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Abstract
In corporate networks, firms are connected through links of corporate ownership and
shared directors, connecting the control over major economic actors in our economies
in meaningful and consequential ways. Most research thus far focused on the
connectedness of firms as a result of one particular link type, analyzing node-specific
metrics or global network-based methods to gain insights in the modelled corporate
system.
In this paper, we aim to understandmultiplex corporate networks with multiple types
of connections, specifically investigating the network’s essential building blocks:
multiplex networkmotifs. Motifs, which are small subgraph patterns occurring at
significantly higher frequencies than in similar random networks, have demonstrated
their usefulness in understanding the structure of many types of real-world networks.
However, detecting motifs in multiplex networks is nontrivial for two reasons. First of
all, there are no out-of-the-box subgraph enumeration algorithms for multiplex
networks. Second, existing null models to test network motif significance, are unable to
incorporate the interlayer dependencies in the multiplex network. We solve these two
issues by introducing a layer encoding algorithm that incorporates the multiplex
aspect in the subgraph enumeration phase. In addition, we propose a null model that
is able to preserve the interlayer connectedness, while taking into account that one of
the link types is actually the result of a projection of an underlying bipartite network.
The experimental section considers the corporate network of Germany, in which tens
of thousands of firms are connected through several hundred thousand links. We
demonstrate how incorporating the multiplex aspect in motif detection is able to
reveal new insights that could not be obtained by studying only one type of
relationship. In a general sense, the motifs reflect known corporate governance
practices related to the monitoring of investments and the concentration of
ownership. A substantial fraction of the discovered motifs is typical for an industrialized
country such as Germany, whereas others seem specific for certain economic sectors.
Interestingly, we find that motifs involving financial firms are over-represented
amongst the larger and more complex motifs. This demonstrates the prominent role of
the financial sector in Germany’s largely industry-oriented corporate network.
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Introduction
The field of complex network analysis aims to extract meaningful knowledge from a
complex system by analyzing the underlying network structure (Barabási 2016). The
obtained insights at the system (or macro) level are the product of interactions between
individual entities at the micro level. For example, from friendship relations between indi-
viduals at the micro level of a social system, we can observe a small-world structure at the
system level (Watts and Strogatz 1998). In case of a contagious disease, by studying inter-
actions between people in the social system, we can understand whether an epidemic is
imminent (Pastor-Satorras and Vespignani 2001). In a biological system, the interaction
between proteins at the micro level results in a particular biochemical manifestation of
the modelled substance (Girvan and Newman 2002). Similarly, in economic networks,
an innovation introduced in a particular organization may spread through the organiza-
tion’s network of contacts (Schweitzer et al. 2009). Indeed, the network approach provides
interesting insights in a range of domains, including social, technological and economic
systems (Boccaletti et al. 2006).
However, the steps frommicro level interaction to macro level insights described above

tend to ignore the fact that there is also particular interesting and non-random behavior
at the intermediatemeso level. In this perspective, smaller groups of nodes, connected in a
particular way, play a crucial role in the functioning of the modeled system. Although the
somewhat loose description of meso level patterns above may for example also include
variable size communities (Fortunato 2010), here we refer to a more precise network pat-
tern, namely that of network motifs (Alon 2007; Märtens et al. 2017; Milo et al. 2002;
Ohnishi et al. 2010; Paranjape et al. 2017; Romijn et al. 2015; Wernicke 2005; Zhang et al.
2014). A network motif is a pattern consisting of a relatively small number of nodes and
connections, appearing in the same configuration at frequencies much higher than what
we would expect in a similar random network.
For social networks in general, the systematic analysis of motifs introduces a novel per-

spective in a long standing debate in the social sciences on the relation between micro
and macro level properties of social systems (Coleman 1998). Motifs have furthermore
been proven instrumental in a number of systems with a clear network perspective, for
example explaining the function of neuron groups in brain networks (Märtens et al. 2017)
and the formation of particular group structures in social networks (Benson et al. 2016).
Consequently, network motifs are frequently considered to be the higher order building
blocks of complex networks (Milo et al. 2002; Benson et al. 2016).
In a real-world setting, a complex network may have multiple types of interaction going

on between its individual entities. This observation is methodologically accommodated
by so-calledmultiplex networks (Dickison et al. 2016; Gomez et al. 2013; Kivelä et al. 2014;
Cardillo et al. 2013) (or edge-colored networks, see the “Multiplex networks and motifs”
section) in which there may be multiple “layers” at which network interaction is taking
place. For example, in a real-life social network, there may exist both friendship and co-
worker relationships, and the two may overlap at times. In an economic network, the
diffusion of an innovation may occur through both supplier relationships and employee
movement. Although both the multiplex aspect as well as the study of network motifs
are commonly undertaken tasks in network analysis, the combination of the two, i.e.,
detecting multiplex network motifs, is to the best of our knowledge an underaddressed
problem. Indeed, particular combinations of links at different levels of the network may
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define how the network as a whole grows, operates and functions; the essential building
blocks of a network may very well be based on multiple types of interaction. This paper
extends our previously introduced algorithmic framework for multiplex motif detection
(Takes et al. 2017), focusing in detail on the meaning and consequences of these motifs in
corporate networks.
Corporate networks, in which governance and power-related connections between cor-

porations are the object of study, play a crucial role in understanding our global corporate
system (Vitali et al. 2011a; Carroll 2013). They have been proven instrumental in for
example explaining how firms exert power, coordinate their behaviour and regulate com-
petition (Davis et al. 2003; Windolf 2002). A node in a corporate network represents
a firm or a corporation, whereas a link may denote different types of relationships,
such as trade (Wilhite 2001), loans (Battiston et al. 2016) and supplier relationships
(Choi and Wu 2009). In this paper we focus on two different types of links in cor-
porate networks that pertain to corporate control, namely ownership and board
interlocks.
Firstly, an ownership relation indicates that a particular firm owns part of another

