C̄ is calculated from the obtained ensembled role vector R̄ . 
Each node is divided into 1 of K clusters based on the similarity matrix, and H̄ is output. 
When constructing the role vector Rs from each sample graph Gs , the LINC algorithm 
(Ma et al. 2019), which is the state-of-the-art technique, is used. The LINC algorithm 
focuses on the difference Ds,s′ = (Es \ Es′) ∪ (Es′ \ Es) between the edge sets Es and Es′ 
in the two sample graphs Gs and Gs′ , and only the number of appearances of the roles 
related to edge e ∈ Ds,s′ whose existence/absence state has changed is updated. Let p 
be the average edge appearance probability. The expected value of the number of edges 
that change state is 2L(p− p2) ; hence, it is effective when the uncertainty is small, such 
as when p = 0.1 or p = 0.9. In this way, S role vectors (matrices) {R1, . . . ,RS} , each of 
which is an (N × R) matrix, are efficiently calculated and averaged to obtain an ensem-
bled role vector R̄ . Therefore, if m̄ is the average number of motif instances including 
each edge, the ensembled role vector R̄ is obtained with a computational complexity 
O(S(L(p− p2)m̄+ NR)) by the VE method.

Similarity‑ensemble method

In the similarity-ensemble method (hereinafter, SE method), the average of similar-
ity matrices {C1, . . . ,CS} calculated from role vectors {R1, . . . ,RS} is calculated, and the 
ensembled similarity matrix C̄ is generated:

Then, based on the ensembled similarity matrix C̄ , all of the nodes divided into clusters 
and H̄ are outputted. In the SE method, the number of roles in sample graphs is counted 
and updated based on the LINC algorithm, as in the VE method. In this way, S similarity 
matrices {C1, . . . ,CS} , each of which is an (N × N ) matrix, are calculated and then aver-
aged. Therefore, the dominant computational complexity of the SE method to obtain the 
ensembled similarity matrix C̄ is O(SN 2).1

Cluster‑ensemble method

The cluster-ensemble method ensembles the clustering results {H1, . . . ,HS} and pro-
duces the membership matrix H̄:

R = �
G∈G

(RG; Pr[G]) ≃
1

S

S
∑

s=1

Rs = R̄.

C = �
G∈G

(CG; Pr[G]) ≃
1

S

S
∑

s=1

Cs = C̄.

1  The number of roles is counted based on the LINC algorithm; however, the amount of calculation required for the 
ensemble of the similarity matrix is dominant.
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Unlike ensembling for supervised classification results, ensembling unsupervised clus-
tering results is a challenging task because the correspondence relationship between 
obtained clusters is not clear and its degree has to be considered. Therefore, since no 
ensemble method for clustering results has been established yet, we do not discuss the 
issue in this article.

Proposed method: extended graph‑ensemble method
This study proposes the extended graph-ensemble method (hereinafter, Ext-GE method) to 
calculate the expected value of the role frequency of each node under the assumption that 
motif stochastically collapses and shifts to another role. As shown in Fig. 4, the hierarchy 
can be defined for each role according to the number of edges in the corresponding motif. 
From Fig. 4, Motif 13 and Role 30 with 6 edges are at the top level, and Motifs 1, 2, 4 and 
Roles 1, 2, 4, 5, 10, 13, 16 with 2 edges are at the bottom level. This hierarchical diagram 
shows which motif changes to which by erasing one edge. For example, if any one of the six 
edges in Motif 13 disappears, it becomes Motif 12; of the four edges in Motif 11, if any one 

H = �
G∈G

(HG; Pr[G]) ≃ �
s=1

S(Hs; 1/S) = H̄.

Fig. 4  Transition of roles in directed 3-node motifs
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of the edges outgoing from Role 15 node disappears, it becomes Motif 7, and if any one of 
the bidirectional edges between Role 22 nodes disappears, it becomes Motif 5. When the 
edge is absent stochastically, the upper role changes to the lower role, and the frequency 
of appearance of the lower role increases. Therefore, when counting the role frequency of 
each node for Ḡ = (V , Ē, p̄) ensembled with S sample graphs Gs, 1 ≤ s ≤ S , the subordi-
nate motif of the corresponding motif is searched for, and the number of roles included in 
that motif is also counted at the same time (Algorithm 5). In the while-loop at Line 6 to 18 
in Algorithm 5, the motif of the connected triples searched for in the ensemble graph and 
its subordinate motifs and roles are also considered.

