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Abstract
This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order

a 2 ð0; 1Þ. We focus on designing a robust numerical algorithm of order Oðh4�aÞ. To achieve this, we developed a higher-

order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical

scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order

scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational

efficiency of the proposed algorithm.
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1 Introduction

The study of fractional differential equations (FDEs) has

gained the intrinsic interest of researchers in recent dec-

ades. This is due to their recognition of analyzing various

physical systems more efficiently than the classical models

(Salahshour et al. 2015; Agarwal and Choi 2016; Diethelm

and Ford 2010; Rivero et al. 2011; Chen et al. 2021). The

literature contains numerous definitions of fractional

derivatives and integrals, including those by Riemann-

Liouville, Caputo, Grunwald-Letnikov, Caputo-Fabrizio,

Atangana-Balaneu, and many more. A comprehensive

study of these fractional derivatives was given by Samko

et al. (1993), Jumarie (2009), Atangana and Secer (2013),

and Atangana (2018) including their potential real-life

applications, differing qualities, and their benefits and

drawbacks. The Caputo’s derivative gained considerable

attention in the fractional calculus. The nonlocal property

of Caputo’s derivative and its applicability for analyzing

intricate systems with memory effects are two primary

reasons to consider it. It also allows the usage of initial and

boundary conditions in the model governing equations.

Furthermore, the derivative’s order, say a, is a crucial

control parameter that regulates the systems’ trajectories’

velocity. As a result, numerous authors considered Capu-

to’s derivative to analyze real-world issues, such as the

controller for a knee joint orthosis (Delavari and Jokar

2021), the dynamics of a second-grade fluid with Newto-

nian heating (Sene 2022), epidemics (Rehman et al. 2022),

and the chaotic dynamics of the Jerk Fractional Model

(Belhamiti et al. 2022). It is worth mentioning that the

existence and controllability results of various types of

FDEs have been investigated extensively (Dubey and

Sharma 2014; Sharma 2021; Maes and Van 2023). A mild

solution and an optimal pair of a nonlocal, non-autonomous

fractional integrodifferential equation of Sobolev type have

been established recently in (Sharma 2023). Further, the

authors in (Haque et al. 2023) used the measure of non-

compactness and fixed-point technique to derive sufficient

criteria for the existence of solutions for an infinite system

of Langevin FDEs.

On the other hand, difficulty in finding analytic solutions

to FDEs motivated the researchers to develop considerable

numerical algorithms for different FDEs (Rahimkhani and

Ordokhani 2019; Yan et al. 2018; Kürkçuü et al. 2019;

Zaky et al. 2020). Faheem et al. (2022) proposed a collo-

cation method for solving a nonlinear coupled time-frac-

tional diffusion system based on the Legendre wavelet

using the Riemann-Liouville fractional integral operator.
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Agarwal et al. (2023) developed an efficient half-sweep

type finite difference method for a one-dimensional frac-

tional diffusion equation. Recently, Sabir and Rehman

(2023) developed a numerical algorithm by combining

Simpson’s and Trapezoidal rule, which transformed the

equivalent Volterra integral equation of FDE into a system

Fig. 1 Error plots for Example 5.1; solid-line is for HoS, dashed-line is for M-L1; red colour (a ¼ 0:3), green colour (a ¼ 0:5) and blue colour

(a ¼ 0:7) in Fig. 1d–f
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of algebraic equations. The authors also presented a

detailed error analysis of the proposed scheme. Also, the

authors of (Admon et al. 2023) used first-order optimiza-

tion techniques, momentum method, and adaptive moment

estimation method for designing deep feedforward neural

network-based schemes to solve FDEs involving Caputo

derivative. Several authors also adopted the Laplace

transform residual power series (LTRPS) method to

approximate solutions for numerous FDEs due to its high

accuracy in solving fractional nonlinear equations and its

easy calculation process (Alshammari et al. 2024; Khir-

sariya et al. 2024). For more details and other advanced

procedures, please refer to the above and those listed.

Consider the following nonlinear fractional delay dif-

ferential equation (FDDE):

C
0 D

a
t yðtÞ ¼ Gðt; yðt � sÞ; yðtÞÞ for t 2 I ¼ ½0; T �; a 2 ð0; 1Þ;

yðtÞ ¼ /ðtÞ for t 2 ½�s; 0�;

�

ð1:1Þ

where s be a positive real number, C
0 D

a
t denotes the Caputo

derivative of order a with lower-limit 0, and / 2 C½�s; 0�;
a space of all continuous real-valued functions defined on

½�s; 0�. The local and global existence results for the

considered problem (1.1) can be found in (Lakshmikan-

tham 2008). It is well-known that the solution of the con-

sidered nonlinear Eq. (1.1) can be approximated after

linearizing it through Newton’s Iterative Method. It is

worth mentioning the following final linearized form of

(1.1) in each of Newton’s iterations: (for details, one may

refer to Appendix A):

C
0 D

a
t yðtÞ ¼ bðtÞyðtÞ þ gðt; yðt � sÞÞ for t 2 I ¼ ½0; T �; a 2 ð0; 1Þ;

yðtÞ ¼ /ðtÞ for t 2 ½�s; 0�:

�

ð1:2Þ

It is evident that delays are ubiquitous in real-world sys-

tems and naturally occur in the governing differential

equations of specific processes and physical systems that

possess memory and heritage properties. Therefore, delay

differential equations involving integer-order derivatives

have received significant attention from researchers (Sri-

wastav et al. 2023; Sandoz et al. 2023; Elango 2023; Agiza

et al. 2023; Pituk et al. 2023). However, the study of

FDDEs is relatively recent and follows a similar growth

trajectory in several areas. The results concerning the

existence of solutions and stability analysis for several

types of FDDEs can be found in (Deng et al. 2007; Liao

and Ye 2009; Lazarević and Spasić 2009; Krol 2011;

Morgado et al. 2013; Sharma and Dubey 2017). The

computational complexities deriving the analytic solution

of FDDEs have imperatively inclined researchers to design

numerical algorithms for approximating their solutions

(Jhinga and Daftardar-Gejji 2019; Raju and Madduri 2021;

Behera and Ray 2022). In (Jhinga and Daftardar-Gejji

2019), the authors proposed a new predictor-corrector

method of order O h2ð Þ for solving FDDEs and discussed its

error analysis in detail. Further, they also proved its effi-

cacy for minimal values of the order of the fractional

derivatives. Raju and Madduri et al. (2021) proposed two

higher-order numerical methods of order O h3�að Þ for

approximating the solutions of FDDEs involving the Rie-

mann-Liouville fractional derivative and the Caputo’s

fractional derivative, respectively. The authors employed

interpolation-based and finite-difference methods for

approximating the considered derivatives and presented a

detailed stability and error analysis. Zaky et al. (2023)

designed a L1� approximation for the fractional derivative

of variable order and developed a Galerkin spectral method

for the spatial operator of second-order using Legendre

polynomials. They also established the convergence and

stability results for the proposed algorithm using discrete

energy estimates. Using the fractional integral operational

matrix based on Euler wavelets, Behera and Ray (2022)

proposed a new numerical scheme for the fractional order

pantograph Volterra delay integro-differential equation and

discussed its convergence and error analysis. The study of

stability analysis for multi-term FDDEs was performed

recently by Yang et al. (2023), where the authors derived a

region embedding technique and combined the same with

the Laplace transform method and decoupling technique.