firm, in the remainder of this paper indicated by a directed link as shown in Fig. 1a.
This type of connection between firms has been shown to be extremely important in
understanding relations of corporate control and value flow (Vitali et al. 2011b). Network
analysis of ownership ties has been able reveal patterns related to corporate tax evasion
(Richardson et al. 2016). Ownership links have furthermore proven instrumental in iden-
tifying offshore financial centers (Garcia-Bernardo et al. 2017). The second type of a
link, a board interlock, represents the fact that firms often have so-called interlocking
directorates, meaning that a director is a member of the board of two organizations,
which we represent using an undirected link as shown in Fig. 1b. This type of link
has been shown to play a key role in for example the understanding of innovation dif-
fusion (Davis 1991), information exchange and transnational business elite cohesion
(Heemskerk and Takes 2016). In fact, a long line of research in the social sciences has dealt
with the particular causes and consequences of these interlocking directorate networks
(Mizruchi 1996).
Crucially, the abovementioned two types of links often occur together (depicted using

the multiplex link in Fig. 1c), as both ownership and board interlocks are instruments by
which one firm can influence or exert power over the other. Indeed, also in our data, these
two types of links often coincide, at numbers that are thousands of times higher than one
would expect (see the “Corporate network data” section), calling for a multiplex network
approach.
Many existing methods common in complex network analysis have been applied to

the aforementioned corporate networks in order to better understand their structure,
dynamics and function. Simple metrics such as density, average degree and average clus-
tering coefficient proved crucial in assessing the cohesiveness of corporations across

(a) (b) (c)
Fig. 1 Link types in the multiplex corporate network. a Ownership link, b Board interlock link, cMultiplex link
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countries (Kogut 2012; van Veen and Kratzer 2011). Centrality measures were applied
to assess the powerful and well-connected firms within countries, and on a more
global level the power of particular countries (Takes and Heemskerk 2016). Community
detection has been used to understand the formation of global business groups and
to shed light on debates regarding the formation of a transnational business elite
(Heemskerk and Takes 2016).
In this paper we for the first time set out to explore the meso level of these corporate

networks, dealing with the topic of motif detection in the multiplex network of own-
ership and interlocking directorates. We choose to focus on the corporate network of
the largely industrial country of Germany, for which previous studies have shown that
data quality in terms of completeness is sufficiently high (Garcia-Bernardo and Takes
2017). This paper provides three contributions. First, in order to perform multiplex
motif detection, we modify and extend existing algorithms for motif detection in net-
works with homogenic links. In particular, we modify the subgraph enumeration step,
so that it can exhaustively enumerate multiplex subgraph patterns. In addition, we intro-
duce a layer encoding scheme that then enables the deterministic counting of multiplex
subgraphs. The second contribution results from the fact that layers of a multiplex net-
work are not independent, which requires a new null model that takes into account the
relatedness of different link types, by also explicitly modelling the co-occurrence of link
types. These two contributions together provide a methodological advancement in net-
work motif detection, as the methodology explained in the “Approach” section, which
in general builds on the framework which we proposed in Takes et al. (2017), can be
applied to any multiplex network. Third, our experiments on the German corporate net-
work data result in a number of interesting findings typical for the German economy and
explanatory for the corporate governance practices in several of the country’s economic
sectors.
The rest of this paper is organized as follows. After discussing related work in the

“Related work” section, we turn to the formal definitions of network patterns and motifs
as well as relevant evaluationmetrics in the “Preliminaries” section. The “Approach” section
describes the new multiplex approach to subgraph enumeration as well as the adjusted
nullmodel.Then, usingthecorporatenetworkdatadescribed in the “Corporate network data”
section, we perform experiments in the “Experiments” section. Finally, the “Conclusion”
section provides concluding remarks and suggestions for future work.

Related work
In this section we discuss related work on motif recognition, corporate networks and the
analysis of multiplex networks.
Motif recognition has been applied in a number of network types, including social

networks (Benson et al. 2016), biological networks (Milo et al. 2002) and brain net-
works (Märtens et al. 2017). The problem of motif recognition, of which the major
step is subgraph enumeration, is interesting from a computational point of view, as
enumerating subgraph isomorphism is an NP-complete problem (Romijn et al. 2015;
Kuramochi and Karypis 2005), and each subset of nodes in a graph has to be compared
against all known (possibly isomorphic) subgraphs. Thus, for larger graphs and larger
subgraph sizes, exhaustive enumeration is prohibitive. Therefore typical motif recogni-
tion algorithms either run on very small inputs, or instead of an exhaustive list, provide
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merely an approximation of the frequency of the network motifs (Romijn et al. 2015). One
way to address this is to only study part of the network’s subgraphs, requiring input on
either which particular subgraphs should be counted or what threshold the frequency of
the motif should pass (Ghazizadeh and Chawathe 2002). Other motif recognition algo-
rithms avoid the computational limitations by only finding a specific subset of patterns, or
discover only patterns with certain topological characteristics, such as dense subgraphs
(Haiyan et al. 2005). Methods like G-TRIES (Ribeiro and Silva 2010), FANMOD
(Wernicke 2005), and SUBENUM (Saeed and Saeed 2015) find only induced subgraphs,
the type of subgraphs that we also consider in this paper.
Recently, a new trend in motif recognition is that in order to avoid the compu-

tational difficulties of motif enumeration, the focus becomes that of motif countings
(Paranjape et al. 2017; Benson et al. 2016). Without explicitly enumerating them, the
goal is to obtain exact counts for motifs of a particular shape and/or size. The advan-
tage is that these counting methods are significantly faster. Yet the disadvantages are
that currently they do not work for motifs larger than three nodes, nor do they have
the option to assess which nodes are involved in which motifs. Because ultimately we
are interested in the composition of motifs found in corporate networks and what
insights they provide, motif enumeration (and not counting) is the specific focus of this
paper.
Although corporate networks have extensively been analyzed in terms of network topol-

ogy (Vitali et al. 2011b), centrality (Takes and Heemskerk 2016) and community detection
(Heemskerk and Takes 2016), few papers deal with detecting motifs in corporate net-
works. In Ohnishi et al. (2010), interfirm relationships based on materials and services
exchanged are investigated up to size three, counting V-shaped and triangle-shaped net-
work structures, essentially limiting the study to one-layer motifs of size three. Within the
field of board interlock research some studies have attempted to look at pre-defined well-
knownmotif like patterns such as star andpyramid configurations (Windolf and Beyer 1996)
and subsequently counting their occurrence in networks of interlocks (Heinze 2004) or
studying the sequences of such patterns over time (Stark and Vedres 2006). However, as
far as the authors of this work are aware, there are no studies of multiplex motifs in cor-
porate networks based on board interlock and ownership relations, as considered in this
paper.
Real-world multiplex networks (such as our corporate networks) in which multi-

