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Abstract

This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order
a € (0, 1). We focus on designing a robust numerical algorithm of order O(h*~*). To achieve this, we developed a higher-
order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical
scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order
scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational

efficiency of the proposed algorithm.
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1 Introduction

The study of fractional differential equations (FDEs) has
gained the intrinsic interest of researchers in recent dec-
ades. This is due to their recognition of analyzing various
physical systems more efficiently than the classical models
(Salahshour et al. 2015; Agarwal and Choi 2016; Diethelm
and Ford 2010; Rivero et al. 2011; Chen et al. 2021). The
literature contains numerous definitions of fractional
derivatives and integrals, including those by Riemann-
Liouville, Caputo, Grunwald-Letnikov, Caputo-Fabrizio,
Atangana-Balaneu, and many more. A comprehensive
study of these fractional derivatives was given by Samko
et al. (1993), Jumarie (2009), Atangana and Secer (2013),
and Atangana (2018) including their potential real-life
applications, differing qualities, and their benefits and
drawbacks. The Caputo’s derivative gained considerable
attention in the fractional calculus. The nonlocal property
of Caputo’s derivative and its applicability for analyzing
intricate systems with memory effects are two primary
reasons to consider it. It also allows the usage of initial and
boundary conditions in the model governing equations.
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Furthermore, the derivative’s order, say o, is a crucial
control parameter that regulates the systems’ trajectories’
velocity. As a result, numerous authors considered Capu-
to’s derivative to analyze real-world issues, such as the
controller for a knee joint orthosis (Delavari and Jokar
2021), the dynamics of a second-grade fluid with Newto-
nian heating (Sene 2022), epidemics (Rehman et al. 2022),
and the chaotic dynamics of the Jerk Fractional Model
(Belhamiti et al. 2022). It is worth mentioning that the
existence and controllability results of various types of
FDEs have been investigated extensively (Dubey and
Sharma 2014; Sharma 2021; Maes and Van 2023). A mild
solution and an optimal pair of a nonlocal, non-autonomous
fractional integrodifferential equation of Sobolev type have
been established recently in (Sharma 2023). Further, the
authors in (Haque et al. 2023) used the measure of non-
compactness and fixed-point technique to derive sufficient
criteria for the existence of solutions for an infinite system
of Langevin FDEs.

On the other hand, difficulty in finding analytic solutions
to FDEs motivated the researchers to develop considerable
numerical algorithms for different FDEs (Rahimkhani and
Ordokhani 2019; Yan et al. 2018; Kiirkcuil et al. 2019;
Zaky et al. 2020). Faheem et al. (2022) proposed a collo-
cation method for solving a nonlinear coupled time-frac-
tional diffusion system based on the Legendre wavelet
using the Riemann-Liouville fractional integral operator.
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Fig. 1 Error plots for Example 5.1; solid-line is for HoS, dashed-line is for M-L1; red colour (« = 0.3), green colour (¢ = 0.5) and blue colour
(2 =0.7) in Fig. 1d—f

Agarwal et al. (2023) developed an efficient half-sweep  (2023) developed a numerical algorithm by combining
type finite difference method for a one-dimensional frac-  Simpson’s and Trapezoidal rule, which transformed the
tional diffusion equation. Recently, Sabir and Rehman  equivalent Volterra integral equation of FDE into a system
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of algebraic equations. The authors also presented a
detailed error analysis of the proposed scheme. Also, the
authors of (Admon et al. 2023) used first-order optimiza-
tion techniques, momentum method, and adaptive moment
estimation method for designing deep feedforward neural
network-based schemes to solve FDEs involving Caputo
derivative. Several authors also adopted the Laplace
transform residual power series (LTRPS) method to
approximate solutions for numerous FDEs due to its high
accuracy in solving fractional nonlinear equations and its
easy calculation process (Alshammari et al. 2024; Khir-
sariya et al. 2024). For more details and other advanced
procedures, please refer to the above and those listed.

Consider the following nonlinear fractional delay dif-
ferential equation (FDDE):

{SDQ‘Y(I) = G(t,y(t = 1), 5(1))
(1) = (1)

fortel=1[0,T], € (0,1),
for t € [—1,0],

(1.1)

where 7 be a positive real number, ng denotes the Caputo
derivative of order « with lower-limit 0, and ¢ € C[—7, 0],
a space of all continuous real-valued functions defined on
[—7,0]. The local and global existence results for the
considered problem (1.1) can be found in (Lakshmikan-
tham 2008). It is well-known that the solution of the con-
sidered nonlinear Eq. (1.1) can be approximated after
linearizing it through Newton’s Iterative Method. It is
worth mentioning the following final linearized form of
(1.1) in each of Newton’s iterations: (for details, one may
refer to Appendix A):

{gD/“y(t) =b(t)y(r) +g(t,y(t—7)) fortelI=10,T], o€ (0,1),
y(t) = ¢(t) forre[—1,0].
(1.2)

It is evident that delays are ubiquitous in real-world sys-
tems and naturally occur in the governing differential
equations of specific processes and physical systems that
possess memory and heritage properties. Therefore, delay
differential equations involving integer-order derivatives
have received significant attention from researchers (Sri-
wastav et al. 2023; Sandoz et al. 2023; Elango 2023; Agiza
et al. 2023; Pituk et al. 2023). However, the study of
FDDE:s is relatively recent and follows a similar growth
trajectory in several areas. The results concerning the
existence of solutions and stability analysis for several
types of FDDEs can be found in (Deng et al. 2007; Liao
and Ye 2009; Lazarevi¢ and Spasi¢ 2009; Krol 2011;
Morgado et al. 2013; Sharma and Dubey 2017). The
computational complexities deriving the analytic solution
of FDDEs have imperatively inclined researchers to design
numerical algorithms for approximating their solutions
(Jhinga and Daftardar-Gejji 2019; Raju and Madduri 2021;