In detail, at Line 4, to search for all of the lower motifs without duplication and without 
omission, we express the edge-existence state as a bit string b via the motif2bits function, as 
do the above-mentioned methods GE, VE, and SE. By repeatedly performing the bit AND 
operation at Line 8 and the subtraction at Line 17 for bu , in which all 6 bits are initialized 
with 1 at Line 5, the subordinate motifs and roles are searched for efficiently and compre-
hensively. The while-loop repeats at most 64 times in the case of a directed 3-node motif 
represented by 6 bits. The other parts are the same as the count_roles function in Algo-
rithm 4. The bits2motif function at Line 11 is the inverse function of motif2bits at Line 4, 
which returns the graph structure whose edge states, i.e., presence or absence, is expressed 
as bu, bv , bw . Algorithm 6 shows the whole picture of the Ext-GE method. The only differ-
ence between this method and the GE method (Algorithm 1) is whether the transition to 
the lower roles should be considered when calculating the expected value of the role num-
ber at Line 8.
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Experimental evaluations
In this study, we tackle the problem of counting the number of motif-derived roles for 
the nodes of the uncertainty graph and extracting node groups with similar role vectors. 
To confirm how the approximation of role counts by our methods affects the similar-
ity between role vectors, and the final clustering result, we evaluate how accurately our 
method can output them against the true results.

Dataset and settings

In our experimental evaluations, role extraction based on the directed 3-node motif 
is performed on the following four directed graphs observed in the real world, and 
the effectiveness and efficiency of the proposed method is confirmed. The graph sizes 
are shown in Table  2. For these graphs, we set a uniform edge existence probabil-
ity p(e) = p ∈ [0.1, 0.2, . . . , 0.9] . For the last graph, we set a non-uniform probability 
p(e) ∼ Beta(α,β), (α,β) ∈ {(1.5, 5.0), (2.5, 2.5), (5.0, 1.5)} . The number of samples is set 
to S ∈ {101, 102, 103, 104} , and the number of clusters is set to K = 10. By varying the 
number of samples and clusters, we evaluated the variation in the error of the results 
and the execution time with the numbers of samples and clusters. Because we obtained 
similar results, only the results for K = 10 are presented in this study.

In our experiments, the true value for the expected number of roles R is calculated 
based on a previous work (Todor et al. 2015), which calculates the expected number of 
motifs for the uncertain graph; the true similarity matrix C is calculated from R , and the 
true clustering result H is computed from C . As an error measure for role vectors and a 

Table 2  Basic statistics of datasets

Dataset #nodes N #edges M

Gnutella (peer-to-peer file sharing) (Leskovec and Krevl 2014) 10,876 39,994

Blog (trackback among weblogs) [1] 12,047 53,315

Enron (email communication) (Klimt and Yang 2004) 19,603 210,950

Hepth (citation in arXiv) (Leskovec and Krevl 2014) 27,400 352,504

Celegans (neural network of neurons and synapses) (Marinka Zitnik Rok 
Sosič and Leskovec 2018)

131 764
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similarity matrix, we employed root mean squared error (hereinafter, RMSE). For the 
true role vectors R = [r∗v,i]v∈V ,1≤i≤30 and the approximated one R̄ = [r̄v,i]v∈V ,1≤i≤30,

For the true similarity matrix C = [c∗u,v]u∈V ,v∈V  and the approximated one 
C̄ = [c̄u,v]u∈V ,v∈V ,

As s similarity measure for the true clustering result in H and the approximated one H̄ , 
we employed normalized mutual information (hereinafter, NMI) (Kvålseth 2017).

Error evaluation for role vectors

First, we evaluated our method in terms of the error of the role vectors. Figure 5 illus-
trates the RMSE in a logarithmic scale with respect to the number of samples S. For 
almost all of the networks we used, we could make the following observations. As the 
size of the graph increases, the absolute number of appearance roles increases; there-
fore, the error value tends to increase. On the contrary, the lower the edge-existence 

RMSE =

√

√

√

√

1

NR

∑

v∈V

R
∑

i=1

(r∗v,i − r̄v,i)2.

RMSE =

√

1

N (N − 1)/2

∑

u∈V

∑

v∈V ,u<v

(c∗u,v − c̄u,v)2.

Fig. 5  RMSE of ensembled role vectors R̄ against true role vectors R
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probability, the smaller is the absolute amount of the number of appearance roles; there-
fore, the error value tends to be smaller. As the number of samples increases, the error 
decreases with some exceptions, for example, the GE method for the Blog and Enron 
networks. Furthermore, Ext-GE achieves smaller errors than, or errors almost equal to, 
VE.