ple types of interaction simultaneously take place, have extensively been studied and
classified. An excellent overview can be found in Kivelä et al. (2014). Important to
note is that here we focus on networks in which the same set of nodes is con-
nected by different (possibly multiple) types of relationships. These networks are some-
times also called multi-relational, multi-dimensional or multi-layer networks. A good
overview of these naming conventions and accompanying definitions can be found in
Boccaletti et al. (2014). Importantly, the goal is to not lose information by aggregat-
ing the different link types of the network, and to take advantage of the insights that
result from the multiple types of interaction (Dickison et al. 2016). In this light, a
number of network characteristics and methods have been devised, including centrality
(Solé-Ribalta et al. 2014) and community detection (Mucha et al. 2010). This work aims to
contribute to the broader field of multiplex network analysis by means of a new method
of analysis at the meso level: the discovery of multiplex network motifs.
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Preliminaries
Before we can formulate our exact problem statement in the “Motif detection problem” se
ction, this section introduces elementary networkconcepts, first in the “Networks andmotifs”
section for simple (directed) networks and then formultiplex networks in the “Multiplex net-
works and motifs” section. The “Motif evaluation metrics” section discusses how the
obtained patterns can be evaluated quantitatively. Here, we build on the framework which
we previously introduced in Takes et al. (2017).

Networks andmotifs

A graph or network G = (V ,E), consists of a finite set of nodes V = V (G) (also called
objects or vertices) and a set of directed edges E = E(G) ⊆ V×V (also called relationships
or links). Nodes are identified using some unique identifier (ID) or label. We assume that
there are no parallel edges or self-loops. A graph g is a subgraph of graph G if and only if
E(g) ⊆ E(G) and V (g) ⊆ V (G), where all nodes incident with an edge in E(g) occur in
V (g). A subgraph g is an induced subgraph ofG if for any pair of nodes u, v ∈ V (g), it holds
that if (u, v) ∈ E(G) then (u, v) ∈ E(g). We only consider connected induced subgraphs in
which all nodes are (indirectly) linked through edges, ignoring link direction. The size k
of a subgraph g is its node count, i.e., k = |V (g)|.
The pattern of a (sub)graph is its abstract representation without particular identifiers

or labels. All isomorphic (sub)graphs thus have the same pattern. Let I denote the collec-
tion of all patterns. We define Si(G) as the set of subgraphs of pattern i ∈ I in graph G.
The frequency of pattern i ∈ I, denoted |Si(G)|, is the number of occurrences of pattern
i in graph G. A motif is a pattern that is considered significant according to a particular
frequency-based comparison or metric (as further discussed in the “Null model” section).
The set of all motifs of size k in graph G is denoted Mk(G), and the set of all motifs
M(G) = ∪k Mk(G).

Multiplex networks andmotifs

A multiplex graph (or network), denoted G = (V ,E, J), is a graph that contains multiple
types of edges. The collection of edge types is called J. We use Ej(G) with j ∈ J to refer to
the set of edges of type j. There is at most one edge of a certain type in the same direc-
tion between any two nodes, meaning that if there are multiple edges between two nodes,
they are of different types. An alternative definition of this data structure would be that
of an edge-colored graph, in which each edge has an associated color corresponding to its
edge type or combination of types. In amultiplex induced subgraph g it holds that for any
pair of nodes u, v ∈ V (g) in subgraph g and for each type of edge j ∈ J that if (u, v) ∈
Ej(G) then (u, v) ∈ Ej(g). Following similar definitions for patterns and frequency as in
the “Networks and motifs” section (e.g., introducing Si(G)), a multiplex motif is a mul-
tiplex pattern that is considered significant according to a particular frequency-based
comparison (as further discussed in the “Null model” section). The set of all motifs
of size k in multiplex graph G is denoted Mk(G), and the set of all multiplex motifs
M(G) = ∪k Mk(G).

Motif evaluation metrics

The significance of a pattern (counted subgraph) and classification as a motif is the final
step in the process from subgraph counts to motifs. Given the large number of different
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subgraphs that may exist, qualitative evaluation of the obtained patterns is difficult. Below
we describe two quantitative methods to determine pattern significance, essentially defin-
ing a function f which takes as input both a pattern and the network in which that pattern
was found. It then outputs a numeric value indicating the significance of the motif. The
first function is based solely on the empirical graph and patterns of a similar size, whereas
the second performs a comparison with a null model of the network:

• The concentration c(i,G) of a pattern i (of size |i|) in graph G is the ratio between its
frequency and the frequencies of all patterns of the same size (see Wernicke (2005)),
expressed as a percentage:

c(i,G) =
∣
∣Si(G)

∣
∣

∑

j∈I,|j|=|i|
∣
∣Sj(G)

∣
∣

· 100%

• The ratio R(i,G) of a pattern i in graph G given a set of random multiplex graphs Y
(the null model), is defined as follows:

r(i,G) = ∣
∣Si(G)

∣
∣ ·

(∑

H∈Y
∣
∣Si(H)

∣
∣

|Y |

)−1

When the ratio is larger than 1, the probability of pattern i appearing in the empirical
network is larger than the probability of i appearing in a random graph
(Wernicke 2005). Various random graph models may be used as a null model, and a
suitable multiplex model should be used that takes into account the
interdependencies between the different link typess (see the “Corporate network
data” section). Such a null model is proposed in the “Null model” section.

Given the full set of subgraphs of a network, we may define a cut-off value or choose to
study only the motifs ranked highest according to the metrics defined above.

Motif detection problem

Now that we have the basic definitions of multiplex networks, subgraphs, patterns and
motifs, we can come to the main problem statement which we set out to address in this
paper:

Given as input a multiplex graph G, motif size k and significance evaluation function f,
determine the set of multiplex motifsMk(G).