Behera and Ray 2022). In (Jhinga and Daftardar-Gejji
2019), the authors proposed a new predictor-corrector
method of order O(h?) for solving FDDEs and discussed its
error analysis in detail. Further, they also proved its effi-
cacy for minimal values of the order of the fractional
derivatives. Raju and Madduri et al. (2021) proposed two
higher-order numerical methods of order O(h*~*) for
approximating the solutions of FDDEs involving the Rie-
mann-Liouville fractional derivative and the Caputo’s
fractional derivative, respectively. The authors employed
interpolation-based and finite-difference methods for
approximating the considered derivatives and presented a
detailed stability and error analysis. Zaky et al. (2023)
designed a L1— approximation for the fractional derivative
of variable order and developed a Galerkin spectral method
for the spatial operator of second-order using Legendre
polynomials. They also established the convergence and
stability results for the proposed algorithm using discrete
energy estimates. Using the fractional integral operational
matrix based on Euler wavelets, Behera and Ray (2022)
proposed a new numerical scheme for the fractional order
pantograph Volterra delay integro-differential equation and
discussed its convergence and error analysis. The study of
stability analysis for multi-term FDDEs was performed
recently by Yang et al. (2023), where the authors derived a
region embedding technique and combined the same with
the Laplace transform method and decoupling technique.

The references mentioned above and the lack of com-
putationally efficient numerical schemes motivated us to
design a robust higher-order method, i.e., of order 0(h4‘°‘),
for approximating the solution of FDDE (1.2). First, in
Sect. 2, we derived the interpolation-based approximation
of the Caputo fractional derivative. Then, we incorporated
it carefully in the equation (1.2), which resulted in a
numerical scheme of order 0(h4‘°‘). Then, we established
the stability results in Sect. 3 and discussed detailed error
analysis in Sect. 4 for the proposed numerical algorithm.
We considered examples of different FDDEs in Sect. 5 and
demonstrated the computational efficiency of the proposed
algorithm. Further, we compared the obtained results with
the M-L1 scheme (Raju and Madduri 2021) and gave
concluding remarks in Sect. 6. All the computations pre-
sented in this work have been performed over the Matlab
online platform (MathWorks) version R2022.

2 Higher-Order Scheme(HoS)

This section presents a higher-order numerical scheme for
the Eq. (1.2). To begin with, let us first introduce the
definition of the Caputo fractional derivative.
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Definition 2.1 (Caputo Fractional derivative (Diethelm
and Ford 2010)) Let o € (0, 1]. The operator {D* defined
below is called the Caputo’s derivative of order o with
lower-limit O:

S0 = = | =7 as

where f is continuously differentiable function on [0, T].

Let us consider a partition 0 =ty <t;<hH <..<f; =
lh = kt =T of I with fixed / € N, and uniform-spaced step
size h. Now, at every point ¢,, r = 1,2, ..., 1, the Eq. (1.2)
can be written as,

S DIy(t:) = gltr, y(1r — 7)) + b(t,)y(1r) = Cie(tr) + b(2:)y(81),

(2.1)

where the function {;, is defined as in the Eq. (A.2). It is
easy to derive the following:

1 " —ay
_m/ (. — )Y (s)ds

I_MZ/ , —5) Y (s)ds.

Using Newton’s Divided difference method, first we
approximate 'y by a cubic polynomial at
t=tj_3,ti_2,t_1,t, which will be given by:

(1) =y(ti-3) + (t — tj-3) <W)
— 2y(tj-2) +y(fj1)>

CDaY(tr)
(2.2)

+ (= 13)(1 = j-2) (y(t”) 212

¥ ((r— b3~ )0 m)y
(y(ljs) = 3y(ti2) +3y(ti1) — y(t) )
6h3

+ RlJ(t)7
(2.3)

where Ry ;(t) =

J
)
YT (¢ = 1), & € [t-3,5). On differ-

i=j—3
entiating above, we get

22, Q) Springer

i =200
- g (M7 000
(0520052 + ()=
i ) (MR ) =50

+ R, (1)

This further implies the following:

r

§Diy(t) = {Crfj()’(tj%) =¥(t-3)) + me ((t-3) — 2(tj-2)

=1
= ¥(t-1)) + nej (=¥ (6-3) + 3y(ti-2) = 3y(t-1) + ¥(1))
+ Ry,
(2.4)
where the constants ¢;, m; and n; for j =0,1,2...,r — 1,
and the truncation error R, are defined as follows:

h 1—a
Il —ow) 4

_ h™* '5 1—a 2—o
m =i (3)4 4]

he 3—o d_lfx
= | L= @+ )+ L (22 +))°

Cj =

Fi=a | 2 _ +G+)1+D)]

R2:ZFR—2_

/;(1+)
4 5

tj ,
, with Ry = / (t: = $)7R, ;(5)ds,
ti-1

fi—

,j=0,1,2,...,r—1 and 8 > 0.
(2.5)
Using (2.4) in (2.1), then, for r = 1, we get the following:

(no — b(11))y(11) =(co — mo + no)P(t_2)
+ (2mo — o — 3no)p(t-1)
+ (3ng — mo)p(10)
+ L (1) — Ra.

