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Introduction
Scholarly work on international migration overwhelmingly focuses on movements 
from the Global South to the Global North (Freier and Holloway 2019). However, some 
of the best evidence available to date clearly suggests that about a third of all interna-
tional migratory movements take place between countries in the Global South (Abel 
and Sander 2014). This paper aims to answer calls to investigate migration flows beyond 
South-to-North flows (Nawyn 2016; Kim and Cohen 2010; Cerrutti and Parrado 2015). 
It does so by jointly analyzing the dynamics of South–South, North–North, and North–
South flows around the globe over the span of 25 years.

The international migration literature is also usually restrictive in that it exhibits a dis-
proportionate emphasis on large bilateral—i.e., dyadic—migratory exchanges, and in 
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that it typically focuses on only one destination or sending country at a time (Massey 
et al. 1990; Garip 2016; Menjívar 2006; Leal 2014; Steinmann 2019). A key assumption 
of this paper is that moving from studies of bilateral migration flows to truly multilat-
eral studies is vital to further develop migration theory and empirics (Fawcett 1989; Abel 
and Sander 2014; Leal et  al. 2019a; DeWaard and Ha 2019). By using state-of-the-art 
estimations of place-to-place international migration flows (Azose and Raftery 2019), 
this paper carries out a world-wide analysis of the emergence and evolution of migration 
flows beyond North-to-South flows and beyond specific dyadic flows. It does so by lev-
eraging one comprehensive, and distinctly relational, theoretical framework: Migration 
Systems Theory (MST) (Mabogunje 1970; Fawcett 1989; Zlotnik 1992; de Haas 2010; 
DeWaard et al. 2012; Bakewell 2014; Windzio et al. 2019).

Even though some of the initial empirical studies of migration systems based on MST 
aimed to be global (Zlotnik 1992), recent analyses in the MST literature have heavily 
focused only on North–North flows (Nogel 1994; DeWaard et al. 2012; Windzio et al. 
2019). Using newly available data and analytical techniques, this study carries out a 
network-based analysis using MST that goes beyond North–North flows. Critically, by 
moving away from exclusively studying either North–South or North–North flows, this 
paper shows how factors like income, political instability, care deficits, or cultural simi-
larity can have different impacts on the emergence and evolution of flows between and 
within the Global South and the Global North.

Methodologically, this study relies on the Stochastic Actor-oriented Model (SAOM) 
of network dynamics to characterize the evolution of international migration flows over 
time. Given the global scope of this paper, the set of migration flows under analysis here 
can be conceptualized as a bounded network. In other words, this study embraces the 
fact that migratory exchanges can be modeled as international migration networks, that 
is, social networks comprised of migration flows (i.e., ties or edges) between countries 
(i.e., nodes or vertices) (Nogel 1994; Bakewell 2014; Windzio 2018; Windzio et al. 2019).1

Theory
Migration Systems Theory (MST)

In what is typically considered the first explicit statement of MST, Mabogunje (1970) 
highlights that migration systems are entities that emerge from regular patterns of flows 
of people/migrants between localities across space and time. Even though Mabogunje 
(1970) did not have international migration but internal urban–rural migration in mind, 
the idea of focusing on the system of emergent regularities or patterns exhibited by flows 
of people remains a major theoretical insight. In a classic review of international migra-
tion theories, Massey et  al. (1993) pointed out that theoretical frameworks from an 
ample variety of traditions—from institutional theories to world systems approaches—
agree on the idea that international migratory exchanges do exhibit a high degree of 
stability that allows for the emergence, and study, of identifiable structures (i.e., migra-
tion systems). The empirical identification of such structures, with a special emphasis on 

1  In graph theory, nodes represent actors (e.g., countries) and ties represents relationships between actors (e.g., migra-
tory exchanges between countries).
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their geographic organization, is a key endeavor of MST (Mabogunje 1970; Zlotnik 1992; 
DeWaard et al. 2012; DeWaard and Ha 2019).

A key analytical advantage of focusing on migration systems, rather than on specific 
dyadic flows or selected destination/sending countries, is that any given flow in the sys-
tem is examined in the context of the (relational) structure that exists between all other 
flows (Fawcett 1989; Nogel 1994; Windzio et al. 2019). This insight is critical because it 
fully introduces into the analysis the relational dependencies that define any network. 
Put simply, here it is assumed that there are network structures at the monadic (e.g., 
in and outdegree distributions), dyadic (e.g., mutual dyads), and triadic (e.g., transitive 
triangles) levels of analysis that can plausibly contribute to explain the empirical rela-
tional patterns observed in migration systems.

Research on international migration typically has lacked large-scale (e.g., global) data 
needed to fully bring network structures into the analysis in the context of other tradi-
tional explanatory factors behind the emergence and stability of migratory exchanges. 
For example, migration research regarding the importance of country-level differences 
in income (Greenwood and McDowell 1991) or of cultural similarity (Kim and Cohen 
2010) typically has not integrated the network structure of flows as a relevant factor 
into the analysis. Since this paper explicitly takes into account key network structures, it 
incorporates the idea that any purported mechanism behind the emergence and stabil-
ity of migration flows (e.g., countries’ cultural similarity) must also consider the network 
structure in which flows are embedded.

Beyond the role of network structure per se, a consistent finding in MST’s theoreti-
cal and empirical work suggests that migration systems are highly hierarchical (Fawcett 
1989; Zlotnik 1992; DeWaard et al. 2012; Windzio et al. 2019; see also Massey et al. 1993; 
Windzio 2018). Examples of the hierarchical nature of migratory exchanges are not hard 
to find outside the MST tradition: from the “brain drain” of top-level professionals, to 
the existence of “global diasporas.” (Banerjee et  al. 2019; Cohen 2008). Social network 
theory suggests that an effective way to uncover the existence of global hierarchical net-
works is by means of analyzing their (local) triadic patterns (Davis 1970); or by analyzing 
success-breeds-success dynamics2 (van de Rijt et al. 2014) through the modeling of ine-
qualities in the distribution of indegrees3 (Snijders et al. 2010). Thus, network structures 
cannot only be used to avoid the misspecification of non-network effects as indicated 
in the paragraph above, but also to explicitly model key properties of migration systems 
suggested by theory.

The literature that focuses on the study of the structure of migration networks as 
described above represents one, admittedly small, segment of MST as a whole. Some 
MST theorists have labeled this approach as MST’s abstract systems form (Bakewell 
2014). Starting with the work of Fawcett (1989), other forms of MST highlight the exist-
ence of ‘nonpeople’ linkages between countries (Fawcett 1989) as key drivers behind the 
emergence of migration flows. Fawcett (1989) classified these nonpeople linkages into 
three analytic categories. First, tangible linkages focus on the flow of money and goods 

2  This is more generally known as the Matthew effect of accumulated advantage (Merton 1968).
3  Indegree refers to the number of nodes (e.g., countries) from which a given node receives ties (e.g., flows). Outdegree 
refers to the number of nodes to which a given node sends ties.
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between localities (Greenwood and McDowell 1991). Second, relational linkages refer 
to shared culture and history between localities (Kim and Cohen 2010; Roll and Leal 
2010a). Third, regulatory linkages are related to geographic propinquity and shared 
membership in supranational organizations (DeWaard et  al. 2012). Virtually the same 
classification scheme, with slightly different labels, is offered by Zlotnik (1992). A key 
contribution of this study is to evaluate how these three drivers of international migra-
tion proposed by MST might vary across three different types of migratory corridors 
(South–South flows, North–North flows, and North–South flows), above and beyond 
network structure.