This problem consists of three subproblems:

1 Enumeratingallmultiplex subgraphs (adressed in the “Multiplex SUBENUM” section).
2 Counting the frequency of each multiplex subgraph (addressed in the “Multiplex

subgraph counting” section).
3 Motif significance testing, applying the metrics from the “Motif evaluation metrics”

section. For the “ratio” metric, this requires a suitable multiplex null model
(addressed in the “Null model” section).
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Corporate network data
This section first describes the raw data as well as the method of network construction
in the “Network construction” section, after which the “Network characteristics” section
provides elementary properties and characteristics of the resulting multiplex network.

Network construction

The corporate network data considered in this work was gathered from the Orbis
database (http://orbis.bvdinfo.com) by Bureau van Dijk. Orbis is a common and fre-
quently used corporate database, sourced from official country registrars such as cham-
bers of commerce as well as other collection agencies. Orbis is often labeled as one of the
most reliable and complete sources of corporate data (Vitali et al. 2011b; Heemskerk and
Takes 2016; Garcia-Bernardo and Takes 2017). For our corporate network, we extracted
all active German companies for which ownership and/or board information was available
in November 2015. We also extracted identifiers of the firm’s economic sector, resulting
in the list of sectors shown in the leftmost column of Table 1. Consequently, the set of
nodes of our network consists of exactly these firms, where each node has one associated
economic sector attribute.
In addition to the node-specific data specified above, we extracted all significant own-

ership relations between these firms with a share of at least 5%, a common threshold
at which a stake is considered significant. It should however be noted that the major-
ity of ownership links is in fact greater than 50%, and that this weight is not taken into
account in the remainder of this paper. Together, these links form a directed network Ga
in which a link (u, v) ∈ Ea indicates that firm u owns a part of firm v and is thus able
to exert control over it. We also extracted for all firms their top executives (chief offi-
cers and directors) and supervisory board. The creates a bipartite network that connects
firms to directors if the director serves at the board of that firm. This bipartite network
can be projected onto an undirected one-mode network Gb in which links {u, v} ∈ Eb
indicate that u and v share at least one director. We now have a multiplex network G
with a layer of directed ownership links Ea and a layer of undirected board interlock
links Eb.
It should be noted that in this paper we observe the structure of this multiplex

corporate network at one point in time. Obviously, not every link appeared at the
same time, and during the evolution of this network up to the day of the snapshot,
changes may have occurred to the structure of the network. It should be noted that

Table 1 Division of firms over economic sectors

Sector Ownership Board interlock Multiplex

Bank 474 1.25% 865 1.41% 972 1.29%

Financial 4 648 12.32% 6 250 10.21% 8 338 11.08%

Foundation/research 55 0.14% 51 0.08% 88 0.12%

Industrial 32 350 85.75% 53 767 87.84% 65 484 87.05%

Insurance 19 0.05% 26 0.04% 34 0.05%

Mutual & pension fund 112 0.30% 175 0.29% 213 0.28%

Private equity 29 0.08% 30 0.05% 37 0.05%

Public authority 22 0.06% 31 0.05% 41 0.05%

Venture capital 15 0.04% 14 0.02% 17 0.02%

http://orbis.bvdinfo.com
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because our data is not timestamped, we do not explicitly model these types of dynamic
changes. Rather, we focus on the current structure of the multiplex corporate net-
work of Germany, and the interesting characteristics (see the “Network characteristics”
section) and patterns (see the “Experiments” section) that we can derive from this network.

Network characteristics

Table 2 reports basic network statistics of our corporate network dataset such as the
number of nodes, links, density, and average local clustering coefficient. See for example
(Barabási 2016) for definitions of these elementary network metrics. The average local
clustering coefficient was computed by ignoring link direction, averaging over all nodes
the value of the local node clustering coefficient, which in turn was computed as the
fraction of closed triangles amongst a node’s direct neighbors. For each link type in the
multiplex network we report the number of nodes with a degree greater than one. Alter-
natively one could state that the network has 75 224 nodes and that the column “Nodes”
of Table 2 indicates how many nodes have a degree that is not equal to zero. As the motif
detection algorithms considered in the “Approach” section model an undirected network
as a symmetric directed network, the board interlock links reported in Table 2 are fully
symmetric.
Three visualizations are given in Fig. 2, showing the ownership links in Fig. 2a and

the board interlocks in Fig. 2b. The combination of the two layers is shown in Fig. 2c.
Note that the placement of nodes is different in each figure. From the visualizations
we can already see that there is significant overlap in the different layers of the mul-
tiplex network. Indeed, 23 709 nodes (32% of the nodes in the multiplex network) are
involved in both ownership and board interlock links. Similarly, 11 541 edges are what
we call multiplex links: connecting nodes with both an ownership link and a board inter-
lock, constituting 37% of the ownership links, 6.7% of the board interlocks and in total
5.9% of the multiplex network. To understand the significance of the link overlap, the
empirical link counts can be compared to a multiplex network with randomly generated
layers.
In a directed network with n nodes, there are n(n − 1) potential links. If there are m

links actually present, between a randomly chosen node pair, a link has a m/n(n − 1)
probability of being present. So for the ownership network with 75 224 nodes and 31 506
links, a randomly chosen directed link only has a 0.0005568% chance of occurring.
However, with 175 108 undirected links in the board interlock network, in the empiri-
cal data no less than 23 709 node pairs share at least one ownership link and a board
interlock link.

Approach
This section first explains how the enumeration and counting steps of an existing
state-of-the-art subgraph enumeration algorithm can be adjusted to handle multiplex

Table 2 Network statistics

Network Nodes Links Density Clustering

Ownership 37 724 31 506 2.25 · 10−5 0.033

Board interlock 61 209 175 108 4.67 · 10−5 0.384

Multiplex 75 224 195 073 1.72 · 10−5 0.277



Takes et al. Applied Network Science  (2018) 3:39 Page 10 of 22

(a)

(b)

(c)
Fig. 2 Network visualizations. Created using ForceAtlas2 (Jacomy et al. 2014) in Gephi (http://gephi.org)
using the “stronger gravity” option. a Ownership network, b Board interlock network, cMultiplex network

http://gephi.org
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network data in the “Multiplex subgraph enumeration and counting” section. Next, the
“Null model” section describes a null model that is suitable for multiplex networks.
Note that this approach builds on the methodology which we previously introduced in
Takes et al. (2017).