The references mentioned above and the lack of com-

putationally efficient numerical schemes motivated us to

design a robust higher-order method, i.e., of order O h4�að Þ,
for approximating the solution of FDDE (1.2). First, in

Sect. 2, we derived the interpolation-based approximation

of the Caputo fractional derivative. Then, we incorporated

it carefully in the equation (1.2), which resulted in a

numerical scheme of order O h4�að Þ. Then, we established

the stability results in Sect. 3 and discussed detailed error

analysis in Sect. 4 for the proposed numerical algorithm.

We considered examples of different FDDEs in Sect. 5 and

demonstrated the computational efficiency of the proposed

algorithm. Further, we compared the obtained results with

the M-L1 scheme (Raju and Madduri 2021) and gave

concluding remarks in Sect. 6. All the computations pre-

sented in this work have been performed over the Matlab

online platform (MathWorks) version R2022.

2 Higher-Order Scheme(HoS)

This section presents a higher-order numerical scheme for

the Eq. (1.2). To begin with, let us first introduce the

definition of the Caputo fractional derivative.
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Definition 2.1 (Caputo Fractional derivative (Diethelm

and Ford 2010)) Let a 2 ð0; 1�. The operator C
0 D

a
t defined

below is called the Caputo’s derivative of order a with

lower-limit 0:

C
0 D

a
t f ðtÞ :¼

1

Cð1 � aÞ

Z t

0

ðt � sÞ�af
0 ðsÞds;

where f is continuously differentiable function on [0, T].

Let us consider a partition 0 ¼ t0\t1\t2\:::\tl ¼
lh ¼ ks ¼ T of I with fixed l 2 N, and uniform-spaced step

size h. Now, at every point tr; r ¼ 1; 2; :::; l, the Eq. (1.2)

can be written as,

C
0 D

a
t yðtrÞ ¼ gðtr; yðtr � sÞÞ þ bðtrÞyðtrÞ ¼ fksðtrÞ þ bðtrÞyðtrÞ;

ð2:1Þ

where the function fks is defined as in the Eq. (A.2). It is

easy to derive the following:

C
0 D

a
t yðtrÞ ¼

1

Cð1 � aÞ

Z tr

0

ðtr � sÞ�ay0ðsÞds

¼ 1

Cð1 � aÞ
Xr
j¼1

Z tj

tj�1

ðtr � sÞ�ay0ðsÞds:
ð2:2Þ

Using Newton’s Divided difference method, first we

approximate y by a cubic polynomial at

t ¼ tj�3; tj�2; tj�1; tj, which will be given by:

yðtÞ ¼yðtj�3Þ þ ðt � tj�3Þ
�
yðtj�2Þ � yðtj�3Þ

h

�

þ ðt � tj�3Þðt � tj�2Þ
�
yðtj�3Þ � 2yðtj�2Þ þ yðtj�1Þ

2h2

�

þ
�
ðt � tj�3Þðt � tj�2Þðt � tj�1Þ

�
y

�
yðtj�3Þ � 3yðtj�2Þ þ 3yðtj�1Þ � yðtjÞ

6h3

�

þ R1;jðtÞ;
ð2:3Þ

where R1;jðtÞ ¼ yð4ÞðnjÞ
4!

Yj
i¼j�3

ðt � tiÞ; nj 2 ½tj�3; tj�. On differ-

entiating above, we get

y0ðtÞ ¼
�
yðtj�2Þ � yðtj�3Þ

h

�

þ ð2t � tj�3 � tj�2Þ
�
yðtj�3Þ � 2yðtj�2Þ þ yðtj�1Þ

2h2

�

þ
�
ðt � tj�3Þðt � tj�2Þ þ ðt � tj�1Þðt � tj�3Þ

þ ðt � tj�2Þðt � tj�1Þ
��

yðtj�3Þ � 3yðtj�2Þ þ 3yðtj�1Þ � yðtjÞ
6h3

�

þ R
0

1;jðtÞ:

This further implies the following:

C
0 D

a
t yðtrÞ ¼

Xr
j¼1

�
cr�jðyðtj�2Þ � yðtj�3ÞÞ þ mr�jðyðtj�3Þ � 2yðtj�2Þ

� yðtj�1ÞÞ þ nr�jð�yðtj�3Þ þ 3yðtj�2Þ � 3yðtj�1Þ þ yðtjÞÞ
�

þ R2;

ð2:4Þ

where the constants cj; mj and nj for j ¼ 0; 1; 2:::; r � 1,

and the truncation error R2 are defined as follows:

cj ¼
h�a

Cð1 � aÞ d
1�a
j ;

mj ¼
h�a

Cð1 � aÞ jþ 5

2

� �
d1�a
j � d2�a

j

� �
;

nj ¼
h�a

Cð1 � aÞ
d3�a
j

2
� ð2 þ jÞd2�a

j þ
d1�a
j

6
ð2ð2 þ jÞ2 þ ð3 þ jÞð1 þ jÞÞ

" #
;

R2 ¼
Xr
j¼1

R2;j

Cð1 � aÞ ; with R2;j ¼
Z tj

tj�1

ðtr � sÞ�aR
0

1;jðsÞds;

dbj ¼ ðjþ 1Þb � jb

b
; j ¼ 0; 1; 2; :::; r � 1 and b[ 0:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð2:5Þ

Using (2.4) in (2.1), then, for r ¼ 1, we get the following:

ðn0 � bðt1ÞÞyðt1Þ ¼ðc0 � m0 þ n0Þ/ðt�2Þ
þ ð2m0 � c0 � 3n0Þ/ðt�1Þ
þ ð3n0 � m0Þ/ðt0Þ
þ fksðt1Þ � R2:

ð2:6Þ

Similarly for r ¼ 2, we have

ðn0 � bðt2ÞÞyðt2Þ ¼ðc1 � m1 þ n1Þ/ðt�2Þ þ ð2m1 � c1 � 3n1

þ c0 � m0 þ n0Þ/ðt�1Þ þ ð3n1 � m1 � c0

þ 2m0 � 3n0Þ/ðt0Þ
þ ð3n0 � m0 þ n1Þyðt1Þ
þ fksðt2Þ � R2:

ð2:7Þ

Also, for r ¼ 3; 4; :::; l, we derive the following scheme
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ðn0 � bðtrÞÞyðtrÞ ¼
Xr�3

j¼1

�
� nr�j

� mr�j�1 þ 3nr�j�1 � cr�j�2 þ 2mr�j�2

� 2nr�j�2 þ cr�j�3 � mr�j�3 þ nr�j�3

�
yðtjÞ

þ ð�n2 � m1 þ 3n1 � c0

þ 2m0 � 3n0Þyðtr�2Þ
þ ð�n1 þ 3n0 � m0Þyðtr�1Þ
þ ðcr�1 � mr�1 þ nr�1Þ/ðt�2Þ
þ ð�cr�1 þ 2mr�1 � 3nr�1

þ cr�2 � mr�2 þ nr�2Þ/ðt�1Þ
þ ð�mr�1 þ 3nr�1 � cr�2 þ 2mr�2

� 3nr�2 þ cr�3 � mr�3 þ nr�3Þ/ðt0Þ
þ fksðtrÞ � R2:

ð2:8Þ

We denote yr � yðtrÞ, br ¼ bðtrÞ; frks � fksðtrÞ for

r ¼ 1; 2; :::; l, respectively. Then, we have the following

numerical scheme for the solution of (1.2):

ðn0 � b1Þy1 ¼ðc0 � m0 þ n0Þ/ðt�2Þ þ ð2m0 � c0

� 3n0Þ/ðt�1Þ þ ð3n0 � m0Þ/ðt0Þ þ f1
ks;

ð2:9Þ
ðn0 � b2Þy2 ¼ðc1 � m1 þ n1Þ/ðt�2Þ þ ð2m1 � c1

� 3n1 þ c0 � m0 þ n0Þ/ðt�1Þ þ ð3n1 � m1 � c0

þ 2m0 � 3n0Þ/ðt0Þ þ ð3n0 � m0 þ n1Þyðt1Þ þ f2
ks;

ð2:10Þ

ðn0 � brÞyr ¼
Xr�3

j¼1

�
� nr�j � mr�j�1

þ 3nr�j�1 � cr�j�2 þ 2mr�j�2 � 2nr�j�2 þ cr�j�3 � mr�j�3

þ nr�j�3

�
yj þ ð�n2 � m1 þ 3n1 � c0

þ 2m0 � 3n0Þyr�2 þ ð�n1 þ 3n0 � m0Þyr�1

þ ðcr�1 � mr�1 þ nr�1Þ/ðt�2Þ þ ð�cr�1 þ 2mr�1

� 3nr�1 þ cr�2 � mr�2 þ nr�2Þ/ðt�1Þ
þ ð�mr�1 þ 3nr�1 � cr�2 þ 2mr�2 � 3nr�2 þ cr�3

� mr�3 þ nr�3Þ/ðt0Þ þ frks; for r ¼ 3; 4; :::; l:

ð2:11Þ

3 Stability

Theorem 3.1 Let b� � 1, and let yr; xr; r ¼ 1; 2; 3; :::; l;

be the approximate solution and perturbed solution,

respectively, obtained from the numerical scheme and that

of,

ðn0 � b1Þx1 ¼ðc0 � m0 þ n0Þ ~/ðt�2Þ þ ð2m0 � c0

� 3n0Þ ~/ðt�1Þ þ ð3n0 � m0Þ ~/ðt0Þ þ ~f1
ks � R2;

ðn0 � b2Þx2 ¼ðc1 � m1 þ n1Þ ~/ðt�2Þ
þ ð2m1 � c1 � 3n1 þ c0 � m0 þ n0Þ ~/ðt�1Þ
þ ð3n1 � m1 þ 2m0 � c0 � 3n0Þ ~/ðt0Þ
þ ð3n0 � m0 � n1Þx1 þ ~f2

ks � R2;

ðn0 � brÞxr ¼
Xr�3

j¼1

ð�nr�j � mr�j�1 þ 3nr�j�1

� cr�j�2 þ 2mr�j�2 � 2nr�j�2 þ cr�j�3 � mr�j�3

þ nr�j�3Þxj þ ðcr�1 � mr�1 þ nr�1Þ ~/ðt�2Þ
þ ð�n2 � m1 þ 3n1 � c0 þ 2m0 � 3n0Þxr�2

þ ð�n1 þ 3n0 � m0Þxr�1 þ ð�cr�1 þ 2mr�1

� 3nr�1 þ cr�2 � mr�2 þ nr�2Þ ~/ðt�1Þ
þ ð�mr�1 þ 3nr�1 � cr�2 þ 2mr�2 � 3nr�2

þ cr�3 � mr�3 þ nr�3Þ ~/ðt0Þ
þ ~frks � R2; for r ¼ 3; 4; :::; l;

where ~/ be a continuous real-valued function defined on

½�s; 0� such that

max
�s� t� 0

ð/ðtÞ � ~/ðtÞÞ� � and max
0� t�T

ðfksðtÞ � ~fksðtÞÞ� ~�:

ð3:1Þ

If we define �r ¼ yr � xr for r ¼ 1; 2; :::; l, then,

j�rj � �þ 3:5~�:

Proof We use the principle of mathematical induction to

establish our claim. For the case r ¼ 1, using the defini-

tions of x1; y1; �1, we deduce the following:

ðn0 � b1Þ�1 ¼ðc0 � m0 þ n0Þð/ðt�2Þ � ~/ðt�2ÞÞ
þ ð2m0 � c0 � 3n0Þð/ðt�1Þ � ~/ðt�1ÞÞ
þ ð3n0 � m0Þð/ðt0Þ � ~/ðt0ÞÞ þ f1

ks � ~f1
ks:

On taking absolute values and using the inequality (3.1),

we get

ðn0 � b1Þj�1j � n0�þ ~�)j�1j � ðn0�þ ~�Þ=ðn0 � b1Þ
� ðn0�þ ~�Þ=n0 � �þ ~�=n0 � �þ 3:5~�:

Again, for the case r ¼ 2, using the definitions of x2; y2; �2,

we deduce the following:
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ðn0 � b2Þ�2 ¼ðc1 � m1 þ n1Þð/ðt�2 � ~/ðt�2ÞÞ
þ ð2m1 � c1 � 3n1 þ c0 � m0 þ n0Þð/ðt�1 � ~/ðt�1ÞÞ
þ ð3n1 � m1 þ 2m0 � c0 � 3n0Þð/ðt0Þ � ~/ðt0ÞÞ
þ ð3n0 � m0 � n1Þ�1 þ f2

ks � ~f2
ks:

Further, on taking absolute values and using the inequality

(3.1), we get

ðn0 � b2Þj�2j � jn1 þ m0 � 2n0j�
þ j3n0 � m0 � n1jj�þ ~�=n0j þ ~�

�ðjn1 þ m0 � 2n0j þ j3n0 � m0 � n1jÞ�

þ
�

1 þ j3n0 � m0 � n1j
n0

�
~�;

which implies the following

j�2j � �þ
�

1

n0 � b2

��
1 þ j3n0 � m0 � n1j

n0

�
~�� �þ 3:5~�:

Similarly, for the case r ¼ 3, using the definitions of

x3; y3; �3, we deduce the following:

ðn0 � b3Þ�3 ¼ð�n2 � m1 þ 3n1 � c0 þ 2m0 � 3n0Þ�1

þ ð�n1 þ 3n0 � m0Þ�2 þ ðc2 � m2 þ n2Þ�
þ ð�c2 þ 2m2 � 3n2 þ c1 � m1 þ n1Þ�þ ð�m2

þ 3n2 � c1 þ 2m1 � 3n1 þ c0 � m0 þ n0Þ�þ ~�:

Using the inequality (3.1) and taking absolute values, we

get

ðn0 � b3Þj�3j �
�����n2 þ m1 � 2n1 þ c0 � m0

þ n0

����þ
����� n2 � m1 þ 3n1 � c0

þ 2m0 � 3n0

����þ
����� n1 þ 3n0

� m0

����
�
�þ

�
1 þ

����� n2 � m1 þ 3n1 � c0

þ 2m0 � 3n0

����þ
����� n1 þ 3n0 � m0

����
�

3:5~�;

which also implies the following

ðn0 � b3Þj�3j � n0�þ ð1 þ n0Þ3:5~�)j�3j � �þ 3:5~�:

Let us assume that j�ij � �þ 3:5~� for i� r. We will show

that the result holds true for i ¼ r þ 1, i.e.,

j�rþ1j � �þ 3:5~�:

Using the inequality (3.1), the definitions of xrþ1; yrþ1; �rþ1,

and taking absolute values, we get

ðn0 � brþ1Þj�rþ1j �
Xr�2

j¼1

����� nr�jþ1 � mr�j þ 3nr�j � cr�j�2

þ 2mr�j�1 � 3nr�j�1 þ cr�j�2

� mr�j�2 þ nr�j�2

����
�����j
����þ
����� n2 � m1

þ 3n1 � c0 þ 2m0 � 3n0

����
�����r�1

����
þ
����� n1 þ 3n0 � m0

����
�����r
����þ
����cr

� mr þ nr � cr þ 2mr � 3nr þ cr�1 � mr�1

þ nr�1 � mr þ 3nr � cr�1 þ 2mr�1

� 3nr�1 þ cr�2 � mr�2 þ nr�2

�����þ ~�:

Further, we use the assumption that j�ij � �þ 3:5~� for i� r.

Then, we get

ðn0 � brþ1Þj�rþ1j � n0�þ
�

1 þ
����� n2 � m1 þ 3n1 � c0

þ 2m0 � 3n0

����þ
����� n1 þ 3n0 � m0

����þ
����� nr

� mr�1 þ 2nr�1 � cr�2 þ mr�2 � nr�2 þ n2

þ m1 � 2n1 þ c0 � m0 þ n0

����
�

3:5~�

� n0�þ ð1 þ n0Þ3:5~�)j�rþ1j � �þ 3:5~�:

This establishes our claim.

h

4 Error Analysis

Theorem 4.1 Suppose y 2 C4½0; T � and let yr, r ¼
1; 2; :::; l; be the approximate solution derived from

numerical algorithm (2.9)–(2.11) for the FDDE (1.2). Then

(for the interval 0� ti � js for i ¼ 1; :::; r)

jyr � yðtrÞj �Nh4�a for r ¼ 3; 4; :::; l: ð4:1Þ

Proof First we define er ¼ yr � yðtrÞ for r ¼ 1; 2; :::; l. On

subtracting the Eqs. (2.6)–(2.8) from the Eqs. (2.9)–(2.11),

respectively, we get

ðn0 � b1Þe1 ¼ðf1
ks � fksðt1ÞÞ � R2; ð4:2Þ

ðn0 � b2Þe2 ¼ð3n0 � m0 þ n1Þe1 þ ðf2
ks � fksðt2ÞÞ � R2;

ð4:3Þ
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ðn0 � brÞer ¼
Xr�3

j¼1

�
� nr�j � mr�j�1

þ 3nr�j�1 � cr�j�2 þ 2mr�j�2

� 2nr�j�2 þ cr�j�3 � mr�j�3

þ nr�j�3

�
ej þ ð�n2 � m1

þ 3n1 � c0 þ 2m0 � 3n0Þer�2

þ ð�n1 þ 3n0 � m0Þer�1

þ ðf2
ks � fksðt2ÞÞ � R2; for r ¼ 3; 4; :::; l:

ð4:4Þ

First, we establish (4.1) for the case r ¼ 1. For the same,

we take absolute values on both sides and use the Lemma

A.3, which yields the following result from (4.2):

je1j �
jf1

ks � fksðt1Þj þ jR2j
n0 � b1

�
�

1

n0 � b1

�"Xj�1

i¼1

�
7

2

�i

þ 1

#
Mh4�a �Nh4�a:

Secondly, we establish (4.1) for the case r ¼ 2. Again, we

take absolute values on both sides of (4.3) and use the

Lemma A.3 along with the above inequality. This yields

the following result:

je2j �
�

1

n0 � b2

�����ð3n0 � m0 � n1Þe1 þ ðf2
ks � fksðt2ÞÞ � R2

����
� j3n0 � m0 � n1j

n0

je1j þ jf2
ks � fksðt2Þj þ jR2j

� 5

2
je1j þ

�Xj�1

i¼1

�
7

2

�i

þ 1

�
Mh4�a

� 7

2

�Xj�1

i¼1

�
7

2

�i

þ 1

�
Mh4�a ¼

�Xj

i¼1

�
7

2

�i�
Mh4�a �Nh4�a:

Next, we establish (4.1) for the case r ¼ 3. Again, we take

absolute values on both sides on (4.4) and use the Lemma

A.3 along with the above inequalities for the cases r ¼ 1

and r ¼ 2. We get

je3j �
�

1

n0 � b3

��
j � n2 � m1 þ 3n1 � c0 þ 2m0 � 3n0jje1j

þ j � n1 þ 3n0 � m0jje2j þ jf3
ks � fksðt3Þj þ jR2j

�

�
�

1

n0 � b3

��
j � n2 � m1 þ 2n1 � c0 þ m0jNh4�a þ Nh4�a

�

�
�

1 þ n0

n0 � b3

�
Nh4�a �Nh4�a:

Now, we apply the strong principle of the mathematical

induction hypothesis to establish the result for

i ¼ 1; 2; :::; r. For the same, we assume that the result holds

for the case i� r � 1, i.e.,

jeij �Nh4�a; for i� r � 1:

We establish that jerj �Nh4�a. Using the above inequality

in the Eq. (4.4), we get

jerj �
�

1

n0 � br

�"Xr�3

j¼1

j � nr�j � mr�j�1 þ 3nr�j�1 � cr�j�1 þ j

þ 2mr�j�2 � 2nr�j�2 þ cr�j�3 � mr�j�3 þ nr�j�3jjejjj
� n2 � m1 þ 3n1 � c0 þ 2m0 � 3n0jjer�2j þ j

� n1 þ 3n0 � m0jjerj þ jfrks � fksðtrÞj þ jR2j
#

�
�

1

n0 � br

�" 
j � n2 � m1 þ 3n1 � c0 þ 2m0 � 3n0j þ j � n1

þ 3n0 � m0j þ j � nr � mr�1 þ 2nr�1 � cr�2

þ mr�2 � nr�2 þ n2 þ m1 � 2n1 þ c0

� m0 þ n0j þ 1

!
Nh4�a

#

�
�

1

n0 � br

�"������ nr � mr�1 þ 2nr�1 � cr�2 þ mr�2

� nr�2 þ n0

�����þ 1

#
Nh4�a

�
�

1 þ n0

n0 � br

�
Nh4�a �Nh4�a:

Hence, (4.1) be proved.

h

5 Applications and Illustrations

This section demonstrates the computational efficiency of

the HoS for approximating the solutions of FDDEs. We

consider six examples in this section with varieties of

possible exact solutions based on the initial delay func-

tions. For instance, we consider three cases and approxi-

mate solutions using HoS in the first two examples. Next,

we consider fully nonlinear FDDE in Example 5.3 with two

instances and approximate its solution after carefully

applying Newton’s iterative method. Thereafter, we apply

the proposed HoS scheme for a FDDE in Example 5.4

whose exact solution is not polynomial. The last two

examples are real-life applications to analyze chaotic

behavior and the stability of solutions.

Example 5.1 Consider the following FDDE

C
0 D

a
t yðtÞ þ yðtÞ ¼ yðt � 1Þ þ gðtÞ for t 2 ½0; 10�; ð5:1Þ

where g be the real-valued function such that yðtÞ ¼ ti, for

i ¼ 4; 5; 6, be the exact solution of (5.1) with the delay

functions /ðtÞ ¼ ti, for i ¼ 4; 5; 6, defined on ½�1; 0�,
respectively.
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Table 1 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.1 for

yðtÞ ¼ t4

h HoS (a ¼ 0:3) M-L1 scheme (a ¼ 0:3) HoS (a ¼ 0:5) M-L1 scheme (a ¼ 0:5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 4:97 � 10�4 – 4:87 � 10�2 – 1:90 � 10�3 – 1:66 � 10�1 –

0.05 3:91 � 10�5 3.67 4:87 � 10�2 2.64 1:71 � 10�4 3.49 2:98 � 10�2 2.47

0.025 3:06 � 10�6 3.67 1:20 � 10�3 2.70 1:52 � 10�5 3.49 5:30 � 10�3 2.49

0.0125 2:39 � 10�7 3.68 1:92 � 10�4 2.64 1:35 � 10�6 3.49 9:49 � 10�4 2.48

Table 2 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.1 for

yðtÞ ¼ t5

h HoS (a=0.3) M-L1 scheme ða ¼ 0:3Þ HoS (a=0.5) M-L1 scheme (a=0.5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 1:64 � 10�2 – 9:61 � 10�1 – 5:73 � 10�2 – 3.10 –

0.05 1:30 � 10�3 3.65 1:54 � 10�1 2.64 5:20 � 10�3 3.46 5:60 � 10�1 2.46

0.025 1:03 � 10�4 3.65 2:40 � 10�2 2.68 4:63 � 10�4 3.48 1:00 � 10�1 2.47

0.0125 8:12 � 10�6 3.66 3:90 � 10�3 2.62 4:12 � 10�5 3.49 1:80 � 10�2 2.48

Table 3 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.1 for

yðtÞ ¼ t6

h HoS (a=0.3) M-L1 scheme ða ¼ 0:3Þ HoS (a=0.5) M-L1 scheme (a=0.5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 3:87 � 10�1 – 1:62 � 101 – 1.28 – 5:08 � 101 –

0.05 3:12 � 10�2 3.62 2.62 2.62 1:16 � 10�1 3.46 9.23 2.45

0.025 2:50 � 10�3 3.62 4:18 � 10�1 2.64 1:02 � 10�2 3.46 1.66 2.47

0.0125 1:95 � 10�4 3.66 6:61 � 10�2 2.65 9:37 � 10�4 3.47 2:97 � 10�1 2.48

Table 4 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.2 for

yðtÞ ¼ t4

h HoS (a=0.3) M-L1 scheme ða ¼ 0:3Þ HoS (a=0.5) M-L1 scheme (a=0.5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 1:90 � 10�4 – 2:33 � 10�2 – 5:88 � 10�4 – 7:19 � 10�2 –

0.05 1:53 � 10�5 3.63 3:70 � 10�3 2.65 5:28 � 10�5 3.47 1:29 � 10�2 2.47

0.025 1:22 � 10�6 3.65 5:85 � 10�4 2.66 4:74 � 10�6 3.47 2:30 � 10�3 2.48

0.0125 9:59 � 10�8 3.66 9:17 � 10�5 2.67 4:23 � 10�7 3.48 4:10 � 10�4 2.48

Table 5 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.2 for

yðtÞ ¼ t5

h HoS(a=0.3) M-L1 schemeða ¼ 0:3Þ HoS(a=0.5) M-L1 scheme(a=0.5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 7:90 � 10�3 - 5:33 � 10�1 - 2:50 � 10�2 - 1.63 -

0.05 6:26 � 10�4 3.65 8:55 � 10�2 2.64 2:20 � 10�3 3.50 2:94 � 10�1 2.46

0.025 4:93 � 10�5 3.66 1:35 � 10�2 2.66 2:00 � 10�4 3.45 5:27 � 10�2 2.48

0.0125 3:87 � 10�6 3.67 2:10 � 10�0 2.68 1:78 � 10�5 3.49 9:40 � 10�3 2.48
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Table 6 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.2 for

yðtÞ ¼ t6

h HoS(a=0.3) M-L1 schemeða ¼ 0:3Þ HoS(a=0.5) M-L1 scheme(a=0.5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 2:15 � 10�1 - 9.98 - 6:75 � 10�1 - 3:02 � 101 -

0.05 1:73 � 10�2 3.63 1.61 2.63 6:12 � 10�2 3.46 5.48 2.46

0.025 1:40 � 10�3 3.62 2:56 � 10�1 2.65 5:50 � 10�3 3.47 9:86 � 10�1 2.47

0.0125 1:08 � 10�4 3.69 4:05 � 10�2 2.66 4:90 � 10�4 3.48 1:76 � 10�1 2.48

Fig. 2 Error plots for Example 5.2; solid-line is for HoS, dashed-line is for M-L1; red colour (a ¼ 0:3), green colour (a ¼ 0:5) and blue colour

(a ¼ 0:7) in Fig. 2d–f
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Example 5.2 Consider the following nonlinear FDDE

C
0 D

a
t yðtÞ þ yðtÞ ¼ yðt � 1Þ

1 þ yðt � 1Þ2
þ gðtÞ for t 2 ½0; 10�;

ð5:2Þ

where g be the real-valued function such that yðtÞ ¼ ti,

i ¼ 4; 5; 6, become the exact solution of the problem (5.2)

with the delay function /ðtÞ ¼ ti, for i ¼ 4; 5; 6, defined on

½�1; 0�, respectively.