Migratory dynamics in the North and South

North–North flows

Several of the most recent large-scale analyses of migratory dynamics that use MST 
study North–North migration in Europe (Nogel 1994; DeWaard et  al. 2012; DeWaard 
and Ha 2019; Windzio et al. 2019). In terms of regulatory linkages, earlier research on 
geographic propinquity by Nogel (1994) finds that sharing a border is not predictive 
of migratory movements, while recent research by Windzio et  al. (2019) finds a posi-
tive association in this regard using a larger sample of European countries. Similarly, 
DeWaard et  al. (2012) report that increases in geographic distance between European 
countries are negatively associated with, and that shared region is positively associated 
with, the size of flows. Still within the realm of regulatory linkages, but this time seen 
as shared co-membership in supranational organizations and congruent state policies, 
Windzio et al. (2019) do not find consistent results regarding the effect of time of access 
to the European Union (EU), or the opening of domestic labor markets, on the emer-
gence of flows in Europe. However, DeWaard et al. (2012) do find a positive effect of the 
time of countries’ accession to the EU on the size of flows. Unlike Windzio et al. (2019), 
DeWaard et al. (2012) do not explicitly control for network structure in their analysis.

Both DeWaard et al. (2012) and Nogel (1994) find no relationship between language 
similarity, understood as a proxy for relational linkages, and migratory movements. 
Interestingly, Windzio et  al. (2019) do not test for relational linkages in their study. 
Instead, Windzio et al. (2019) explicitly test for the role of network topology, finding a 
positive tendency towards transitivity and a negative tendency towards cyclicality when 
predicting the size of flows. This is critical since the combination of transitivity and (anti)
cyclicality is known to be a blueprint of hierarchical relational systems (Davis 1970; 
Chase 1980; Kitts et  al. 2017). Even though DeWaard et  al. (2012) did not model net-
work topology, they do report the existence of a clear core/periphery structure in the 
European migration system, a finding that goes in tandem with the idea that migration 
systems are highly hierarchical entities. Finally, in terms of tangible linkages, DeWaard 
et al. (2012) find no effect of GDP on the size of flows in Europe. Similarly, Windzio et al. 
(2019) find no consistent effect of GDP on either the existence of flows or their size.

South–South flows

When compared to North–North migration flows, there is reason to believe that South–
South flows might respond differently to classic drivers of migration such as MST’s 
tangible, regulatory, and relational linkages. For instance, in terms of the geographic 
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component of regulatory linkages, South–South flows are known to primarily take place 
between neighboring countries (Dumont et al. 2010; Freier and Holloway 2019), partially 
due to the fact that, unlike migrants from the Global North, migrants from the Global 
South do not always have the financial resources to migrate across long distances. Unlike 
North–North flows, tangible linkages in terms of income differentials between countries 
are known to be key drivers of South–South migration. For instance, the literature on 
South–South migration in Latin America during the second half of the twentieth cen-
tury suggests that increasing levels of inequality in economic well-being between coun-
tries fueled migration across the region to middle-income countries such as Venezuela 
or Argentina (Pellegrino 1995, 2003; Durand and Massey 2010; Cerrutti and Parrado 
2015).

The importance of political factors, which are highlighted by some MST theorists (Jen-
nissen 2007), is also likely to play out differently outside the world of North–North flows. 
In the case of South–South flows specifically, flows of refugees are known to be a dis-
tinctive characteristic of South–South migratory exchanges. Indeed, 86% of the world’s 
refugees under the United Nations High Commissioner for Refugees (UNHCR) com-
mand migrated to countries in the Global South in 2015 (UNHCR 2015). This speaks 
about the importance of political (in)stability, and political factors more generally, to 
understand South–South flows. The case of Venezuela in recent years clearly exemplifies 
the relevance of political instability in South–South flows since the vast majority of new 
Venezuelan migrants are known to have migrated primarily to neighboring Colombia 
(UNHCR 2018; World Bank Group 2018).

South–North flows

According to Abel and Sander (2014), some of the most prominent South-to-North 
migratory corridors are composed of large flows from: (a) Western Africa to Western 
Europe; (b) Latin America to North America and Southern Europe, and; (c) South Asia 
and Southeast Asia mostly to North America, and to a lesser extent, to Europe. South-
to-North flows are thus correlated with cultural affinity, that is, relational linkages in the 
form of a shared colonial past (Pedersen et al. 2008; Roll and Leal 2010b). The role of 
tangible linkages, such as wage differentials between sending and receiving countries, is 
also a defining feature of South-to-North flows (Greenwood and McDowell 1991; Zlot-
nik 1992; Pedersen et al. 2008).

Empirically speaking, North-to-South migration flows are both relatively small and 
uncommon when compared to South-to-North flows (Abel and Sander 2014). The larg-
est North-to-South corridor in the world takes place between North America and Latin 
America and the Caribbean (Azose and Raftery 2019). Migrants of privilege, both from 
the US and Canada, are known to live as retirees in countries like Mexico (Croucher 
2009) or Ecuador (Hayes 2014). The distinctive role played by relational linkages (e.g., 
colonial past) and tangible linkages (e.g., differences in wages and costs of living between 
countries) in North–South exchanges suggest that North–South flows (both South-to-
North and North-to-South) are analytically and empirically distinct from both South–
South and North–North flows. This makes the main contribution of this study, namely, 
the comparison of the determinants of North–North, South–South, and North–South 
flows worthwhile.
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Materials and methods
Methods: the Stochastic Actor‑oriented Model (SAOM)

The SAOM is designed to perform inferential analyses of the stochastic processes gov-
erning the evolution of network dynamics as if these dynamics were (theoretically) 
driven by actors’ actions (Snijders et  al. 2010; Snijders 2001; Ripley et  al. 2020).4 The 
model assumes that discrete unobserved opportunities for network change, also known 
as micro steps (Snijders 1996; Snijders et al. 2010), happen in continuous time between 
empirically observed data points or waves. The first wave of data is not modeled but 
conditioned upon, which means that there must be at least two waves of data in order 
to use the SAOM (Snijders et al. 2010). Parameters are estimated using the method of 
moments implemented by means of computer simulation in the RSiena software (Rip-
ley et al. 2017). Since the SAOM assumes that ties represent enduring states changing 
throughout a series of micro steps, the evolving network is understood to be the out-
come of a continuous time Markov process (Snijders et al. 2010; Snijders 2001).

The network opportunities for change in the SAOM happen at a speed controlled by 
a network rate function. At each micro step, only one randomly selected node (e.g., a 
country) is deemed the opportunity for change (Snijders 1996; Snijders et al. 2010; Sni-
jders 2001). In this paper, the network rate function is assumed to be constant across 
nodes, which means that the opportunities for change do not depend on nodes’ attrib-
utes (e.g., their indegree).5 The SAOM further assumes that only one type of change—
either sending a new flow, deleting an existing flow, or doing nothing—, can happen at 
any given micro step (Steglich et al. 2010). A discrete (multinomial) choice function is 
used to probabilistically evaluate the relative likelihood of these three mutually exclusive 
possibilities (Snijders et al. 2010; Steglich et al. 2010). This choice function is known as 
the network objective function. This function governs the network processes being mod-
eled. Once successfully estimated, the individual parameter values obtained in the con-
text of this choice function will characterize the role of each effect (e.g., reciprocity) in 
the contribution to an accurate reproduction of the network dynamics observed in the 
data.