Multiplex subgraph enumeration and counting

As discussed in the “Related work” section, a number of efficient subgraph enumeration
algorithms have been devised for simple one-layer networks. Belowwe first briefly discuss
the SUBENUM (Saeed and Saeed 2015) algorithm for subgraph enumeration on which our
approach is based, before introducing necessary algorithmic adjustments for multiplex
networks.

SUBENUM

The input of SUBENUM is a directed network. The output is a set of subgraphs and their
frequencies. At the basis is the Enumerate Subgraph algorithm (ESU) (Wernicke 2005),
which counts subgraphs in directed unweighted graphs. It loops over all nodes starting
at the node with the lowest ID, recursively expanding on every neighboring node with a
higher ID until the set of nodes is of size k. The resulting set of nodes including the edges
that exist between these nodes, is an induced subgraph, which is then given a canoni-
cal label with the NAUTY (McKay and Piperno 2014) algorithm. This label is guaranteed
to be equal for all isomorphic subgraphs. Undirected edges are represented as symmet-
ric directed links. See Fig. 3 for a simple example of this labeling step, applied to a toy
size undirected network. SUBENUM (Saeed and Saeed 2015) is a parallel variant of the
ESU algorithm, solving thread load balancing issues by performing the aforementioned
expanding process on the edges instead of nodes. To work round memory limitations, it
adjusts the way subgraphs are checked for isomorphism, using a two phase isomorphism
check where intermediate results are stored to disk. As these changes mostly relate to the
precise implementation and not the algorithmic concepts, we refer the reader to Saeed
and Saeed (2015) for a more detailed description of these practical aspects.

Multiplex SUBENUM

The proposed multiplex adaptation is a two-step process: adjusting the subgraph recog-
nition algorithm SUBENUM (discussed below) and adjusting the isomorphism detector
NAUTY accordingly (discussed in the “Multiplex subgraph counting” section). Here we
exploit the fact that any multiplex graph G can be expressed as a directed labeled graph

(a) (b)
Fig. 3 Pattern labeling. a Undirected graph, b Label of this graph
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(a) (b) (c)
Fig. 4 Multiplex subgraph encoding: from multiplex links to binary labeled (weighted) edges to colored
nodes. aMultiplex links, b From binary labels to weighted edges, c Colored nodes

G′. Instead of explicitly storing multiple edge types, the multiplex graph is converted into
a directed labeled graph in which each edge has a label based on the edge types present
between the two nodes that it connects. The label consists of a binary string of length J
(the number of layers/link types), of which the bit at index i is equal to 1 if an edge of type
i is present and 0 otherwise (note an ordering is applied to J so an index can be assigned
to each edge type). This binary label can be seen as an edge weight, as illustrated in Fig. 4a
and b. It should be noted that this conversion to a seemingly weighted graph G′ does not
imply that we are suddenly dealing with a weighted graph; we are merely encoding layer
presence or absence, and summarize this with a number.
Although we now have weights/labels representing the layers, the original ESU

algorithm does not handle labels nor weights. Therefore we propose that when the
algorithm encounters a subgraph, a label is created based on the adjacency matrix with
weights representing the layer encoding, as shown in Fig. 5. Then, to adapt SUBENUM to
handle weighted graphs, we only have to adapt the label constructor so that it incorporates
the edge weights.

Multiplex subgraph counting

The second step is adjusting NAUTY to handle the weighted graphs, for which we use
node-colored graphs, which have multiple node types (colors). This method is similar to
the suggestion for expressing weighted graphs given in NAUTY’s documentation (McKay
and Piperno 2014). We create a new node-colored graph graph G′′ from G′, which is the
graph with binary labels representing multiplex graph G as discussed above. The number
of node colors is equal to |J|, and each color is used to express a single edge type, according
to the binary label. For each node in V (G′), a set of |J| colored nodes is created in V (G′′).

(a) (b)
Fig. 5 Pattern labeling in directed multiplex networks. a Directed multiplex graph, b Labels of this graph
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So for every node A ∈ V (G′), a set
{

A1,A2, . . . ,A|J|
}

with different colors is added to
V (G′′). Then, for 1 ≤ j < |J|, every Aj ∈ V (G′′) is connected to Aj+1 by adding an
undirected edge

(

Aj,Aj+1
)

to E(G′′). This creates a string of colored nodes for each node
in the original network. Then, crucially, an edge between two nodes Aj and Bj is used to
express the presence of the jth edge type encoded in the binary label. An example with
undirected edges can be seen in Fig. 4c, where the multiplex graph from Fig. 4a with two
types of edges is shown rewritten with two types of colored nodes.

Null model

Random graph models exist in many flavors, and include for example the
Erdős-Rényi model (Erdős 1959), the Chung-Lu model (Chung and Lu 2002), the
Park-Newman model (Newman and Park 2003), and the stub-matching model
(Bender and Canfield 1978). Each of these models preserves a different type of
network property, such as the average degree, the degree distribution or the pre-
cise degree sequence. In our case, the null model is employed to understand the
significance of motifs, which are essentially higher order network patterns. There-
fore, we wish to preserve the lower order properties, i.e., the precise degrees of the
nodes in the network. In addition, the null model should handle the strong depen-
dencies between the different layers. As we noted in the “Corporate network data”
section, 5.9% of all edges overlap, e.g., there is both an ownership link and a board inter-
lock. The quick calculation presented at the end of the “Network characteristics” section
reveals that as a result of the low density of the networks of each link type, merging two
separately generated random networks will have far too few overlapping edges. Indeed,
the concept of interlayer assortativity (Dickison et al. 2016), sometimes (although in a
slightly different context) also called interlayer dependency, coupling or interconnected-
ness (Radicchi and Arenas 2013), is common across different multiplex networks and has
to be preserved in the null model.
Given the considerations above, we build on the stub-matching model (Bender and