Similarly for r = 2, we have

(no — b(12))y(t2)

(2.6)

=(c1 —my +m)p(t_2) + 2m —c1 —3m

+co—mo+ng)p(t—1) + (3n; —my — co
+ 2my — 3no) P(to)
+ (3ng — mo +n1)y(t1)
+ {ke(t2) — Ra.
(2.7)

Also, for r = 3,4, ..., 1, we derive the following scheme
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r—3

(0= bl yt0) =3 [~
— My_j1 + 3nr—j—l — Cr—j-2 + 2er—j72
=202 + Crjo3 — M3 + 03 | Y(4)

+ (—ny —my +3n; —co
+ 2mo — 3ng)y(t—2)
+ (—=n1 +3np — mo)y(t,—1)
+(cror —my_y +n_1)P(t-2)
+ (—cr—1 +2m—y — 30,
+er —mey+n0) (1)
+ (—my—1 + 31,21 — cr—2 + 2m,
= 31,0+ 3 — me_3 +n,3)P(to)
+ Cke(tr) — Ra.
(2.8)
We denote y, ~y(t,), b, =b(t), §,~{.(t) for
r=1,2,...,1, respectively. Then, we have the following
numerical scheme for the solution of (1.2):
(no — b1)y1 = (co — mo + no)P(t-2) + (2my — co
= 3n0)(1-1) + (3n9 — mo)p(to) + Ly
(2.9)
(no — ba)y, = (c1 —my +n1)p(t-2) + (2my — ¢
—3n1 4 co —mo +no)p(t-1) + (3n1 —my — co
+ 2mg — 3n0)p(t0) + (3n0 — mo + n1)y(11) + G,

(2.10)
r=3
(l’l() - br)yr = Z |: My — My
=
+3n_j 1 —crja+2me_j o —2n_j 2+ cCrj 3 —mp_j3

+ ”lr—j—3:|yj + (= —my +3n; —co

+2my — 3n9)yr—2 + (—n1 + 3np — mo)y,—

+ (cro1 —m_y + 1) @(t2) + (—cpm1 + 2myy
—3n,_1 +cra —mp_g 1) (1)

+ (—=my—y +3n,_1 —cr2+2m,_ — 3n,_2 + ¢—3
—my_3+n_3)p(ty) + &, for r=3,4,...,L

(2.11)

3 Stability

Theorem 3.1 Letb< — 1, and let y,, x,, r=1,2,3,...,1,
be the approximate solution and perturbed solution,
respectively, obtained from the numerical scheme and that

of,

(n() — b])xl = (Co — my + n0)¢(t,2) + (Zmo —Co
—3n0)(t-1) + (30 — mo)(to) + &, — R,

(no — ba)xa =(c1 — my + n1) (1)

+ (2my — ¢y —3ny+co —mp + no)d;(t,l)
+ (31 — my + 2my — co — 3n0)P(to)
+ (3ng — mo — ni)x; + é;zr — R,

-3
(no — b)x, = Z(*nr—j —m_j_1+3n,_
=
—Crja+2myjo—2nj o+ Crj3—Mpj3
+ n,,j,3)xj + (cr—l —my_1 + }’lr,l)(}B(l,z)
+ (=ny —my + 3ny — co + 2my — 3np)x, 2

+ (—=ny +3np — mo)x,—1 + (—c,—1 + 2m,_,

- 3”,71 +cr2—m_2+ n}'*Z)(l)(tfl)
+ (_mrfl + 3}’[,‘,1 —Cr2+ 2mr72 - 3nr72

+ery —m_3+n,3)(to)
+5]';1_R27 for r:3747'“7l’

where (/; be a continuous real-valued function defined on
[—7,0] such that

max (¢(I) - d;(l)) <eand max (é’kr(t) - gkr(t)) <e.

—1<1<0 0<t<T
(3.1)

If we define ¢, =y, — x, for r = 1,2, ..., , then,

e < e+3.5¢

Proof We use the principle of mathematical induction to
establish our claim. For the case r = 1, using the defini-
tions of x;,y, €;, we deduce the following:

(no —by)er = (co —mo +no)(p(t—2) — P(t-2))

+ (2mo — co — 3no) (¢ (t-1) — P(t-1))

+ (3n9 — mo) (d(to) — P(10)) + L. — G-
On taking absolute values and using the inequality (3.1),
we get
(I’l() — b1)|61| <ngpe + €~:>‘61| < (I’l()e + g)/(l’l() — b])
< (noe+€)/ng<e+é/ny<e+3.5€

Again, for the case r = 2, using the definitions of x;, y,, €3,
we deduce the following:

% @ Springer
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(no = ba)ea = (c1 — my +mi) (P12 — ¢(t-2))
+ (2my — ¢y = 3ny +co —mo +no)(P(t-y — J’(ffl))
+ (3m = my +2mg — g — 3n0)($(10) — P(t0))
+ (3ng — mo — my)er + G, — 5;%,
Further, on taking absolute values and using the inequality
(3.1), we get
(n() — b2)|€2| < |}’11 + my — 2n0|€
+ |3n0 — my — nyl||le + €/no| + €
<(|n1 + mo — 2no| + |3np — mo — ny|)e
310 — mn —
+ (1+— o~ ™ n")g,

no
which implies the following
|3I’l() —my —ny |

1
|€2|§6+< )<1+
no — by no

Similarly, for the case r =3, using the definitions of
X3,y3, €3, we deduce the following:

>€§6+3.5€.