More formally, let x be a variable under evaluation for change. Then, fi(β , x) is the 
objective function of node i, applied to x using parameter β . The likelihood that node i 
moves to state a of variable x ( xa ), given other states in x is given by:

where X is the set of all possible states of x.
Continuing with a node-oriented interpretation of the model, when given the oppor-

tunity for bringing change, the selected node is assumed to “myopically” strive for higher 
values of their objective function in a stochastic fashion (Snijders 2005). This is said to 
be a myopic decision-making process because the node is subject to the restrictions 

exp
(

fi
(

β , xa
))

∑

x′∈X exp
(

fi(β , x′)
)

5  This follows the recommendation by Ripley et al. (2020) according to which a constant rate function should be used as 
a default. To be sure, rate functions do not have a substantive interpretation, they control the rate at which the networks 
under analysis change during the estimation of the model’s coefficients.

4  Actors in the SAOM can be any type of social actor, from social animals and humans to countries. Equivalently, these 
social actors can be simply defined as the nodes in a given social network.
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imposed by the current state of the “world” (e.g., the state of the migration network at a 
given micro step).6 It is because of this rather natural node-oriented interpretation of the 
SAOM that it can easily be in direct communication with other actor-oriented modeling 
approaches such as agent-based models or Relational Event History models.7 The spe-
cific network objective function of the SAOM used in this paper is determined by three 
theoretically distinct types of effects (details on these covariates and their measurement 
are provided below, their ordering does not indicate order of operation in the model):

1	 Network endogenous effects (e.g., outdegree, reciprocity, indegree popularity)
2	 MST linkages (e.g., regulatory, relational, and tangible linkages).
3	 Other effects (e.g., political instability, old-age dependency ratio).

In this paper, the three networks under analysis were jointly fit in one overarching 
model by declaring the three networks as mutually exclusive (or ‘disjoint’ in SAOM par-
lance, see Ripley et al. 2020). The convergence t-ratio for each of the parameters under 
analysis, and the overall maximum convergence ratio for the entire model, always ful-
filled the thresholds for good convergence established in the specialized literature (Rip-
ley et al. 2020).8

Data and measures

Dependent variable(s)

This paper focuses on a key dimension of migration flows, namely, the diversity of flows, 
that is, which countries are and are not connected in a migration network; as opposed 
to the intensity of flows, that is, the size of the flows in a migration network. This impor-
tant theoretical distinction between the diversity versus the intensity of migration flows 
is commonly used in the migration literature (Czaika and de Haas 2014; Arango 2000; 
DeWaard and Ha 2019). Recent formal work in the context of the MST tradition has 
shown that both the diversity and the intensity of flows provide complementary, yet 
unique insights to understand migration systems (DeWaard and Ha 2019).

6  In the standard version of the SAOM (e.g. Snijders et al. 2010)—which is the one used in this paper—nodes cannot 
coordinate to change their ties in a given micro step. Only ego is under control of what to do regarding their out-going 
ties. All the information needed to make a decision is assumed to be available to ego in the context of a given micro step. 
It is also assumed that, in a given micro step, ego has full information about their, and all other actors’, attributes, as well 
as about the current state of the network.
7  Following Butts (2017), actor-oriented models—such as SOAM, Relational Event History models, Dynamic Network 
Actor models, or agent-based models—are all part of a family of models that can be expressed in terms of the actions of 
individual agents. Agents (e.g., countries) are autonomous entities with unique attributes that follow a set of rules (e.g., 
the network objective function), and that adapt to changes in the environment, including the actions of other agents 
towards them (i.e., receiving a migration flow). Even though it is tempting to humanize agents, they do not need to be 
human, they can be animals, organizations, states, et cetera (e.g., Kitts et al. 2016).
8  All models were estimated with RSiena version 1.2–23. The method of moments was used with five phase 2 sub-
phases. The (default) score function with 5,000 phase 3 iterations was used to calculate standard errors. The overall max-
imum convergence ratio for all models was always below 0.17, and the absolute value of the t-ratios for all coefficients in 
all models, were always below 0.1. These two metrics suggest excellent model convergence that meets the standards to 
publish results (Ripley et al. 2020). Except for the (GWDSP) in-stars and mixed-stars (more details on these two effects 
are in Sect. 3.2.2. in the article), no evidence of collinearity was found in the reported models since the absolute value 
of the correlations between the estimated parameters in a given model were always below 0.95 (Ripley et al. 2020). As 
recommended by Ripley et al. (2020), to ensure that the collinearity between the (GWDSP) in-stars and mixed-stars did 
not pose a threat to our findings, each model discussed in this paper was ran twice with different seeds to evaluate how 
robust/consistent the standard errors were. Since results were virtually identical across the different runs, it is warranted 
to conclude that collinearity did not drive the results.
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The original migration flow data used in this paper were estimated by Azose and Raf-
tery (2019) based on UN bilateral migrant stock data (United Nations 2015). Put simply, 
these flow data are weighted and directed matrices in which the ijth cell represents the 
intensity (i.e., size or weight) of the flow (i.e., tie or edge) from country i to country j. This 
effectively means that in this study migration flows are modeled as directed ties linking 
nodes representing countries. The Azose and Raftery (2019) data cover the period 1990 
to 2015 by intervals of 5 years; thus, resulting in a time-series of 5 weighted migration 
networks: 1990–1995; 1995–2000; 2000–2005; 2005–2010; and 2010–2015.

To study which sending and receiving countries are (and are not) connected through 
migratory exchanges (i.e., to study the diversity of the system) flows were binarized. This 
means that the actual migration networks under analysis were not weighted directed 
networks representing the intensity/size of flows, but binary directed networks repre-
senting the diversity of flows. These binary networks are the dependent variables under 
analysis. Again, in the MST tradition, DeWaard and Ha (2019) have formally and empiri-
cally shown that studying the diversity and the intensity of flows provides unique infor-
mation to understand the dynamics of migration systems (see also Czaika and de Haas 
2014; Bell et al. 2002).

The binarization of the original weighted networks follows the insights of Michael 
Windzio by using a threshold based on flows’ size in order to retain the largest, most 
“relevant,” flows in the system (Windzio 2018: 22; see also Windzio et al. 2019). This is 
theoretically warranted since MST theorists have long advocated that the structure and 
dynamics of migration systems are more evidently observed among the largest flows in 
the system (Zlotnik 1992; Fawcett 1989), which suggests that studying flows of smaller 
sizes will probably provide weaker signals regarding the operation of MST linkages as 
drivers of migration. Studying how MST can be used to effectively model migration 
flows of different sizes is thus both beyond the scope of this paper and an important 
avenue for future research. To be sure, using a threshold to binarize and study naturally 
weighted networks through inferential methods is also common outside the migration 
literature (Faust and Skvoretz 2002; Fowler 2006; Cranmer and Desmarais 2011).

In order to binarize migration flows in each one of the 15 networks under analysis 
(5 time periods × 3 types of flows—i.e., North–North; South–South; North–South),9 all 
flows in the first three quartiles of the distribution of flows arranged by size were coded 
as a 0 (i.e., as non-existing flows), whereas all flows in the upper quartile were considered 
relevant migration flows and thus coded as a 1 (i.e., as existing flows). In practice, this 
means that this paper focuses on the diversity exhibited among the largest migratory 
corridors in the context of South–South, North–North, and North–South exchanges. A 
total of 184 countries around the globe had complete data on all relevant covariates and 
were thus included in the analysis. More schematically, the binarization rules that cre-
ated the 15 migration networks under analysis can be described as follows:

9  More explicitly, the 15 networks under analysis can be viewed as belonging to three time-series (one for North–North 
flows, one for South-South flows, and one for North–South flows) with five waves each (1990–1995, 1995–2000, 2000–
2005, 2005–2010, 2010–2015).
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•	 North–North migration networkt = 1 for all flows which size is in the upper quartile 
of the distribution of flows between countries in the Global North at time t; 0 other-
wise.