Canfield 1978), which generates random networks with a particular fixed in and outde-
gree sequence, by definition also preserving the exact number of nodes. Furthermore, to
ensure that degree sequences are fixed for all edge types, each combination of edge types
is modeled separately, fixing the node degrees for each (combination of) link type(s).
Thus, we model in total 2|J| − 1 different networks (recall that J is the set of link types).
This is a mere three network models in our case, namely for the ownership links, the
board interlocks and the combined “multiplex link”.
In our particular case, a second challenge is the fact that the board interlock network

is a product of the projection of the bipartite network linking firms and directors to
a firm-by-firm network which links firms based on shared directors. As such, a rela-
tively large number of cliques exists in the empirical network, effectively resulting from
directors with three or more positions. Not explicitly modelling this phenomenon would
simply result in all discovered motifs being clique-like. So to ensure that this partic-
ular aspect is preserved, the undirected interlock network is modeled at the bipartite
level. For this, we again employ the stub-matching model (Bender and Canfield 1978).
We encode the node type (firm or director) by enforcing that directors only have a
particular outdegree value, and firms only a particular indegree value. The subsequent
conversion to an undirected network is trivial, after which a regular projection to the
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one-mode firm-by-firm network can be made. It should be noted that in our case,
the same bipartite projection step should be done for multiplex links, because part of
a multiplex link is an interlock edge. Finally, the different networks for each of the
2|J| − 1 link type combinations (three in our case) are combined into one multiplex
network.
Ultimately, the use of this multiplex model allows us to generate a set Y of networks to

which the empirical network data can be compared using one of the evaluation functions
presented in the “Motif evaluation metrics” section.

Experiments
This sectiondescribesour experimental setup in the “Experimental setup” section, followed
by a description of the results for motifs of particular sizes in the “Motif results” section
and the corporate network as a whole in the “Discussion” section.

Experimental setup

Themultiplexmotif detection approach explained in the “Approach” section will be applied
to the corporate network dataset from the “Corporate network data” section. The null
model that serves as a baseline for assessing the significance of obtained results (see
the “Null model” section) is generated using 1 000 samples, as suggested in Wernicke
(2005). As for the evaluation metrics proposed in the “Motif evaluation metrics” section,
we manually set a cut-off value of 5 for the ratio and 0.01% for concentration. This means
that a discovered subgraph becomes significant, i.e., a motif, when compared to random
graphs with the same degree sequence, it is 5 times more frequent and makes up more
than 0.01% of all the patterns of the same size. Addressing the problem statement posed in
the “Motif detection problem” section, we run the full motif detection pipeline for k = 3,
k = 4 and k = 5. To keep running time within reasonable limits, we run the algorithm
up to motif size k = 5. Further experiments on the running time and memory usage are
beyond the scope of this work, as only constants and not orders are added to the sub-
graph enumeration algorithm on which the method is based. An implementation of the
approach can be found at the supplementary material website http://liacs.leidenuniv.nl/~
takesfw/multiplexmotifs.

Fig. 6 Ratio (horizontal axis) vs concentration (vertical axis) for all patterns. Top right box indicates cut-off
values. Patterns of size 3 in blue, size 4 in green and size 5 in red

http://liacs.leidenuniv.nl/~takesfw/multiplexmotifs
http://liacs.leidenuniv.nl/~takesfw/multiplexmotifs
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Table 3 Number of discovered patterns and motifs per network

Pattern size Motif size

3 4 5 All 3 4 5 All

Ownership 11 63 391 465 3 4 6 13

Board interlock 2 6 21 29 0 2 10 12

Multiplex 58 1 132 21 858 23 048 14 48 73 135

Figure 6 (note the asymmetric logarithmic axes) shows how the chosen cut-off values
capture the truly interesting ensure that only a small part of the discovered subgraphs
are labeled significant and thus become motifs. The results of this selection are shown in
Table 3, listing for increasing values of k the number of discovered patterns (enumerated
subgraphs) and motifs (significant patterns). The chosen cut-off values of concentration
and ratio reduce the 23 048 patterns to only 135 motifs. Note how, even for smaller sub-
graph sizes, not all possible subgraphs are present in the empirical network. The only
exception are the undirected board interlocks of size 3 (two patterns; a triangle and a
wedge) and size 4 (six patterns).
As the motif size increases, more complex motifs are found, for which it is not always

trivial to understand the composition. To address this, node-specific attributes can be used
to characterize the discovered motifs. We can then define for each motif the extent to
which this motif contains nodes with a certain attribute value. To better understand and
still capture interesting aspects of these motifs, we can use the economic sector of a node
(an overview of this attribute shown in Table 1). Then for a motif, we can look at all
subgraphs in the empirical data that make up this motif, and determine for each economic
sector the percentage at which it is involved in that motif. A simple baseline is to say
that in a random graph, the distribution of economic sectors over a particular subgraph
pattern should on average be equal to that of the entire graph. If a certain motif exhibits
substantially more nodes of a certain sector, then this may suggest that the considered
motif is characteristic for that particular economic sector. We will highlight motifs with
such an interesting sector composition throughout this section.
As the motifs we identify strongly relate to real-world patterns in corporate control,

they immediately suggest interpretations. These suggested interpretations are of course
subject to further investigation, given that the data is not timestamped (as noted in
the “Corporate network data” section). In particular, we can only assess the static exis-
tence of particular relationships and motif occurrences, but no direct causal relationships
related to the order in which links appeared. The discovered motifs however do allow us
to see the value of our approach for the domain of interlocking directorates and corpo-
rate governance research (Mizruchi 1996; Kogut 2012). Throughout this section we will
demonstrate the use of this exciting new method of multiplex motif detection to dissect
corporate networks and to understand the small microstructures that play a role in their
structural composition.