Illustrations of Example 5.1 and5.2 First, we determined

the functions g, for each i ¼ 4; 5; 6, from Eqs. (5.1) and

(5.2). For a ¼ 0:3 and a ¼ 0:5 with different step sizes, we

applied our proposed scheme and compared the same with

the M-L1 Scheme (Raju and Madduri 2021). For Example

5.1, the results are presented in Tables 1, 2, and 3 for the

cases i ¼ 4; 5; and 6, respectively. Similarly, the results for

Example 5.2 are presented in Tables 4, 5, and 6 for each

case i ¼ 4; 5; and 6, respectively. It can be observed from

the tables that the expected order of convergence (EOC)

matches the theoretical results obtained in Theorem 4.1 and

the L1�error decreases whenever the step size h decreases.

Table 7 Errors for a ¼ 0:9 in

Example 5.3 for yðtÞ ¼ t4
h HoS M-L1 scheme

L1 error EOC Time(s) L1 error EOC Time(s)

0.1 4:50 � 10�3 – 0.91 2:24 � 10�2 – 0.32

0.05 5:58 � 10�4 3.25 3.13 6:00 � 10�3 1.91 1.03

0.025 6:65 � 10�5 3.07 11.86 1:50 � 10�3 2.01 3.87

0.0125 7:86 � 10�6 3.08 32.07 4:00 � 10�4 2.06 10.49

0.00625 9:22 � 10�7 3.09 75.09 1:00 � 10�4 2.68 24.36

Table 8 Errors for a ¼ 0:9 in

Example 5.3 for yðtÞ ¼ t5
h HoS M-L1 scheme

L1 error EOC Time(s) L1 error EOC Time(s)

0.1 7:90 � 10�3 – 1.16 3:50 � 10�2 – 0.38

0.05 1:10 � 10�3 2.84 3.93 9:70 � 10�3 1.87 1.32

0.025 1:40 � 10�4 2.97 14.68 2:40 � 10�3 1.99 4.77

0.0125 1:70 � 10�5 3.04 39.45 5:80 � 10�4 2.04 13.00

0.00625 2:02 � 10�6 3.07 94.74 1:30 � 10�4 2.07 30.60

Fig. 3 Error plot of Example, for 5.3 for yðtÞ ¼ t4
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From the results in Tables 1, 2, 3, 4, 5, 6, it is evident that

our scheme outperforms the M-L1 Scheme in both exam-

ples, even for the case when i ¼ 6. Similar observations

can be concluded for both examples from the Figs. 1a–c

and 2a–c for the case a ¼ 0:9. Moreover, the Figs. 1d–f

and 2d–f demonstrate that the errors, for a ¼ 0:3; 0:5; 0:7,

settle down as time increases.

Example 5.3 Consider the following nonlinear FDDE

C
0 D

a
t yðtÞ þ yðtÞ3 ¼ yðt � 0:1Þ þ gðtÞ for t 2 ½0; 10�;

ð5:3Þ

Fig. 4 Error plot of Example 5.3 for yðtÞ ¼ t5

Table 9 Errors for a ¼ 0:3 and

a ¼ 0:5 in Example 5.4 for

yðtÞ ¼ sin t

h HoS (a=0.3) M-L1 scheme ða ¼ 0:3Þ HoS (a=0.5) M-L1 scheme (a=0.5)

L1 error EOC L1 error EOC L1 error EOC L1 error EOC

0.1 7:34 � 10�6 – 7:86 � 10�5 – 2:28 � 10�5 – 2:13 � 10�4 –

0.05 5:85 � 10�7 3.64 3:88 � 10�5 2.62 2:04 � 10�6 3.47 3:88 � 10�5 2.46

0.025 4:63 � 10�8 3.66 2:03 � 10�6 2.64 1:82 � 10�7 3.48 6:98 � 10�6 2.47

0.0125 3:64 � 10�9 3.66 3:22 � 10�7 2.65 1:62 � 10�8 3.49 1:24 � 10�6 2.48

Fig. 5 Error plot of Example 5.4 for yðtÞ ¼ sin t
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where g be the real-valued function such that yðtÞ ¼ ti,

i ¼ 4; 5, become the exact solution of the problem (5.3)

with delay function /ðtÞ ¼ ti, for i ¼ 4; 5, defined for t� 0,

respectively.

Illustration of Example 5.3 For each i ¼ 4; 5, we

determined the functions g from Eq. (5.3) so that yðtÞ ¼ ti

become solution of (5.3). Then, for each i ¼ 4; 5, we used

Newton’s iterative method to linearize the Eq. (5.3) and

approximated the limit of the sequence of solutions of the

following linear FDDEs:

C
0 D

a
t y

lþ1ðtÞ þ 3 ylðtÞ
� 	2

ylþ1ðtÞ ¼ylþ1ðt � 0:1Þ

þ 2 ylðtÞ
� 	3þgðtÞ for t 2 ½0; 10�;

ð5:4Þ

with delay function ylþ1ðtÞ ¼ /ðtÞ. We applied our pro-

posed numerical scheme and compared the same with the

M-L1 Scheme (Raju and Madduri 2021) for the case a ¼
0:9 with different step sizes h. The obtained results are

presented in Tables 7 and 8 for the cases i ¼ 4 and i ¼ 5,

respectively. It is evident from the tables that the L1�er-

rors decreases with the decrease of step sizes. Further, the

computational cost of our scheme is higher than the M-L1

Scheme at each step size; however, the errors obtained at

each step size h are outstanding compared to those of the

M-L1 Scheme. Therefore, it can also be concluded from

the tables that the desired accuracy can be achieved with

less time. Both the tables also establish that the EOC of the

proposed HoS scheme matches with the obtained theoret-

ical result in Theorem 4.1 with step-size h ¼ 0:0125 or

less. We also plotted errors obtained for both schemes and

presented them in the Figs. 3 and 4.