•	 South–South migration networkt = 1 for all flows which size is in the upper quartile 
of the distribution of flows between countries in the Global South at time t; 0 other-
wise.

•	 North–South migration networkt = 1 for all flows which size is in the upper quartile 
of the distribution of flows from countries in the Global North to countries in the 
Global South (and vice versa) at time t; 0 otherwise.

Covariates

MST linkages. First, as put by DeWaard et al. (2012: 1324), regulatory linkages “include 
geographic isolation, typically measured by country contiguity or shared region (Ped-
ersen et  al. 2008), as well as economic and political memberships.” As a result, two 
dyadic time-invariant measures of geographic propinquity are used here: sharing a bor-
der (yes = 1; no = 0), and same geographic region (yes = 1; no = 0). The information on 
borders and regions was compiled by the Centre d’Etudes Prospectives et d’Informations 
Internationales (CEPII) (Mayer and Zignago 2011). The classification of countries by 
region used in this article can be found in Additional file 1: Appendix A. In terms of co-
membership in supranational organizations, a time-variant dyadic measure of shared 
membership in International Organizations (IGO) is used here. The original data set 
was developed by the Correlates of War project (Pevehouse et al. 2019). In this study we 
limited the analysis to 16 IGOs capable of generating relatively congruent trade poli-
cies among their members.10 The focus on trade relations is consistent with MST theory 
since it suggests that trade is a key dimension of state to state relations and, therefore, 
constitutes a macro-level correlate of international migration (Fawcett 1989; Nogel 1994; 
DeWaard et al. 2012). Descriptive statistics for all MST covariates are reported in Addi-
tional file 1: Appendix B and links to all original data sources and code to reproduce the 
analysis are available in Additional file 1: Appendix C.

Second, in terms of tangible linkages, and following previous work in the MST litera-
ture, data on GDP were used to capture the effect of (economic) well-being in both ori-
gin and destination countries (DeWaard et al. 2012; see also Greenwood and McDowell 
1991). The main effect of (logged) GDP on both inflows (indegree) and outflows (out-
degree) are included in the analysis as time-varying node-level covariates. GDP for 
each year between 1990 and 2015 was taken from the UN Statistics Division data por-
tal (United Nations Statistics Division 2019b). Because migration flow data are aggre-
gated in 5-year intervals, GDP was computed as the average (logged) GDP of a country 
between the first and last year in a given 5-year interval. Finally, in terms of relational 
linkages, shared official language (yes = 1; no = 0) was used as a time-invariant dyadic 

10  We looked at IGOs that focused on trade relations and that were not directly part of the UN since most countries 
belong to the UN. The following IGOs were included in analysis: Andean Community, Arab Maghreb Union, Asia–
Pacific Economic Cooperation, Association of Southeast Asian Nations, Caribbean Community, Economic Community 
of West African States, Eurasian Economic Community/ Eurasian Economic Union, Euro Free Trade Association, Euro-
pean Union, Gulf Cooperation Council, North American Free Trade Association, MERCOSUR, Central American Inte-
gration System, Common Market for East and South Africa, Southern African Development Community.
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covariate to measure cultural similarity between countries (DeWaard et al 2012; see also 
Kim and Cohen 2010). Information on countries’ official languages was taken from the 
CEPII’s data set referenced above.

Network endogenous covariates. Several different measures were used to model the 
network structure of migration flows. First, a covariate to model outdegree was included 
in the analysis to account for the baseline probability of observing ties/flows. A covariate 
to account for dyadic reciprocity was also included. Incorporating these two param-
eters is a standard practice in the inferential study of cross-sectional and longitudinal 
social networks, including internal and international migration networks (Snijders et al 
2010; Goodreau et al. 2009; Windzio et al 2019; Windzio 2018; Desmarais and Cranmer 
2012). A mathematical and visual representation of all network statistics used here is 
reported in Table 1.

Second, inequalities in the distribution of in and outdegrees were also explicitly mod-
eled. Here it was especially important to model self-reinforcing disparities in indegrees 
(i.e., inflows) by including a term to account for indegree popularity (Snijders et  al. 
2010), that is, the tendency for a country to attract inflows due to the inflows it cur-
rently has. This term models cumulative advantage or success-breeds-success dynamics 
(van de Rijt et al. 2014) in the distribution of indegrees; an inequality-generating process 
akin to the well-known concepts of the Matthew effect (Merton 1968) or preferential 
attachment (Bárabasi and Albert 1999). Substantively, a positive coefficient for indegree 
popularity would suggest the existence of a hierarchical system that gives rise to very 
popular nodes or hubs. Following Snijders et al. (2010), for completeness both outde-
gree popularity (i.e., the tendency of a country to attract inflows as a function of its 
existing outflows) and outdegree activity (i.e., the tendency of a country to send out-
flows as a function of its existing outflows) were also modeled in order to maximize the 
chances of obtaining a non-spurious indegree popularity effect.

Finally, to account for basic triadic processes, network configurations consistent with 
transitive and cyclic tendencies were also modeled. In this context, transitive triads 
(i.e., the 030T triad in the triad census of Davis and Leinhardt (1972), graphically: 
) and cyclic triads (i.e., the 030C triad in the triad census, graphically: ) were 
included in the model. Research in social networks suggests that finding both a positive 
tendency towards transitivity and a negative tendency towards cyclicality is a structural 
signature of the existence of hierarchical local (i.e., triadic) tendencies in the formation 
of a given network (Davis 1970; Davis and Leinhardt 1972; Chase 1980; Robins 2015; 
Kitts et al. 2017). A term to control for the existence of dyadic reciprocity (i.e., an antihi-
erarchical tendency) within transitive triads was also included. As suggested by Block 
(2015) this can be done by including a term to account for transitive reciprocated tri-
ads (i.e., the 120C triad in the triad census, graphically: ).

Critically, closed triangles such as cyclic triads or transitive triads are actually impossi-
ble to form in North–South exchanges (e.g., the hypothetical open triangle Colom-
bia → Spain; Spain → Venezuela cannot be closed by the flow Venezuela → Colombia 
because this last flow is not a North–South flow). Therefore, in-stars (i.e., the 021U triad 
in the triad census, graphically: ) and mixed-stars (i.e., the 021C triad in the triad 
census, graphically: ) were included instead in order to model triadic tendencies 
in North–South flows. As recommended in the specialized literature (Hunter 2007; 
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Snijders et al. 2006; Ripley et al. 2020), these star effects were modeled using a geometri-
cally weighted dyadwise shared partners (GWDSP) function to improve model conver-
gence (see Table 1 for a graphical and mathematical representation).