(no — b3)es = (—np — my + 3n; — ¢o + 2mp — 3np)€
+ (—n1 +3np —mo)ex + (c2 — my +ny)e
+ (—c2 +2my —3ny +c1 —my + ny)e+ (—my
+3ny — ¢y +2my —3n; +co — mo +np)e + €.

Using the inequality (3.1) and taking absolute values, we
get

n2+m1—2n]+cofmo

(m0 — bs)les) < (

+ np

+‘—n2—m1—|—3n]—co
—|—2l’f’l()—3}’l0 + —n1+3n0

— my

>6+<1+’—n2—m1+3n1—co

)3.55,

+2mgy — 3ng| + | — ny + 3ny — my

which also implies the following
(110 — b3)|63| <nge + (1 + n0)35€=>|63| <e+3.5€

Let us assume that |¢;| < e+ 3.5¢ for i <r. We will show
that the result holds true for i = r + 1, i.e.,

le 1] < e+ 3.5€

Using the inequality (3.1), the definitions of x,1, V,+1, €41,
and taking absolute values, we get

i @ Springer

r—2

(o = bry1) €| < Z

J=1

= Ny—jt1 — My—j + 3nrfj —Cr—j—2

+ 2erfjfl - 3nr—jfl + Cr—j—2

—My—j—2 + Mr—j2| |6

+’—n2—ml

+ 3}’11 —Co + 2m0 — 3}’10 €1

+‘—n1+3no—mo €|+ |Cr

—my+n,— ¢+ 2’/nr - 3nr +Crop — My
+ 1y —my + 3nr —Ccr-1t+ 2’71)'71

- 3I’lr,] + ¢ —myp+ N g€+ E.

Further, we use the assumption that |¢;| < e + 3.5¢ for i <r.
Then, we get

(no = bri1)|ert1] <noe + (1 + ’ —ny —my +3n — ¢

+ 2m0 - 3}’10

+’—I’l1+3l’l0—m0

+’—n,

—my_y + 20 —Cra+ My — N+

)3.56

<npe + (1 4+ np)3.5¢=€,41| <e+ 3.5¢

+my —2ny 4+ co — mp + no

This establishes our claim.

4 Error Analysis

Theorem 4.1 Suppose y € C*0,T] and let y,, r=
1,2,...,1, be the approximate solution derived from
numerical algorithm (2.9)—(2.11) for the FDDE (1.2). Then
(for the interval 0<t; <jt fori=1,...,r)

Iy, — y(t,)| <NI*™ for r =34, .., 1L (4.1)

Proof First we define e, =y, — y(¢,) for r = 1,2,...,1. On
subtracting the Egs. (2.6)—(2.8) from the Egs. (2.9)—(2.11),
respectively, we get

(no — br)er =({ip — Gie(t1)) — Ro,

(no — ba)es =(3ng — mp + ny)e; + (Cit — (ie(2)) = Ry,
(4.3)

(4.2)
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r—3

(nO - br)er = Z |: — Ny — My

Jj=1
+3n_j_1 — ¢r—j2 +2m,_j_»

- 2nr7j72 + Cr—j-3 — My—j-3
+ nrj3:| e+ (—nm—m

+3n; — co + 2mg — 3n0)er,2
=+ (7’11 + 3nyg — mo)er71
+ (8. = Ge(82)) — Ry, for r=3,4,..,L

(4.4)

First, we establish (4.1) for the case r = 1. For the same,
we take absolute values on both sides and use the Lemma
A.3, which yields the following result from (4.2):

Gk — Ge(11)] + R
no —bl

()2 )

Secondly, we establish (4.1) for the case r = 2. Again, we
take absolute values on both sides of (4.3) and use the
Lemma A.3 along with the above inequality. This yields
the following result:

ler| <

MK+ < NB**.

lea] < ( ! ) ‘(3% —my —m)er + ({3 — Ge(t2)) — Ro
np — b2

3ng —my—n
< ‘n—Ol‘|€1| + 1 = Ge(82)| + R
0

IN

ley| + {i(%)!ﬁ}mﬁ“

i=1

IN
YIS I TR

Jj

{ji (%)i+ 1]Mh4*“ = {Z (%)I}Mh‘“’gNh““.

i=1 i=1

Next, we establish (4.1) for the case r = 3. Again, we take
absolute values on both sides on (4.4) and use the Lemma
A.3 along with the above inequalities for the cases r =1
and r = 2. We get

1
|63| S (no — b3) |:‘ — Ny —my +3I’l] — Cp +2m0 — 3n0||e1|

+ | = 1+ 3n0 — mo|lea] + |G, — Giel(3)] + |R2q

1
< ( ) |:‘ —np —my + 2m —Co+mO|Nh4ia+N/’l47&:|
np — b3

< ( L ';0 )Nh“*“ < NI+,

Now, we apply the strong principle of the mathematical
induction hypothesis to establish the result for

i=1,2,...,r. For the same, we assume that the result holds

for the case i<r—1, i.e.,
le)| <N, fori<r—1.

We establish that |e,| < Nh*~*. Using the above inequality
in the Eq. (4.4), we get

=)
n()*b,

+2m,_jo —2n,_j_5 + cr_j3 — me_j—3 + n_j_3l|ej]|

r—3
g | —npj —me_j oy + 30,1 — Crjo1 + |
Jj=1

—ny —my +3ny — ¢o + 2my — 3ng||e,—a| + |

—ny +3ng — mole,| + |G — G ()] + [Ra|

IN

1
< ){<|—n2—m1+3n1—c0+2m0—3n0+|—n1
n()*b,

+3ng —mo| + | —n, —my_y + 20,1 — ¢, 2
+my_y —n,_p +np +m; —2n; +co

—mp + no‘ + 1>Nh4d

=

—ny—2+no

< <M>Nh4’“ < Ni,
no — b,

IN

—np—m_ +2n,_1 —Crp+m_2

+ 1| NR*+*

Hence, (4.1) be proved.