Example 5.4 Consider the following FDDE

C
0 D

a
t yðtÞ þ yðtÞ ¼ yðt � 1Þ þ gðtÞ for t 2 ½0; 10�; ð5:5Þ

where g be the real-valued function such that yðtÞ ¼ sin t,

be the exact solution of (5.5) with the delay functions

/ðtÞ ¼ sin t, defined on ½�1; 0�.

Illustration of Example 5.4 After deriving the function g,

first we applied our proposed numerical scheme and M-L1

Scheme (Raju and Madduri 2021) for a ¼ 0:3 and a ¼ 0:5

with different step sizes. The obtained results are presented

Table 10 Computational time

(in seconds) for Example 5.5.
h a Time(s)

0.01 0.90 31.00

0.99 29.37

0.005 0.90 112.69

0.99 108.88

Fig. 6 Solution and phase plot of Example 5.5
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in Table 9. One may observe that the proposed HoS

scheme outperforms the M-L1 Scheme, L1�error

decreases with the decrease of step sizes, and the EOC

matches with the derived theoretical results in the Theo-

rem 4.1. Figure 5a shows the errors obtained in the HoS

scheme versus time for different values of a with step size

h ¼ 0:0125. Similarly, Fig. 5b shows the errors obtained in

the proposed HoS scheme and M-L1 scheme versus time

for a ¼ 0:9 with different values of h.

Example 5.5 (Tavernini 1996) Consider the following

FDDE, which represents the fractional model of a popu-

lation of lemmings with a 4-year life cycle.

Fig. 7 Solution and phase plot of Example 5.6

Table 11 Computational time

(in seconds) for Example 5.6

with h=0.01

a 0.6 0.69 0.7 0.8 0.75 0.77 0.79 0.83 0.85 0.9

Time(s) 32.16 31.78 33.17 32.92 32.02 31.58 32.55 32.31 31.74 31.52
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C
0 D

a
t yðtÞ ¼ 3:5yðtÞ 1 � yðt � sÞ

19

� �
for t 2 ½0; 100�;

yðtÞ ¼ /ðtÞ for t� 0;

8<
:

ð5:6Þ

where /ð0Þ ¼ 19:00001; and /ðtÞ ¼ 19; t\0:

Illustration of Example 5.5: We applied our proposed

numerical scheme for the cases a ¼ 0:9; 0:99 with differ-

ent step sizes h, and the respective computational time (in

seconds) are given in Table 10. The derived approximate

solution and phase portraits from HoS are plotted in Fig. 6.

One can verify that our scheme also yields similar results

as given in Raju and Madduri (2021).

Example 5.6 (Bhalekar 2019) Consider the following

FDDE, which is also known as the fractional Ikeda

equation

C
0 D

a
t yðtÞ ¼ �3yðtÞ þ 24 sin yðt � 0:1Þ; for t 2 ½0; 100�;

yðtÞ ¼ /ðtÞ ¼ 1 for t\0:

�

ð5:7Þ

Illustration of Example 5.6: We applied our proposed

numerical scheme for different values of a with step size

h ¼ 0:01. The derived results of the approximate solution

and phase diagrams based on the proposed HoS scheme are

displayed in Fig. 7. The stability of the chaotic behavior of

the solution can be observed from a ¼ 0:7. Also, the pro-

posed HoS scheme yields similar results as given in (Raju

and Madduri 2021). Further, the computational times for

the proposed HoS scheme of different values of a with step

size h ¼ 0:01 are tabulated in Table 11.

6 Conclusion

We developed a higher-order scheme (HoS) for approxi-

mating the solutions of nonlinear FDDEs by incorporating

an interpolation-based approximation of Caputo’s frac-

tional derivative. The stability results and detailed error

analysis are also carried out for the proposed numerical

algorithm. We investigated the performance of the pro-

posed HoS scheme over various linear and nonlinear

examples, including real-life applications. Further, we

compared the derived results with the recently proposed M-

L1 scheme (Raju and Madduri 2021) and noticed that the

HoS scheme outperforms even with the more significant

step size. We also established that the order of convergence

is 4 � a, which was claimed in Theorem 4.1. In light of the

LTRPS approach’s high accuracy in solving fractional

nonlinear equations and its easy calculation process, we

intend to investigate this method further for the proposed

FDDE (1.2) and design a robust numerical scheme.

Appendix

The following linearized form of Eq. (1.1) is obtained in

each of Newton’s iterative processes:

C
0 D

a
t y

lþ1ðtÞ �
�
oG

oy

�
ðt;ylÞ

ylþ1ðtÞ ¼ Gðt; ylþ1ðt � sÞ; ylðtÞÞ �
�
oG

oy

�
ðt;ylÞ

ylðtÞ; t 2 I;

ylþ1ðtÞ ¼ /ðtÞ; t 2 ½�s; 0�:

8><
>:

ðA:1Þ

Now, the solution of the obtained sequence of FDDEs

(A.1) can be approximated instead of the solution of non-

linear FDDE (1.1). The Eq.s in (A.1) can be viewed as (1.2)

if we denote yðtÞ ¼ ylþ1ðtÞ, bðtÞ ¼
�

oG
oy

�
ðt;ylÞ

, and

gðt; yðt � sÞÞ ¼ Gðt; ylþ1ðt � sÞ; ylðtÞÞ�
�

oG
oy

�
ðt;ylÞ

ylðtÞ:

Lemma A.1 (Morgado et al. 2013; Raju and Madduri 2021) Let

y0sðtÞ ¼ /ðtÞ for t 2 ½�s; 0� and b\0 on I. Also, let k[ 0 be the

greatest integer such that the function defined below is continuous:

fksðtÞ ¼

gðt;/ðt � sÞÞ for 0\t� s;

gðt; ysðt � sÞÞ for s\t� 2s;

:

:

:

gðt; yðk�1Þsðt � sÞÞ for ðk � 1Þs\t� ks:

8>>>>>>>><
>>>>>>>>:

ðA:2Þ

Then the FDDE (1.2) on the interval ½0; ks�, has a solution

which is given by

ylsðtÞ ¼
Z t

0

ðt � sÞa�1Ea;aðbðt � sÞaÞflsðsÞds

þ plsEa;1ðbtaÞ; for ðl� 1Þs\t� ls;

ðA:3Þ

where pls, l ¼ 1; 2; :::k is a constant and Ea;b denotes the

Mittag–Leffler function defined by

Ea;b ¼
X1
k¼0

zk

Cðak þ bÞ ; z; b 2 C; ReðaÞ[ 0:
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Lemma A.2 The constants cr;mr; nr defined in the Eq. (2.5) will

satisfy the following:

nr þ mr�1 � 2nr�1 þ cr�2 � mr�2 þ nr�2 [ 0; 8 r � 3:

ðA:4Þ

Proof For r� 3, it is easy to derive the following equality:

nr þ mr�1 � 2nr�1 þ cr�2 � mr�2 þ nr�2

¼ h�a

Cð1 � aÞ

(�
d3�a
r

2
� ðr þ 2Þd2�a

r

þ d1�a
r

6
ð2ðr þ 2Þ2 þ ðr þ 3Þðr þ 1Þ

�

þ
�

r þ 3

2

� �
d1�a
r�1 � d2�a

r�1

�

�
�
d3�a
r�1 � 2ðr þ 1Þd2�a

r�1 þ d1�a
r�1

3
ð2ðr þ 1Þ2

þ rðr þ 2ÞÞ
�
þ d1�a

r�2 �
�

r þ 1

2

� �
d1�a
r�2 � d2�a

r�2

�

þ
�
d3�a
r�2

2
� rd2�a

r�2 þ d1�a
r�2

6
ð2r2 þ ðr þ 1Þðr � 1ÞÞ

�)

¼ h�a

Cð1 � aÞ

"
hðrÞ � hðr � 1Þ

#
;

where the function h is defined as

hðsÞ ¼ ðsþ 1Þ3�a � 2s3�a þ ðs� 1Þ3�a

ð1 � aÞð2 � aÞð3 � aÞ

þ ðs� 1Þ2�a � 2s2�a þ ðsþ 1Þ2�a

ð1 � aÞð2 � aÞ

þ ðs� 1Þ1�a � 2s1�a þ ðsþ 1Þ1�a

3ð1 � aÞ :

On differentiating the function h, we get

h0ðsÞ ¼dðsÞ � dðs� 1Þ;

where the function d will be given by

dðsÞ ¼ ðsþ 1Þ2�a � s2�a

ð1 � aÞð2 � aÞ

þ ðsþ 1Þ1�a � s1�a

ð1 � aÞ

þ ðsþ 1Þ�a � s�a

3
:

Now, on differentiating the function d, we get

d0ðsÞ ¼gðsÞ � gðs� 1Þ:

Here, the function g is given by

gðsÞ ¼ ðsþ 1Þ1�a

1 � a
þ ðsþ 1Þ�a � a

3
ðsþ 1Þ�1�a

and its derivative will be

g0ðsÞ ¼
�
ðsþ 1Þðsþ 1 � aÞ þ aðaþ 1Þ

3

�
ðsþ 1Þ�a�2:

It is easy to see that g0ðsÞ� 0 for each s� 3. Therefore, the

function g is increasing, and so are the functions d and h for

r� 3. This establishes our claim. h

Lemma A.3 There exists a constant M[ 0 such that the truncation

error R2, defined in (2.5), satisfies

j R2 j �Mh4�a:

Furthermore, the following holds true

jfksðtrÞ � frksj �

0 for 0\tr � s;
7

2
Mh4�a for s\tr � 2s;

X2

i¼1

7

2

� �i

Mh4�a for 2s\tr � 3s;

:

:

:Xr�1

i¼1

7

2

� �i

Mh4�a for ðk � 1Þs\tr � ks:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA:5Þ

Proof From the Eq.s (2.3) and (2.5), one may derive the following

explicit expression for R2:

R2 ¼ 1

Cð1 � aÞ
Xr
j¼1

Z tj

tj�1

ðtr � sÞ�aR
0

1;jðsÞds;

where

R
0

1;jðtÞ ¼
yð4ÞðnjÞ

4!

�
ðt � tjÞðt � tj�1Þðt � tj�2Þ þ ðt � tjÞðt � tj�1Þðt � tj�3Þ

þ ðt � tjÞðt � tj�2Þðt � tj�3Þ þ ðt � tj�1Þðt � tj�2Þðt � tj�3Þ


:

Now, from (Li et al. 2016), we get:

jR2j �C1

�
max

0� f� T
yð4ÞðfÞ

�
h4�a ¼ Mh4�a:

For tr 2 ½0; s�, we have fksðtrÞ ¼ frks. Hence,

Iranian Journal of Science

123



jfksðtrÞ � frksj ¼ 0:

The definitions of yr and yðtrÞ in the Eqs. (2.6)–(2.8) and

(2.9)–(2.11) along with the obtained result imply that

j yr � yðtrÞ j¼j R2 j � 7

2
Mh4�a for tr 2 ½0; s�: ðA:6Þ

Next, we consider the case tr 2 ½0; 2s�. From the definition

of the function fks in (A.2) and the function frks in the

equations (2.9)-(2.11), we have

jfksðtrÞ � frksj ¼
�

0 for 0\tr � s;

jgðtr; ysðtr � sÞÞ � gðtr; yr�s
1 Þj for s\tr � 2s;

ðA:7Þ

where yr�s
1 represents the approximate value of ysðtr � sÞ

using the designed scheme (2.9)–(2.11) over the interval

½s; 2s�. Therefore, we have

jfksðtrÞ � frksj �
0 for 0\tr � s;

7

2
Mh4�a for s\tr � 2s:

8<
:

Using the above inequality, and the Eqs. (2.6)–(2.8) and

(2.9)–(2.11), one can derive the following

jyr � yðtrÞj �

7

2
Mh4�a for 0\tr � s;

X2

i¼1

7

2

� �i

Mh4�a for s\tr � 2s:

8>>><
>>>:

Assume that the inequality (A.5) holds true for any

tr 2 ½0; ðk � 1Þs�. Then, the Eqs. (2.6)–(2.8) and (2.9)–

(2.11) imply the following result:

jyr � yðtrÞj �

7

2
Mh4�a for 0\tr � s;

X2

i¼1

7

2

� �i

Mh4�a for s\tr � 2s;

X3

i¼1

7

2

� �i

Mh4�a for 2s\tr � 3s;

:

:

:Xk�1

i¼1

7

2

� �i

Mh4�a for ðk � 2Þs\tr �ðk � 1Þs:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ðA:8Þ

Next, we establish the result for the case tr 2 ½0; ks�. Now,

the definitions of the functions fks and frks in the Eqs. (A.2)

and (2.9)–(2.11), respectively, imply that

jfksðtrÞ � frksj

¼

0 for 0\tr � s;

jgðtr; ysðtr � sÞÞ � gðtr; yr�s
1 Þj for s\tr:� 2s;

jgðtr; y2sðtr � sÞÞ � gðtr; yr�s
2 Þj for 2s\tr � 3s;

:

:

:

jgðtr; yðk�1Þsðtr � sÞÞ � gðtr; yr�s
ðk�1ÞÞj for ðk � 1Þs\tr � ks;

8>>>>>>>>>>><
>>>>>>>>>>>:

ðA:9Þ

where yr�s
l denotes the approximate value of ylsðtr � sÞ, for

l ¼ 1; 2; :::; k � 1; using the designed scheme (2.9)–(2.11).

Now, using the inequality (A.8), the claim in (A.5)

holds. h
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