Error evaluation for similarity matrix

Next, we discuss the RMSE of similarity matrices. Figure 6 depicts the RMSE in a loga-
rithmic scale to the number of samples S. For almost all of the networks we used, we 
made the following observations. As the size of the graph increases, the absolute num-
ber of appearance roles increases; therefore, the error value tends to increase. As the 
number of samples increases, the errors of Ext-GE and VE decrease, while those of GE 
and SE do not decrease. Furthermore, Ext-GE achieves smaller errors than VE.

Similarity evaluation for clustering results

Next, we confirm the effectiveness of our method of focusing on the similarity to the 
true clustering results. Figure 7 shows the NMI for the number of samples S. From these 
figures, we can make the following observations. In almost all cases, when the edge-
existence probability is small and the number of samples is large, all methods produce 
more similar results to the true results (considering the difference in the axes’ ranges). 

Fig. 6  RMSE of ensembled similarity matrix C̄ against true similarity matrix C
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SE outputs the worst results; GE sometimes outputs good results depending on the net-
works; Ext-GE and VE stably output better results than the other methods independent 
of the networks, probability, and number of samples.

The error of the role vectors affects the error of similarity matrices and the final clus-
tering results; therefore, more accurate role vectors are required.

Efficiency

Next, we evaluate our method in terms of computational efficiency. Figure 8 indicates 
the running time up to the outputs of the ensembled similarity matrix C̄ from the given 
uncertain graph, in a logarithmic scale with respect to the number of samples S. From 
these figures, for all of the networks, our Ext-GE is much faster than VE and SE, which 
are derived from the state-of-the-art LINC algorithm, especially when the number of 
samples is large.

Non‑uniform setting

Finally, to confirm the difference between edge-existence probabilities, we compared 
the results for Celegans under the settings of uniform and non-uniform edge-existence 
probability. As a non-uniform setting, we set a non-uniform probability according to the 
beta distribution, p(e) ∼ Beta(α,β), (α,β) ∈ {(1.5, 5.0), (2.5, 2.5), (5.0, 1.5)} . The mean 

Fig. 7  NMI of clustering results H̄ against those by true similarity matrix H
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value of the random numbers can be calculated as α/(α + β) , so they are about 0.23, 0.5, 
and 0.77.

Figures 9 and 10 show the RMSE of the role vectors and the NMI of the clusters with 
respect to the number of samples S. From the results, we can observe that there is no 
remarkable difference between uniform and non-uniform settings, i.e., our Ext-GE 
method achieves much smaller RMSE values and much higher NMI values than the 

Fig. 8  Running time up to outputting the ensembled similarity matrix

Fig. 9  RMSE of ensembled role vectors R̄ against true role vectors R
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existing GE method, and it is comparable to the VE method, in any beta distribution. 
Although not shown here, there is a similar tendency in the RMSE of the similarity 
matrices. Furthermore, the computational costs of these methods do not depend on the 
probability values; in fact, the running times were confirmed to be almost the same.

Trajectories of information propagation in social media can be modeled as an uncer-
tain graph with non-uniform edge-existence probabilities. Such an uncertain graph is 
observed as many instances where edges stochastically appear and disappear, and thus 
its true structure and true edge-existence probabilities cannot actually be known. Our 
method reflects this fact and ensembles many observed (sampled) graphs and outputs 
accurate results close to those obtained from the true structure. Therefore, our method 
is applicable to real-world uncertain graphs, and it is promising for accurately identify-
ing important nodes in a viral marketing strategy.

Conclusion
In this study, for the task of motif-role extraction from an uncertain graph, we pro-
posed an efficient and effective method, called the extended-graph ensemble method. It 
involves counting node roles defined by the position in motifs, calculating the similarity 
between nodes based on role vectors, and dividing all of the nodes into clusters with sim-
ilar role vectors. This method ensembles sampled graphs and counts roles by considering 
the transition to lower-layer roles due to stochastically occurring edge-disappearance.

In experiments using real-world networks with added uniform and non-uniform edge 
probabilities, we confirmed the effectiveness and efficiency of our proposed method. The 
proposed method, the extended-graph-ensemble method, outputs results with smaller 
errors from the true values and works more quickly than the existing methods, including 
our previously proposed method, the graph-ensemble method, and the vector-ensemble 
and similarity-ensemble methods, which are both derived from LINC, the state-of-the-
art technique. Accordingly, we conclude that the extended graph ensemble method is 
the most suitable for the problem addressed in this study.

Future tasks include motif-role extraction that is not limited to 3-node motifs, deter-
mination of the appropriate number of samples using Hoeffding’s inequality, and more 
detailed analysis of the clustering results.

Fig. 10  NMI of clustering results H̄ against those by true similarity matrix H
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