Motif results

For the discovered motifs of each size, in this sector we discuss their generic composition,
as well a few with exceptionally high concentration, ratio or an interesting economic sec-
tor composition. An exhaustive list of the motifs can be found at the supporting website
http://liacs.leidenuniv.nl/~takesfw/multiplexmotifs.

http://liacs.leidenuniv.nl/~takesfw/multiplexmotifs


Takes et al. Applied Network Science  (2018) 3:39 Page 16 of 22

(a) (b) (c)

(d) (e) (f)
Fig. 7 Highlighted motifs of size 3 and 4. Values of r and c denote respectively ratio and concentration, cf. the
“Motif evaluation metrics” section. aMotif of size 3. r = ∞, c = 0.945%, bMotif of size 3. r = 1032, c = 0.118%,
cMotif of size 3. r=1170, c=0.805%, dMotif of size 3. r=516, c = 0.059%, eMotif of size 3. r = 278, c = 0.418%,
fMotif of size 3. r = 2024, c = 0351%

Size 3. A total of 8 out of the 14 multiplex motifs of size 3 features a multiplex link,
showing how apparently investments frequently go together with shared directorships.
This observation is in line with previous work, where these multiplex ties are considered
relevant to exercise additional control of the investment and increase the de facto con-
centration of ownership (Mizruchi 1996). The highlighted motifs in Fig. 7 as such present
an original insight in how investors use board interlocks in combination with their share-
holdings. Note that although similar in shape, Fig. 7a–b are in fact distinct subgraph
patterns, as we always look for induced subgraphs.
The frequent occurrence of the motif in Fig. 7a for instance is in line with the prac-

tice where an investor sits on the board of the firms it invests in. Furthermore, Fig. 7b
suggests a situation in which an investor also invests in a company that it has an indi-
rect board connection with through another firm it also invests in. In this motif of size 3,
two investments (ownership links) by a particular firm are accompanied by a direct (path
length 1) and an indirect (path length 2) interlocking directorate link. Of course we can-
not establish causality here and determine if the interlocks lead to investments, or the
other way around. The rightmost firmmay very well be assigning executives to sit on both
boards after they invest into them. From a corporate governance point of view, this sec-
ond situation would also be highly interesting, as it all hints at the well-knownmonitoring
function of interlocks, where a director is strategy placed to oversee a certain investment
(Mizruchi 1996; Fohlin 1999). The literature on board interlock formation (Mizruchi 1996)
suggests that in addition to themonitoring task, themotif in Fig. 7cmay also be exemplary
of the case of a trustworthy director from the perspective of the investor. Indeed, in lit-
erature it is often postulated that interlocks go together with cohesion and trust amongst
the involved board members (Koenig and Gogel 1981).
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Board interlocks between two investors also play a role, as Fig. 7d highlights. This
motif may exemplify a coordinated investment strategy. If coordination indeed takes
place between the investors, the de facto ownership concentration in the invested firm is
larger than the ownership ties alone suggest. In a similar vein, Fig. 7e shows a pattern of
potential hidden investment, where the sending investor holds both a direct and indirect
share in the receiving firm, highlighting the opacity of corporate ownership structures
(Vitali et al. 2011b; Garcia-Bernardo et al. 2017).
A final observation with respect to the motifs of size 3 is made with regards to node

pairs (which could also be seen as subgraphs of size 2, for which we logically did not
perform explicit enumeration). Indeed, any insight from such subgraph patterns would
simply be about links and the frequency of multiplex links, not resulting in significant
motifs as we fixed the coincidence of link types in the null model. However, in some of
the motifs we do observe a reciprocated ownership link between a pair of nodes as part
of larger ownership motifs of size 3. We acknowledge that this observation could also
be made from comparing the global metric of link reciprocity (percentage of symmetric
links) between the random graphs and the empirical network. Yet, it is an interesting find-
ing as it demonstrates the existence of so-called crossholdings. A crossholding indicates
a mutual investment of two firms, so a firm invests in a firm that is also its shareholder.
Such structures are typically related to an institutional preference for more direct forms
of economic coordination (Soskice and Hall 2001), a common phenomenon in Germany
(Adams 1999).
Size 4. As the motif size increases, fewer of the possible subgraph patterns that may

exist, actually occur in the empirical data, as can be seen in Table 3. Some of the findings
that hold for size 3 motifs, such as the frequent co-occurrence of groups of firms linked
through board interlocks together with ownership ties, are prevalent for size 4 as well.
Indeed, 30 out of total 48 multiplex motifs of size 4 features two or more board interlocks
together with a particular ownership link formation. Furthermore interesting to note is
the size 4 motif in Fig. 7f, with a ratio of 2 024 and concentration of 0.351%. It shows how
two investors have an aligned investment strategy. The division over economic sectors in
Table 1 shows that 87% of the firms are in the industrial sector. In contrast, this motif ’s
links are between 43% industrial and 56% financial firms. It is indeed plausible that in their
investment decisions, different financial firms consider similar factors when investing in
industry, reflected by this motif.
Size 5. Increasing the size of motifs by yet another node, we again notice how well-

connected boards appear to both attract (see Fig. 8a) and create (see Fig. 8b) more

(a) (b) (c)

Fig. 8 Highlighted motifs of size 5. Values of r and c denote respectively ratio and concentration cf. “Motif
evaluation metrics” section. aMotif of size 5. r = 285 266, c = 0.158% bMotif of size 5. r = 2346, c = 0.673%
cMotif of size 5. r = 113 400, c = 0.010%
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investments from firms with diverse investment strategies. From the 73 motifs of size 5, a
total of 42 motifs involves an investment into or by two or more firms connected through
a board interlock. Indeed, it has often been postulated in corporate governance theory
that well-connected boards are more active in seeking and attracting capital elsewhere.
Additionally, Fig. 8c shows a motif of size 5 with one of the highest ratio values, namely
113 400. Interestingly, it turns out that Mutual & Pension Fund firms are very frequently
involved in this motif. Whereas only 0.28% of the firms in the data is of this type, 14%
of edges in this particular motif involve such a firm. The structure represents two invest-
ments into two firms governed by the same director. Indeed, from an economic point of
view it makes sense for (pension) funds not to randomly invest, but to strategically choose
firms at which one knows a particular trustworthy board member from a previous invest-
ment. Interesting to note is that the size 3 version of this motif (Fig. 7c), the pattern of
investment by one firm in two firms with shared directors, does not have such an over-
representation of pension funds. This finding may confirm that the unique aspect of this
motif is the fact that it concerns multiple diversified investments by the pension funds.
Although we are not able to search for motifs larger than k = 6, it may very well be
that the diverse investment in Fig. 8c happened at a larger scale as well, with for example
investments into a triangle of firms with interlocking directorates, or even three pairs of
firms.