5 Applications and lllustrations

This section demonstrates the computational efficiency of
the HoS for approximating the solutions of FDDEs. We
consider six examples in this section with varieties of
possible exact solutions based on the initial delay func-
tions. For instance, we consider three cases and approxi-
mate solutions using HoS in the first two examples. Next,
we consider fully nonlinear FDDE in Example 5.3 with two
instances and approximate its solution after carefully
applying Newton’s iterative method. Thereafter, we apply
the proposed HoS scheme for a FDDE in Example 5.4
whose exact solution is not polynomial. The last two
examples are real-life applications to analyze chaotic
behavior and the stability of solutions.

Example 5.1 Consider the following FDDE

o DIy(1) + (1) = y(r = 1) +g(1) forre [0,10], (5.1)
where g be the real-valued function such that y(¢) = #, for
i=4,5,6, be the exact solution of (5.1) with the delay

functions ¢(t) =1, for i =4,5,6, defined on [—1,0],
respectively.
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Table 1 Errors for o = 0.3 and
o = 0.5 in Example 5.1 for

NOESS

Table 2 Errors for o = 0.3 and
o = 0.5 in Example 5.1 for

NOESS

Table 3 Errors for o = 0.3 and
o = 0.5 in Example 5.1 for

y(1) =1

Table 4 Errors for o = 0.3 and
o = 0.5 in Example 5.2 for

MO

Table 5 Errors for o = 0.3 and
o = 0.5 in Example 5.2 for

yry=7r

) @ Springer

h HoS (« =0.3) M-L1 scheme (x = 0.3) HoS (a =0.5) M-L1 scheme (¢ = 0.5)
L., error EOC L error EOC L., error EOC L error EOC
0.1 497 x 107* - 4.87 x 1072 - 1.90 x 1073 - 1.66 x 107! -
0.05 391 x 1075 3.67 4.87 x 1072 2.64 1.71 x 107* 349 298 x 1072 2.47
0.025  3.06 x107° 3.67 1.20x 1073 2.70 1.52x 102 349 530x 1073 2.49
0.0125 239x 1077 3.68 1.92x10~* 2.64 135x 107 3.49 949 x 10~* 2.48
h HoS (2¢=0.3) M-L1 scheme (o = 0.3) HoS (2=0.5) M-L1 scheme (2=0.5)
L., error EOC L. error EOC L., error EOC L. error EOC
0.1 1.64 x 1072 - 9.61 x 107! - 573 x 1072 - 3.10 -
0.05 1.30 x 1073 3.65 1.54 x 107! 2.64 520 x 1073 346 5.60 x 107! 2.46
0.025 1.03x 107* 3.65 2.40x 1072 2.68 4.63x 10 348 1.00x 107! 247
0.0125 8.12x10°% 3.66 3.90x 1073 2.62 412x 107> 349 180x107%2 248
h HoS (¢=0.3) M-L1 scheme (¢ =0.3) HoS (2=0.5) M-L1 scheme (2=0.5)
L, error EOC L. error EOC L, error EOC L, error EOC
0.1 387 x 107! - 1.62 x 10! - 1.28 - 5.08 x 10! -
0.05 3.12x 1072 3.62 262 2.62 1.16 x 107! 346 9.23 2.45
0.025 250x 1073 362 4.18x 107! 2.64 1.02x 1072 346 1.66 2.47
0.0125 195x107* 3.66 6.61x1072  2.65 937 x 10™* 347 297x 107" 248
h HoS (2=0.3) M-L1 scheme (¢ =0.3) HoS (¢=0.5) M-L1 scheme (2=0.5)
L, error EOC L. error EOC L, error EOC L error EOC
0.1 1.90 x 1074 - 2.33 x 1072 - 588 x 107* - 7.19 x 1072 -
0.05 1.53x 107 3.63 370x 1073  2.65 528 x 1075 347 129x10°% 247
0.025 1.22%x 107 3.65 585x 1074 2.66 474 x 107 347 230x 103 248
0.0125 959 x 1078 3.66 9.17 x 1077 2.67 423 x 1077 348 4.10x10* 248
h HoS(«=0.3) M-L1 scheme(o = 0.3) HoS(2=0.5) M-L1 scheme(0=0.5)
L., error EOC L error EOC L., error EOC L error EOC
0.1 7.90 x 1073 - 533 x 107! - 250 x 1072 - 1.63 -
0.05 6.26 x 107* 3.65 8.55x 1072 2.64 220 x 1073 3.50 294 x 1071 246
0.025 493 x 105 3.66 1.35x 1072 2.66 200 107* 345 527x107%2 248
0.0125 3.87 x 10 3.67 2.10x 1070 2.68 1.78 x 107 349 940x 1073 248
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Table 6 Errors for o = 0.3 and