Table 1  Network effects included in the Stochastic Actor-oriented Models

A dotted line represents the creation of a new tie, based on the existing structure of the network as represented by the solid lines

i represents Ego, j represents an Alter, and h represents an Alter different from j

Xij = 1 if the ordered pair i → j exists (Xij = 0 otherwise)

α represents a tuning parameter that may range from 0 to ∞. As recommend by Snijders et al. (2006), α was fixed at 0.69 to 
model decreasing marginal returns to indirect connections

Replacing an index (e.g., j) by a + denotes summation over that index

Network effect Equation Visual representation

Outdegree
∑

j

xij

Dyadic reciprocity
∑

j

xij xji

Indegree popularity (sqrt)
∑

j

xij
√
x+j

Outdegree popularity (sqrt)
∑

j

xij
√
xj+

Outdegree activity (sqrt) (xi+)
1.5

Transitive triads
∑

j,h

xihxij xjh

Cyclic triads
∑

j,h

xij xjhxhi

Transitive reciprocated triads
∑

j,h

xhixihxij xjh

GWDSP—mixed-stars n
∑

h=1;h �=i

eα

{

1−
(

1− e−α
)

n
∑

j=1

xij xjh

}

GWDSP—in-stars n
∑

h=1;h �=i

eα

{

1−
(

1− e−α
)

n
∑

j=1

xij xhj

}
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Other covariates. To account for political (in)stability a time-invariant node-level 
covariate that measures the yearly average number of coups d’état a country endured 
during the years under analysis is included. This information was taken from the coups 
d’état database created by the Center for Systemic Peace (Center for Systematic Peace 
2019) and was computed as the total number of coups a country experienced divided by 
the total number of years under analysis. Even though this is an admittedly raw proxy 
for political instability, other prominent data sets such as the Major Episodes of Political 
Violence Database—which includes a wider range of measures of political upheaval due 
to political and ethnic conflict—was not available for all countries under analysis. The 
main effect of (logged) population size on both inflows and outflows was also included, 
and was gathered from UN population estimates available on the UN population data-
base (United Nations 2019a). Population size was included as the average population a 
country had during a given 5-year interval in the same way that average GDP was com-
puted. Finally, the main effect of countries’ old-age dependency ratio on both inflows 
and outflows was also included in the models. This information was also taken from the 
UN population database (United Nations 2019b) and it is calculated as the ratio of total 
population 65 years old or older to total population aged 15–64 years old. The literature 
on global care chains clearly suggests that countries with a surplus of relatively young 
people, especially women, can be expected to send large outflows to countries with care 
deficits, that is, countries with a surplus of people in need of care, such as relatively older 
people (Hochschild 2000; Misra et al. 2006; Malhotra et al. 2016).

Results
Descriptive results

The size of the North–North, South–South, and North–South networks analyzed here 
is different because they are restricted to flows between countries that belong to a given 
global sociopolitical region (e.g., North countries such as Japan cannot be part of South–
South migratory exchanges). The smallest networks are the North–North networks, 
which have 49 nodes in them. The South–South networks are much larger, with 135 
nodes; the North–South networks are the largest because they include all countries (i.e., 
184 nodes). All the descriptive statistics for the networks discussed below are available 
in Table 2.

All networks have relatively large levels of (indegree) Centralization.11 On average 
across time intervals, the North–North networks have a Centralization of 0.58, South–
South networks exhibit a Centralization of 0.60, and North–South networks have a 
Centralization of 0.54. The fact that these networks are relatively Centralized indicates 
the existence of very popular nodes or hubs that attract a sizeable number of flows to 
them. Research shows the existence of hubs is a defining feature of migration systems 
(Windzio et al. 2019; DeWaard et al. 2012; Zlotnik 1992).

11  Formally, following the notation of Wasserman and Faust (1994), Centralization (C*), or graph centrality, is defined as: 

C∗
=

∑

i∈V

∣

∣

∣

∣

max

v ∈ V
(C(v))− C(i)

∣

∣

∣

∣

C∗
=

∑

i∈V

∣

∣

∣

∣

max

v ∈ V
(C(v))− C(i)

∣

∣

∣

∣

 . Where (C(v))− C(i)(C(v))− C(i) is the difference 

between largest value and all other values, taken pairwise between actors. This value is then summed for all comparisons 
to represent a graph-level measure of centrality.
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There are important differences in mean indegree12 and outdegree13 across the three 
types of networks, yet notable stability within each type of network across time. A rel-
evant feature of these distributions are their relatively large standard deviations. This is 
especially pronounced for the distribution of indegrees in North–South networks since 
in that context the standard deviation of nodes’ indegrees is larger than their mean inde-
gree across all five time periods (see Table 2). This is not entirely surprising given that, by 
definition, hubs create long (right) tails in the distributions that describe nodes’ degrees. 
This is a known feature of North–South flows and North–North flows since countries 
such as the United States are a major pole of attraction of migration flows in those sys-
tems (Zlotnik 1992; Leal et al. 2019a; Abel and Sanders 2014; Windzio et al. 2019).

Information regarding the distribution of relevant triads for each network shows nota-
ble differences in the number of transitive triads (030T) versus cyclic triads (030C). 
Again, for reasons explained in the “Materials and methods” section, transitive triads 
and cyclic triads can only emerge in South–South and North–North flows. Triadic 
structures can be used to describe the tendencies to observe equitable or unequitable 
patterns of migratory exchange beyond bilateral flows (Windzio 2018). Indeed, on the 
one hand, here it is posited that cyclic triads topologically conform to equitable chain-
like migratory exchange patterns (i.e., each country in the triad sends a flow out and 
each country also receives one flow back, graphically ). On the other hand, here it 
is argued that transitive triads conform to unequitable patterns of exchange (i.e., one 
country in the triad receives two flows yet sends out none back, one country sends two 
flows and receives none, and one country sends and receives one flow, graphically 
). Empirically, the ratio of cyclic triads to transitive triads clearly suggests the low preva-
lence of equitable triadic structures (i.e., cyclical triads) vis-à-vis unequitable structures 
(i.e., transitive triads). More specifically, on average across all periods for both North–
North and South–South flows, cyclic triads are always less than 0.008 times as likely to 
be observed in the data as transitive triads are.

Inferential results

The analysis of the SAOM results is presented in two sections. Following Lewis and 
Kaufman (2018), in the first section, a ‘pooled’ model is described in detail. This model 
represents the network dynamics of North–North, South–South, and North–South net-
works over all time intervals. Given that, by definition, pooling all time intervals in one 
model will lead to underreporting potential peculiarities taking place at specific points 
in time, in a second section ‘transition period’ models are presented in order to describe 
the changes between each consecutive pair of time intervals (e.g., 2000–2005 to 2005–
2010). The period models are thus more temporally accurate, yet less encompassing 
(Lewis and Kaufman 2018).

12  Formally, mean indegree is defined as: dI =
∑g

i=1 dI (ni )

g
dI =

∑g
i=1 dI (ni )

g
 . Where dI is defined as the number of incoming 

ties for a node, ni is the focal node (i.e., Ego), and g is the total number of nodes. It represents a mean of the incoming 
ties for nodes in a network.
13  Formally, mean outdegree is defined as: dO =

∑g
i=1 dO(ni )

g
dO =

∑g
i=1 dO(ni )

g
 . Where dO is defined as the number of out-

going ties for a node, ni is the focal node (i.e., Ego), and g is the total number of nodes. It represents a mean of the outgo-
ing ties for nodes in a network.
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Table 2  Network descriptive statistics for migration flows, 1990–2015 (binarized data)

Migration flows included here are those in the top quartile of flows arranged by size in each migration network

1990–1995 1995–2000 2000–2005 2005–2010 2010–2015

North–North flows

Density 0.248 0.248 0.248 0.249 0.249

Centralization (indegree) 0.640 0.619 0.597 0.533 0.533

Mean in-degree (std. dev) 11.92 (10.22) 11.99 (9.81) 11.92 (9.99) 11.94 (8.95) 11.96 (9.22)

Mean out-degree (std. dev) 11.92 (7.83) 11.90 (8.84) 11.92 (9.28) 11.94 (9.74) 11.96 (9.38)

Number of nodes 49 49 49 49 49

Number of isolates 0 1 2 1 0

Dyad census

 Number of mutual dyads 219 223 233 233 246

 Number of asymmetric dyads 146 137 118 119 94

 Number of null dyads 811 816 825 824 836

Relevant triads

 Number of transitive triads (030T) 39 42 28 36 22

 Number of 021U triads 283 209 213 89 95

 Number of cyclic triangles (030C) 0 0 1 0 0

 Number of 021C triads 150 181 120 136 74

 Number of trans. rec. triads (120C) 37 39 42 38 34

South–South flows

Density 0.265 0.264 0.258 0.268 0.254

Centralization (indegree) 0.627 0.486 0.634 0.647 0.594

Mean in-degree (std. dev) 35.57 (22.02) 35.34 (22.46) 34.63 (21.69) 35.98 (22.16) 34 (21.98)