Discussion

The first overall observation from the obtained motifs is that board interlocks and own-
ership links truly go hand in hand. The majority of the multiplex motifs show how
well-connected firms in terms of interlocking directorates are also more involved in
ownership links. This may happen in two ways: well-connected firms attract more invest-
ments, and together these firms invest more in other firms. Although we are not able
to assess causality given that we do not have timestamps on the links, the observation
in itself is interesting from a network analysis point of view. It is particularly interesting
because the only thing fixed in the null model are the node degrees of each link type; yet
at the interfirm level the co-occurrence is once again significantly present, demonstrating
a higher order pattern of interlayer dependency. In a corporate network, this explicitly
signals the concentration of ownership through multiple types of connections.
Apart from the motifs discussed above, a small part of the network motifs are also

explainable by other means than a comparison with corporate governance practices or
otherwise known corporate structures. An example is given in Fig. 7e, which displays a
motif which also re-occurs in the motifs of size 4 and size 5. Upon inspection of the data,
it turns out that the explanation of hidden investment given in the “Motif results” section
indeed is the case, but often this patterns also appears to signal an administrative struc-
ture. An investment from parent into subsidiary and the subsidiary of that subsidiary is
often done to for example separate real estate and regular business in a holding company.
We acknowledge that in general, at the micro level of corporate networks, separating true
business entities from administrative entities is a difficult task (see for example the dis-
cussions in Garcia-Bernardo et al. (2017); Heemskerk and Takes (2016)), and here we see
how the same problem occurs at the more complex level of network motifs.
Lastly and perhaps importantly, thus far we only looked at the involvement of particu-

lar economic sectors as part of one particular motif. It could be interesting to provide a
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Fig. 9 Division of firms over economic sectors, for the full network (leftmost set of bars) and motifs of
different sizes (three rightmost sets of bars)

list of motifs characteristic for each node attribute value (e.g., economic sector), of each
of the nodes in each discovered motif. This is however prohibitive, as extensive book-
keepping and thus an exceptionally large amount of memory would be needed to achieve
this. Instead, we will look at the composition of all motifs, which provides aggregated
insights per motif size. Recall that if corporate structures were to be organized accord-
ing to particular motif structures without sectoral preferences, then the division of firms
over economic sectors as shown in Table 1 should be the same for all motif sizes. How-
ever, as Fig. 9 shows, when the size of motifs increases, the involvement of the financial
sector and banks increases at the cost of a decreasing involvement of the industry sector.
This suggests that the financial sector is in general more involved in larger andmore com-
plex corporate structures. This observation essentially confirms what studies related to
the financial crisis have, in a more general sense, repeatedly pointed out. There is a sub-
stantially large involvement of entities from the financial sector in the formation of more
complex economic structures (Hellwig 2009; Kirkpatrick 2009).

Conclusion
The discovery of the basic building blocks of multiplex networks is a nontrivial procedure,
both methodologically and conceptually. To attain this goal, we modified an existing sub-
graph enumeration algorithm to handle multiplex network data. In addition, to counter
the inherent interlayer dependencies of the considered multiplex corporate network, we
created a null model that preserved the degree distribution of each link type, as well as
the co-existence of certain types of links. A comparison of the subgraph patterns in the
empirical network with those generated by the model ultimately allowed us to obtain the
set of significant network motifs for our multiplex corporate network. Most notably, we
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demonstrated how looking at network motifs is truly able to provide new insights in the
considered domain of corporate networks.
Although corporate networks had frequently been studied at a smaller scale, their

meso level pattens had thus far remained undiscovered. It turns out that a number of
existing theories from the field of interlocking directorates and corporate governance
are nicely reflected by the obtain network motifs. Examples include ownership concen-
tration, the monitoring function of directors, the investment diversification by pension
funds and in a general sense the increased investment activity by and in firms with well-
connected boards of directors. Furthermore, the obtained frequent subgraph frequencies
demonstrate particular patterns of the network as a whole. Some of these patterns are
characteristic for the German economy, with the appearance of so-called crossholdings as
an example. Other patterns appear to be specific to certain economic sectors. Particularly
noteworthy is the fact that motifs involving a company from the financial sector become
more frequent as the size of the motif increases, demonstrating the role of the financial
sector in creating more complex corporate structures.
Although we now have an understanding of the basic building blocks of the corporate

network of Germany, in future work it could be interesting to perform a cross-country
comparison, investigating if the prominent presence of particular sectors is as prevalent in
other countries. The coming of age of large-scale corporate network analysis will certainly
benefit from including motif analysis in the research agenda (Heemskerk et al. 2018).
For example, a longitudinal analysis can reveal how the meso level building blocks of
corporate networks in different countries change over time. A further investigation of the
frequent patterns per attribute value could be of interest, allowing us to determine which
motifs are characteristic for which economic sector. In a general sense, we hope that the
data-driven insight into the organization of corporations provided by motifs at the meso
level may spark new research questions and in general advance our understanding of the
socio-economic system modeled by corporate networks.
Furthermore, incorporating timestamps on the edges would allow the inference of

causality in the formation of particular linking structures. Although in previous work a
number of economic and governance related aspects have been associated with board
interlocks and ownership concentration, very few causal relationships have been con-
firmed. Timestamped motif detection would enable us to empirically validate on a large
scale a number of theories posed in corporate governance literature about the causes and
consequences of board interlocks (Mizruchi 1996).Methodologically, it would be interest-
ing to see the effect of edge weight on the discovered motifs, posing additional challenges
in the subgraph enumeration step. In corporate networks, this could be used to bet-
ter distinguish between the role of majority and minority ownership on network motifs.
Another interesting angle is that of anti-motifs: patterns that rarely or never occur in the
empirical graph, but occur frequently in the random graphs. Finally, it could be interest-
ing to test the algorithm on other multiplex network datasets in an attempt to unravel the
universal building blocks of complex networks.
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