. h HoS(0=0.3 M-L1 scheme(a = 0.3 HoS(«=0.5 M-L1 scheme(a=0.5
o = 0.5 in Example 5.2 for ( ) ( ) ( ) ¢ )
y(t) =1 L., error EOC L, error EOC L., error EOC L, error EOC
0.1 2.15x 107" - 9.98 - 6.75x 1071 - 3.02 x 10! -
0.05 1.73x 1072 3.63 1.61 2.63 6.12x 1072 346 5438 2.46
0.025 1.40 x 1073 3.62 256x 107! 2.65 550 x 1073 347 986 x 107" 247
0.0125 1.08 x 107* 3.69  4.05 x 102 2.66 490 x 107 348 176 x 107! 248
10° HoS vs M-L1 Scheme for 0=0.9 HoS vs M-L1 Scheme for a=0.9
_102f T ] "
=} P ——————== o
= £ g T =
i v i [}
2104, 2
£ | . 2
s i h-HoS=0.1 s h-HoS=0.1
2 y -——— hM-L11=01 |} o 16 - === h-M-L1=0.1
S ) h-H0S=0.05 s 10 h-H0S=0.05
10 -~ -~ h-M-L1=0.05 - ——— h-M-L1=0.05
h-H0S=0.025 h-H0S=0.025
h-M-L1=0.025 108 h-M-L1=0.025
h-H0S=0.0125 h-H0S=0.0125
- —-- h-M-L1=0.0125 - - —— h-M-L1=0.0125
108 ‘ : 1010 . ‘
0 2 4 6 8 10 0 2 4 6 8 10
t t
(a) For y(t) = t*. (b) For y(t) = t°.
HoS vs M-L1 Scheme for a=0.9 - HoS vs M-L1 Scheme For Different Values of a
S S 4 B
I.I:.I o 10 J »7‘ﬁ_k'_,_~—**""'
o) QL / i
5 E] It e
° o ! -7
2 w0 g -
= iy h-HoS=0.1 s 6l
§, 10 " — - h-M-L1=01 o107 7
S h-H0S=0.05 5] _—
- ——— h-M-L1=0.05 =
-8 h-H0S=0.025 -
10 h-M-L1=0.025 —
16 h-H0S=0.0125 g
10 - ——- h-M-L1=0.0125 10°F 1
0 2 4 6 8 10 0 2 4 6 8 10
t t
(¢) For y(t) = t.
10° HoS vs M-L1 Scheme For Different Values of o
5 5
w w
2 2
= =
o o
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fe) Q
< <
k] kS
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[=) (=)
-l -l
1072} ]
1010 : : ; : ;
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t t

(e) For y(t) = t°. (f) For y(t) = t°.

Fig. 2 Error plots for Example 5.2; solid-line is for HoS, dashed-line is for M-L1; red colour (« = 0.3), green colour (o« = 0.5) and blue colour
(¢ = 0.7) in Fig. 2d-f
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p
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Table 7 Errors for o« = 0.9 in

h HoS M-L1 sch
Example 5.3 for y(t) = ¢* © Seneme
L, error EOC Time(s) L, error EOC Time(s)
0.1 4.50 x 1073 - 0.91 2.24 x 1072 - 0.32
0.05 5.58 x 10~* 3.25 3.13 6.00 x 1073 1.91 1.03
0.025 6.65 x 107 3.07 11.86 1.50 x 1073 2.01 3.87
0.0125 7.86 x 107° 3.08 32.07 4.00 x 10~* 2.06 10.49
0.00625 9.22 x 1077 3.09 75.09 1.00 x 10~* 2.68 24.36
Table 8 Errors for o = 05.9 in h HoS M-L1 scheme
Example 5.3 for y(r) = ¢
L, error EOC Time(s) L, error EOC Time(s)
0.1 7.90 x 1073 - 1.16 3.50 x 1072 - 0.38
0.05 1.10 x 1073 2.84 393 9.70 x 1073 1.87 1.32
0.025 1.40 x 10~ 2.97 14.68 2.40 x 1073 1.99 4.77
0.0125 1.70 x 1073 3.04 39.45 5.80 x 10~* 2.04 13.00
0.00625 2.02 x 107° 3.07 94.74 1.30 x 10~* 2.07 30.60
HoS for 0=0.9 M-L1 Scheme for 0=0.9
———— h-HoS=0.1 h-M-L1=0.1
10° h-H0S=0.05 h-M-L1=0.05
h-H0S=0.025 100 3 h-M-L1=0.025
———— h-HoS=0.0125 h-M-L1-0.0125
lOAZ L
5 5 07 2\
g 10t 2 N\
§ & 3y § 10" k//’ N
< e < / \ L
B 100p : % s N iy
WSO N\ e
108} &Y =% Ry -
~ R 10'8 F \—\\ . T —_
100} \ S i
‘ — . 1010} ‘ . A i
0 i 8 2 3 4 5 6 7 8 9 10 2 4 5 6 7 8 9 10
t t
(a) (b)

Fig. 3 Error plot of Example, for 5.3 for y(¢) = t*

Example 5.2 Consider the following nonlinear FDDE

_oy(e=1)

C o
S10) +30) =

+8(1)

where g be the real-valued function such that y(f) = ¢/,
i =4,5,6, become the exact solution of the problem (5.2)
with the delay function ¢(t) = ¢, fori = 4,5, 6, defined on

[—1, 0], respectively.