Mean out-degree (std. dev) 35.57 (22.23) 35.34 (21.48) 34.63 (20.37) 35.98 (21.85) 34 (20.82)

Number of nodes 135 135 135 135 135

Number of isolates 0 0 0 0 0

Dyad census

 Number of mutual dyads 1760 1794 1819 1872 1952

 Number of asymmetric dyads 1282 1183 1037 1113 686

 Number of null dyads 6003 6068 6189 6060 6407

Relevant triads

 Number of transitive triads (030T) 2049 1345 1232 1490 322

 Number of 021U triads 5863 6758 5890 5209 3738

 Number of cyclic triangles (030C) 21 5 8 7 0

 Number of 021C triads 2937 2250 2072 1739 412

 Number of trans. rec. triads (120C) 1114 946 949 927 439

North–South flows

Density 0.098 0.098 0.098 0.097 0.097

Centralization (indegree) 0.517 0.561 0.528 0.539 0.523

Mean in-degree (std. dev) 17.86 (21.23) 17.87 (23.32) 17.85 (23.25) 17.83 (22.32) 17.83 (22.51)

Mean out-degree (std. dev) 17.86 (18.42) 17.87 (17.15) 17.85 (17.50) 17.83 (18.37) 17.83 (18.21)

Number of nodes 184 184 184 184 184

Number of isolates 1 1 2 0 1

Dyad census

 Number of mutual dyads 1200 1202 1222 1260 1322

 Number of asymmetric dyads 887 884 840 760 637

 Number of null dyads 14,749 14,750 14,774 14,816 14,877

Relevant triads

 Number of transitive triads (030T) – – – – –

 Number of 021U triads 6958 10,661 9330 6595 5714

 Number of cyclic triangles (030C) – – – – –

 Number of 021C triads 4129 2439 1818 1782 980

 Number of trans. rec. triads (120C) – – – – –
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Goodness-of-fit (GOF) measures are available at the bottom of Tables 3 and 4 in the 
form of a p value based on Monte Carlo Mahalanobis distance tests (Lospinoso and Sni-
jders 2019; see also Lewis and Kaufman 2018). In a nutshell, these p values indicate the 
likelihood that a set of simulated networks generated under each one of the estimated 
models—with their corresponding parameter values—are able to recover key empirical 
features of the networks under analysis, in this case the observed distribution of inflows 
(indegree) and outflows (outdegree) (for a similar GOF approach in the Exponential 
Random Graph Model literature see Goodreau et al. 2009). Therefore, under this simu-
lated-based GOF framework, better fit is signaled by large p values since that indicates 
that the indegree and outdegree distributions of the simulated networks are statistically 
indistinguishable from the observed indegree and outdegree distributions of the net-
works each model aims to fit.

In general, it is discouraged to use models with p values equal to 0 (Ripley et al. 2020: 
60). Among the 24 p values computed for the single period models (i.e., 4 transition peri-
ods × 3 network types × 2 global properties [indegree and outdegree distribution]), no 
p values were equal to 0, three were below 0.05 and none were below 0.02. Given that 
the same parameters are used across all 4 single period models, this suggests that these 
parameters consistently fit well the observed networks in all individual periods. The 
complexity of the pooled model is reflected in lower overall fit—which is to be expected 
(Lewis and Kaufman 2018)—with two p values being equal to 0. Since the single period 
models and the pooled model have the exact same set of covariates and, with some 
minor exceptions discussed in detail below, the values and direction of all coefficients 
are consistent across all models, this indicates that the set of coefficients used here can 
be reliably used to describe the evolution of the migration networks under analysis.

Pooled model

Endogenous network effects The outdegree effect is consistently and negatively associated 
with the emergence of flows in the three migration systems under analysis (see Table 3). 
Observing a negative coefficient for outdegree is a typical feature of social networks 
since it indicates the existence of a low baseline probability for tie formation, that is, it 
reflects the fact that social networks tend to be sparse (Lusher et al. 2013). An equally 
fundamental network process model here is that of dyadic reciprocity. The results in this 
regard are also highly consistent since reciprocity is positively and significantly associ-
ated with the emergence of flows across all three networks. The coefficient for reciproc-
ity is larger in same-status flows (i.e., North–North flows and South–South flows) than 
in different-status flows (i.e., North–South flows). This is consistent with the literature 
that suggests that dyadic reciprocity is typically low among different-status actors (Gra-
nados and Knoke 2013; Leal et al. 2019b).

The findings also suggest the existence of success-breeds-success dynamics as dem-
onstrated by the positive and statistically significant indegree popularity effect found in 
all three networks. This indicates strong reinforcing inequalities in the distribution of 
inflows where popular nodes or hubs tend to become even more popular over time (Sni-
jders et al. 2010). This is consistent with the robust evidence suggesting the existence of 
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Table 3  Pooled SAOM to  investigate international migration flows by  the  global South/
North divide (1990–2015)

North–North networks South–South networks North–South networks

Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

Rate parameters

 Period 1 4.116
(0.436)

18.569
(0.700)

10.324
(0.442)

 Period 2 5.533
(0.562)

18.120
(0.701)

9.324
(0.418)

 Period 3 4.088
(0.439)

10.557
(0.405)

5.011
(0.249)

 Period 4 4.383
(0.468)

12.605
(0.484)

5.272
(0.256)

Network endogenous effects

 Outdegree − 4.280***
(0.377)

− 2.557***
(0.156)

− 4.815***
(0.106)

 Reciprocity 2.787***
(0.235)

3.101***
(0.106)

1.955***
(0.055)

 Transitive triads (030T) 0.120***
(0.021)

0.053***
(0.003)

–

 Transitive recipr. triads (120C) − 0.108***
(0.032)

− 0.037***
(0.005)

–

 Cyclic triads (030C) 0.004
(0.042)

0.026***
(0.007)

–

 GWDSP mixed-star – – − 0.078***
(0.010)

 GWDSP in-star – – 0.053***
(0.008)

 Indegree—popularity (sqrt) 0.852***
(0.141)

0.600***
(0.032)

0.520***
(0.028)

 Outdegree—popularity (sqrt) − 0.717***
(0.180)

− 0.883***
(0.050)

− 0.154***
(0.032)

 Outdegree—activity (sqrt) 0.236***
(0.051)

0.099***
(0.015)

0.222***
(0.012)

MST linkages

 Common language 0.785***
(0.208)

0.335***
(0.035)

0.607***
(0.058)

 Contiguous border 0.960***
(0.169)

1.688***
(0.204)

1.235***
(0.292)

 Same region 0.107
(0.111)

0.603***
(0.045)

1.052***
(0.103)

 Shared IGO 0.137
(0.124)

0.371***
(0.051)

0.288***
(0.095)

 GDP—inflows − 0.028
(0.044)

0.142***
(0.018)

− 0.004
(0.020)

 GDP—outflows 0.029
(0.041)

− 0.170***
(0.021)

− 0.027
(0.019)

Other controls

 Old age dependency—inflows 0.009
(0.010)

0.002
(0.006)

0.003
(0.004)

 Old age dependency—outflows − 0.026***
(0.009)

− 0.015**
(0.006)

− 0.015***
(0.004)

 Population—inflows 0.181**
(0.077)

0.055***
(0.015)

0.092***
(0.019)

 Population—outflows 0.122
(0.063)

0.037**
(0.015)

0.162***
(0.018)

 Coups—inflows 0.632
(− 2.634)

− 0.636***
(0.148)

0.233
(0.298)
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preferential attachment dynamics in social and technological networks (de Solla Price 
1976; Bárabasi and Albert 1999).