2
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for r € [0,10],

(5.2)

Hllustrations of Example 5.1 and5.2 First, we determined
the functions g, for each i =4,5,6, from Eqgs. (5.1) and
(5.2). For o = 0.3 and o = 0.5 with different step sizes, we
applied our proposed scheme and compared the same with
the M-L1 Scheme (Raju and Madduri 2021). For Example
5.1, the results are presented in Tables 1, 2, and 3 for the
cases i = 4,5, and 6, respectively. Similarly, the results for
Example 5.2 are presented in Tables 4, 5, and 6 for each
case i = 4,5, and 6, respectively. It can be observed from
the tables that the expected order of convergence (EOC)
matches the theoretical results obtained in Theorem 4.1 and
the L., —error decreases whenever the step size /& decreases.
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Hos fDF 0=0.9 ‘ i ‘ M-L1 Scheme for a=0.9
et h-M-L1=0.1
. h-H0S=0.025 h-M-L1=0.05
10 ¢ ———— h-HoS=0.0125 | 100 h-M-L1=0.025
h-M-L1=0.0125
5 102} 5 S
2 & N i}
w ’ \ Q
2 LN 5
S 10t R [
2
A T s ‘ -
3 10-6 // \\ 8’) P/ . o
) \ o = Y -
il \ N \\ \ ~.
s 3 e \\ - .
4 g . ~ =
o, 1 2 3 4 5 6 7 8 9 10 Y 2 4 6 8
t t
(a) (b)
Fig. 4 Error plot of Example 5.3 for y(t) = £
Table 9 Errors for o = 0.3 and _ _ _
2= 0.5 in Example 5.4 for h HoS (2=0.3) M-L1 scheme (¢ =0.3) HoS (2=0.5) M-L1 scheme (2=0.5)
y(t) = sint L, error EOC L. error EOC L, error EOC L. error EOC
0.1 734 %x10°° - 7.86 x 107 - 228 x 1075 - 213 x107* -
0.05 585x 1077 3.64 388x107° 262 2.04 x 1076 347 3.88x 107> 246
0.025 463x10% 3.66 203x10° 2.64 1.82x 1077 3.48 698 x10° 247
0.0125 3.64 x 107° 3.66 3.22x 1077 2.65 1.62x10°% 349 124x10° 2438
HoS vs M-L1 Scheme for a=0.9
106 1072
— — —alpha=0.3
—-—-— alpha=0.5 e - i
alpha=0.9
E 108 g 3 é
w w
[ ———— ; y - e
§ ~ N L“ "'v B ~ ‘V“ ! 7 " W §
2 e N 7 2
: T :
gs -10 !/ M L i g& h-HoS=0.1
210mf \‘; ! \‘1"! 3 hM-L1=01
| 0 h-H0S$=0.05
| | 1010 — — —h-M-L1=0.05
| i h-H0$=0.025
h-M-L1=0.025
! h-Ho5=0.0125
— — —h-M-L1=0.0125
1012 : . 1012 i . )
0 2 4 6 8 10 0 2 4 6 8 10

(a) For different values of a.

Fig. 5 Error plot of Example 5.4 for y(r) = sin¢

From the results in Tables 1, 2, 3, 4, 5, 6, it is evident that
our scheme outperforms the M-L1 Scheme in both exam-
ples, even for the case when i = 6. Similar observations
can be concluded for both examples from the Figs. la—c
and 2a—c for the case o = 0.9. Moreover, the Figs. 1d—f

t

(b) For different values of h.

and 2d—f demonstrate that the errors, for « = 0.3, 0.5, 0.7,
settle down as time increases.

Example 5.3 Consider the following nonlinear FDDE
SD*y(1) +y(1)* = y(t — 0.1) + g(t) for ¢t € [0,10],

(5.3)

T, @ Springer
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Phase Plot for o = 0.99, h=0.005 Phase Plot for 0=0.9, h=0.005 ) Phase Plot for 0=0.9, h=0.01 Phase Plot for =099, h=0.01
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Phase Plot for o= 0.99, h=0.005 HoS Scheme for a=0.9, h=0.005 HosS Scheme for 0=0.9, h=0.01 HoS Scheme for 0=0.99, h=0.01
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Fig. 6 Solution and phase plot of Example 5.5

Table 10 Computational time M-L1 Scheme (Raju and Madduri 2021) for the case oo =

(in seconds) for Example 5.5. h : Time(s) 0.9 with different step sizes h. The obtained results are
0.01  0.90 31.00 presented in Tables 7 and 8 for the cases i =4 and i =5,

0.99 29.37 respectively. It is evident from the tables that the L., —er-

0.005  0.90 112.69 rors decreases with the decrease of step sizes. Further, the

0.99 108.88 computational cost of our scheme is higher than the M-L1

Scheme at each step size; however, the errors obtained at
each step size h are outstanding compared to those of the
where g be the real-valued function such that y(¢) = 7, M-L1 Scheme. Therefore, it can also be concluded from
i = 4,5, become the exact solution of the problem (5.3) the tables that the desired accuracy can be achieved with
with delay function ¢ () = ¢, for i = 4,5, defined for t <0, less time. Both the tables also establish that the EOC of the
respectively. proposed HoS scheme matches with the obtained theoret-
ical result in Theorem 4.1 with step-size & = 0.0125 or
less. We also plotted errors obtained for both schemes and
presented them in the Figs. 3 and 4.

Hllustration of Example 5.3 For each i=4,5 we
determined the functions g from Eq. (5.3) so that y(t) = ¢
become solution of (5.3). Then, for each i = 4,5, we used
Newton’s iterative method to linearize the Eq. (5.3) and Example 5.4 Consider the following FDDE

approximated the limit of the sequence of solutions of the  Cpry () £ y(r) = y(t — 1) + g(r) forze [0,10], (5.5)

following linear FDDEs:

P R " where g be the real-valued function such that y(f) = sint,

oD +30/(0) Y () =T - 0.1) be the exact solution of (5.5) with the delay functions
+2(5'(1)) +g() fort€[0,10], (r) = sint, defined on [~1,0].