Both North–North and South–South flows exhibit a tendency in favor of the emer-
gence of hierarchical-like triangles (i.e., positive transitive triads effect) and a tendency 
against reciprocity within triads (i.e., negative transitive reciprocated triads effect). Both 
of these tendencies are stronger in North–North flows than in South–South flows. 
This is perhaps related to the fact that South–South flows lack extremely popular hubs 
such as those observed in North–North flows (e.g., the US, Germany, or the UK). The 
presence of such hubs would likely make many of the triads in which they are involved 
hierarchical since, by definition, hubs tend to receive substantially more inflows than 
outflows; thus, making migratory exchanges unequal.14 Evidence of the hierarchical 
nature of North–North migration systems, and of the role of hubs such as the UK and 
Germany in that context, has been reported before in the MST literature (Windzio et al. 
2019; DeWaard et al. 2012). There is also evidence of a positive tendency for the forma-
tion of cyclic triads in South–South flows, which suggests the presence of local antihier-
archical forces among migratory exchanges within the Global South. Again, it is possible 
that this is related to the lack of prominent hubs in South–South flows. Finally, although 
highly indirect, the results also suggest the prevalence of hierarchical triadic migratory 
patterns in North–South flows. On the one hand, there is a negative tendency to observe 
(GWDSP) mixed-stars, which suggest an overall negative correlation between receiving 
and sending out flows in North–South triads. On the other hand, the evidence also sug-
gests a significant and positive tendency to observe (GWDSP) in-stars in North–South 
triads, that is, open triangles where the central node receives two flows.

MST linkages. Regulatory linkages are typically understood in the MST literature as 
modeling both geographic propinquity and shared membership in supranational organi-
zations (DeWaard et al. 2012). In terms of geographic propinquity, this paper uses both 
a measure of country contiguity and a membership-based measure of shared geo-
graphic region. As expected, both variables consistently suggest that geographic pro-
pinquity is positively associated with the emergence of flows in all the networks under 
analysis. However, the extent to which geographic propinquity matters varies between 
the three migration networks. On the one hand, shared region seems to matter less for 

Table 3  (continued)

*  p < .05; **p < .01; ***p < .001 (two-tailed tests)

14  Further indirect evidence in this regard comes from the size of the indegree popularity effect since this coefficient is 
much larger in North–North flows (β = 0.852, p. < .001) than in the South-South flows (β = 0.600, p. < .001). This suggests 
that hubs in North–North migration networks attract more flows than hubs in South-South migration networks.

North–North networks South–South networks North–South networks

Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

 Coups—outflows − 1.651
(2.524)

0.146
(0.142)

− 0.017
(0.205)

Goodness of fit

 Indegree or inflows 0.896 0 0.044

 Outdegree or outflows 0.067 0.026 0
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North–North flows (β = 0.107, n.s.), more for South–South flows (β = 0.603, p < 0.001), 
and even more for North–South flows (β = 1.052, p < 0.001). In this regard, it is known 
that a substantial amount of North–South flows does tend to be directed from countries 
in the Global South to countries in the Global North located in the same region, yet 
these countries are typically not strictly contiguous to one another (e.g., El Salvador and 
the US in the Americas or Turkey and Germany in Europe). On the other hand, strict 
geographic contiguity seems to matter less for North–North flows (β = 0.960, p < 001), 
more for North–South flows (β = 1.235, p < 0.001), and even more for South–South 
flows (β = 1.688, p < 0.001). Supporting evidence in this regard in the migration literature 
suggests that, especially in times of crisis, large flows from the Global South tend to be 
directed to other geographically close Global South countries, not necessarily to Global 
North countries (UNHCR 2015; World Bank Group 2018).

Still within the world of regulatory linkages, co-membership in supranational organi-
zations is roughly equally important for both North–South flows (β = 0.288, p < 001) and 
South–South flows (β = 0.371, p < 001), while it is not significantly associated with the 
emergence of flows in the North–North network (β = 0.137, n.s.). The latter result is not 
surprising since most countries in the Global North belong to virtually the same Inter-
governmental Organizations (IGOs), what Greenhill and Lupu (2017) call the European/
Northern IGO cluster. This makes the co-membership in supranational organizations 
almost a constant for North–North flows. Similarly, after controlling for network struc-
ture, Windzio et al. (2019) did not find consistent effects regarding the timing of joining 
the European Union—understood as a proxy for regulatory linkages—on the existence of 
North–North flows in Europe. The results reported here point out in the same direction.

In terms of relational linkages, that is, the role of shared culture and history, results 
are in the expected direction since in all three migration networks sharing an official 
language is significantly and positively associated with the emergence of migration 
flows. The overall positive effect of language similarity on the existence of flows is con-
sistent with existing empirical evidence (Kim and Cohen 2010; Spörlein 2015; Windzio 
2018). Interestingly, the size of the coefficient for language similarity suggests that a 
shared culture and history is relatively more important to predict North–North flows 
(β = 0.785, p < 0.001), than North–South flows (β = 0.607, p < 0.001) or South–South 
flows (β = 0.335, p < 0.001).

In light of the results reported above regarding the role of geographic propinquity, 
the findings indicate that relational linkages might be relatively more important to pre-
dict North–North flows, while regulatory linkages might be more important to predict 
North–South flows and South–South flows. To be sure, as predicted by MST, both regu-
latory linkages and relational linkages are key to understand migration patterns across 
the three migration networks under analysis. Yet, when comparing results across the 
three migration networks the findings suggest that, ceteris paribus, North–North flows 
are better predicted by cultural distance, whereas North–South flows and South–South 
flows are better predicted by geographic distance. Existent evidence goes in tandem with 
this conclusion. On the one hand, Kim and Cohen (2010) report that a proxy for cultural 
similarity, namely, the existence of colonial linkages, is relatively more influential than 
geographic distance when predicting outflows between 13 Global North countries. On 
the other hand, Spörlein (2015) studies destination choices of Latin American migrants 
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moving to either other Latin American countries (i.e., South–South migration) or to 
North American countries (i.e., North–South migration), and reports that geographic 
distance is relatively more influential than cultural distance when predicting emigration 
decisions in this context.

Following DeWaard et al. (2012), the role of tangible linkages was measured through 
the main effect of GDP on both inflows and outflows. Perhaps unsurprisingly, the effect 
of GDP for North–North flows, which by definition are flows between relatively rich 
countries, is not significantly associated with countries inflows or outflows. This find-
ing coincides with evidence in the context of North–North flows in Europe reported 
by DeWaard et  al. (2012) and Windzio et  al. (2019). This same qualitative pattern is 
observed in the context of North–South flows. This result likely emerges because peo-
ple from countries in the Global North have an underlying low baseline probability to 
migrate to the Global South, even when the economic performance of countries in the 
Global South is relatively favorable. Yet, there is evidence suggesting that retirees from 
the Global North that go to live in the Global South might be an exception to this pat-
tern (Croucher 2009; Hayes 2014; Benson 2013). The mirror image of this situation is 
found among South–South flows where increases in GDP are positively and significantly 
associated with receiving flows (β = 0.142, p < 0.001), as well as negatively and signifi-
cantly associated with sending out flows (β = − 0.170, p < 0.001). These results are gen-
erally consistent with the South–South migration literature (Pellegrino 1995, 2003; 
Cerrutti and Parrado 2015).

Other covariates. In terms of political instability, the only coefficient that reaches sta-
tistical significance is the negative effect of coups on countries’ likelihood to receive 
inflows in South–South networks (β = − 0.636, p < 0.001). The fact that this measure only 
achieved statistical significance in the South–South networks is indeed consistent with 
the literature, which suggest that political instability is a key driver of South–South flows 
more than of North–South flows (or North–North flows) (UNHCR 2015,2018; World 
Bank Group 2018). An interesting and consistent result across all three networks under 
analysis is that old-age dependency ratio—i.e., countries’ care deficits—is significantly 
and negatively related to countries’ tendency to send out flows. This is, admittedly highly 
indirect, evidence in favor of the global care chains argument, which suggests that coun-
tries with a relative surplus of older (younger) people can be expected to send less (more) 
migrants—specially migrant women—to countries with a relative surplus of younger 
(older) people (Hochschild 2000; Misra et al. 2006; Malhotra et al. 2016). This is, to the 
best of our knowledge, the first time that some evidence consistent with the global care 
chains argument is reported in an inferential and truly global analysis of North–North, 
South–South, and North–South migration flows. Fully testing the global care chains 
argument is beyond the scope of this paper as it will require, among other things, global 
flow data disaggregated by gender (e.g., Malhotra et al. 2016). Finally, in tandem with the 
broader migration literature, and the literature on gravity models in particular (DeWaard 
et al. 2012; Kim and Cohen 2010), population size is significantly and positively related 
with both sending and receiving flows across the three networks under analysis, except 
for the effect of population size on outflows in North–North flows, where the evidence 
is only marginally significant (β = 0.122, p < 0.1).
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Single period models

A series of single period models was estimated for each transition period to evaluate if 
the findings described in the pooled model are driven by idiosyncratic features of any 
single period (Lewis and Kaufman 2018). In that context, Table 4 presents the same set 
of coefficients used in the pooled model in Table  3, but this time estimated on a sin-
gle period basis. Overall, the findings discussed in the pooled model are robust to this 
period-by-period analysis, with three minor exceptions noted below.

Among all 236 coefficients tested across all four transition periods and presented in 
Table 4, only three significant coefficient switched direction when compared to the sig-
nificant coefficients reported in the pooled model. This is the case of the effect of old-
age dependency ratio on outflows in transition period 3 (2000–2005 to 2005–2010) for 
South–South networks. In that particular period, this coefficient emerged as positive 
and significant (β = 0.029, p < 0.05), yet in all the other single period models the effect 
was negative and significant or not significant. In the pooled model the effect was neg-
ative and significant (β = − 0.015, p < 0.01). The second case is the effect of population 
size on inflows for South–South flows in transition period 1 (1990–1995 to 1995–2000), 
which emerged as negative and significant in period 1 (β = − 0.052, p < 0.05), yet in all the 
other single period models the effect was positive and significant or not significant. In 
the pooled model the effect was positive and significant (β = 0.055, p < 0.001). The third 
and last case is the effect of population size on outflows for South–South flows in transi-
tion period 4 (2005–2010 to 2010–2015), which emerged as negative and significant in 
this particular period (β = − 0.132, p < 0.01), yet in all the other single period models the 
effect was positive and significant or not significant. In the pooled model the effect was 
positive and significant (β = 0.037, p < 0.01). Critically, since none of these three discrep-
ancies are related to the key predictors analyzed here, namely, MST linkages and net-
work endogenous effects, the single period models show that the pooled model reported 
in Table 3 is highly robust to time heterogeneity issues.

Conclusion
This paper carried out an analysis of North–North, South–South, and North–South 
migration flows over the span of 25 years using Migration Systems Theory (MST) as a 
guiding theoretical framework. The data used here allow for the incorporation of the 
vast majority of countries in the world into the analysis. Given the relational nature 
of MST, migration networks were modeled as social networks comprised of countries 
(nodes or vertices) connected through migration flows (ties or edges). The Stochastic 
Actor-oriented Model (SAOM) of network dynamics was used to model network endog-
enous (e.g., reciprocity) and exogenous (e.g., MST linkages) covariates that can explain 
the emergence and evolution of flows in the three types of networks under analysis.

Several findings are worth highlighting. First, network effects were found to be con-
sistently important to model migration flows. More specifically, the network patterns 
modeled here show that, above and beyond dyadic reciprocity and outdegree, migra-
tion networks are hierarchical both in terms of their triadic structure and in terms of 
the distribution of their indegrees. The evidence also shows that even though dyadic 
reciprocity exists in all three systems, it is weaker between countries of different status 
(i.e., North–South flows) that among countries of similar status (i.e., North–North flows 
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and South–South flows). Taken together, the results suggest that in order to understand 
an international migration system, special attention should be paid to the endogenous 
network dynamics that characterize its (unequal) structure. Future work should further 
explore the connection between network processes and migration flows. For instance, it 
would be important to understand if the network effects described above are also detect-
able in regional analysis since most of MST’s recent theoretical and empirical develop-
ments are based on the European case. It would be important to see if other regions of 
the world such as the Americas, Africa, or Asia exhibit similar network patterns and 
structures.

Second, evidence suggests that North–North flows, North–South flows, and South–
South flows can respond differently to the influence of MST linkages. This is a most rel-
evant conclusion that, to the best of our knowledge, has not been reported in previous 
MST studies. In terms of relational linkages, cultural distance (i.e., sharing a common 
language) appears to be more relevant for North–North flows than for either South–
South flows or North–South flows. Conversely, sharing a border, understood as a proxy 
for regulatory linkages, is more relevant for North–South flows and South–South flows 
than for North–North flows. Still within the realm of geography, regulatory linkages 
measured as sharing the same region, are not significantly associated with North–North 
flows, yet they are a significant predictor of South–South flows and North–South flows. 
The same is true for the last indicator of regulatory linkages included in the analysis, 
namely, co-membership in IGOs.

Finally, in terms of tangible linkages, (economic) well-being measured through coun-
tries’ GDP is associated with a lower probability to send out flows in South–South net-
works. As suggested by the MST literature (e.g., DeWaard et  al. 2012; Windzio et  al. 
2019), GDP is not a predictor of either sending or receiving flows in North–North migra-
tion networks. The above results are a reminder that it is unlikely that a set of covariates 
such as MST’s linkages will predict flows consistently and in the same direction across a 
set of heterogenous migration (sub)systems. In this context, a key limitation of this study 
is that flows modeled here are the largest ones in each of the three systems under analy-
sis. It is important that future work on the MST tradition evaluates the role of linkages 
as predictive devices of medium- and small-sized flows.

Third, beyond MST linkages, the results provide indirect yet provocative support of a 
key prediction based on the idea of global care chains, namely, the hypothesis that coun-
tries with care deficits are less likely to send out flows. This is, as mentioned previously, 
the first time that some evidence in favor of the global care chains argument is found in a 
truly global analysis of North–North, South–South, and North–South flows. Finally, the 
evidence also supports the idea that political instability might be more relevant to pre-
dict South–South flows than North–South flows (or North–North flows). This finding is 
supported by existing empirical evidence (e.g., UNHCR 2015), yet not sufficiently high-
lighted in the current literature, which overwhelmingly focuses on North–South flows 
and North–North flows. This finding should also be further explored in future research 
given that the proxy for political instability used here (coups d’état) by no means covers 
the spectrum of political events that can signal political instability. In general, however, 
this article suggests that explicitly taking into account the geopolitical nature of migra-
tion flows (i.e., North–North, South–South, North–South) is critical to make sense not 
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only of the role of political instability, but also of the role of most major correlates of 
migratory dynamics.
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