(5.4) Lllustration of Example 5.4 After deriving the function g,

with delay function y/*!(f) = ¢(r). We applied our pro- first we applied our proposed numerical scheme and M-L1

posed numerical scheme and compared the same with the ~ Scheme (Raju and Madduri 2021) for o = 0.3 and o = 0.5
with different step sizes. The obtained results are presented

2
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Phase Plot for a = 0.75, h=0.01 Phase Plot for o= 0.79, h=0.01
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Phase Plot for a = 0.83, h=0.01
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Fig. 7 Solution and phase plot of Example 5.6
Table 11 Computational time 0.6 069 07 0.8 075 077 079 083 085 09
(in seconds) for Example 5.6
with h=0.01 Time(s) 32.16 3178  33.17 3292 3202 3158 3255 3231 3174 3152

in Table 9. One may observe that the proposed HoS
scheme outperforms the M-L1 Scheme, L.,—error
decreases with the decrease of step sizes, and the EOC
matches with the derived theoretical results in the Theo-
rem 4.1. Figure 5a shows the errors obtained in the HoS
scheme versus time for different values of « with step size
h = 0.0125. Similarly, Fig. 5b shows the errors obtained in
the proposed HoS scheme and M-L1 scheme versus time
for o = 0.9 with different values of 4.

Example 5.5 (Tavernini 1996) Consider the following
FDDE, which represents the fractional model of a popu-
lation of lemmings with a 4-year life cycle.

@ Springer
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—1)
19
for + <0,

CD“()—35y()< i )forte[o,m()},

(5.6)

where ¢(0) = 19.00001, and ¢(7) = 1<0.

Lllustration of Example 5.5: We applied our proposed
numerical scheme for the cases o = 0.9, 0.99 with differ-
ent step sizes A, and the respective computational time (in
seconds) are given in Table 10. The derived approximate
solution and phase portraits from HoS are plotted in Fig. 6.
One can verify that our scheme also yields similar results
as given in Raju and Madduri (2021).

Example 5.6 (Bhalekar 2019) Consider the following
FDDE, which is also known as the fractional Ikeda
equation

{CDoc ()

= —3y( )+ 24siny(t — 0.1),
(1) =o(t) =

for t € [0,100],
for t <O0.

(5.7)

Lllustration of Example 5.6: We applied our proposed
numerical scheme for different values of o with step size
h = 0.01. The derived results of the approximate solution
and phase diagrams based on the proposed HoS scheme are
displayed in Fig. 7. The stability of the chaotic behavior of
the solution can be observed from o = 0.7. Also, the pro-
posed HoS scheme yields similar results as given in (Raju
and Madduri 2021). Further, the computational times for
the proposed HoS scheme of different values of o with step
size h = 0.01 are tabulated in Table 11.

6 Conclusion

We developed a higher-order scheme (HoS) for approxi-
mating the solutions of nonlinear FDDEs by incorporating
an interpolation-based approximation of Caputo’s frac-
tional derivative. The stability results and detailed error
analysis are also carried out for the proposed numerical
algorithm. We investigated the performance of the pro-
posed HoS scheme over various linear and nonlinear
examples, including real-life applications. Further, we
compared the derived results with the recently proposed M-
L1 scheme (Raju and Madduri 2021) and noticed that the
HoS scheme outperforms even with the more significant
step size. We also established that the order of convergence

52, €\ Springer

is 4 — a, which was claimed in Theorem 4.1. In light of the
LTRPS approach’s high accuracy in solving fractional
nonlinear equations and its easy calculation process, we
intend to investigate this method further for the proposed
FDDE (1.2) and design a robust numerical scheme.

Appendix

The following linearized form of Eq. (1.1) is obtained in
each of Newton’s iterative processes:

{CDb' 0-(5),,70=

Y*HH() = ¢(1),

e N 3 I
) ')
t e [—1,0].

(A1)

Now, the solution of the obtained sequence of FDDEs
(A.1) can be approximated instead of the solution of non-
linear FDDE (1.1). The Eq.s in (A.1) can be viewed as (1.2)

Y (1), b(ﬂ:(%—f)( ; and
B0 =) = 6y 0.Y0)- (%) Y0

if we denote y(t)=

Lemma A.1 (Morgado et al. 2013; Raju and Madduri 2021) Let
yo:(t) = ¢(r) for t € [-1,0] and b<0 on I. Also, let k > 0 be the
greatest integer such that the function defined below is continuous:

g(t,p(t— 1)) for 0<t<rt,
g(t,y.(t —1)) for T<t <21,

for (k — 1)<t <kr.
(A.2)

g(tay(k—l)r(t - T))

Then the FDDE (1.2) on the interval [0, k7], has a solution
which is given by

yaozlb—w*% (bl — 5k (s)ds

for (I— 1)r<t<lIt,

(A3)
+ pl‘rsz,l (bl“)v

where p;;, [ =1,2,..k is a constant and E, g denotes the
Mittag—Leffler function defined by

) k
E,p=Y ———, 2, €C, Re(ax) > 0.
;F(ak—l—ﬁ)
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Lemma A.2 The constants c¢,,m,,n, defined in the Eq. (2.5) will

satisfy the following:

ny +my_y — 27’[,«,1 + =My + 0 > 07 vVr > 3.

Proof For r>3, it is easy to derive the following equality:

ny +my_1 — 2nr71 +Cr2 =M+ 02

B r(lf__a %) { (dfz_% -

I—o

+ d’6 Q(r 42>+ (r+3)(r+ 1))

(r+2)d>*

df_é‘)

(A.4)

(oo

(d —2(r +1)d= f‘+§(2(r+1)2
o) (s
+ (d;—z rd=3 + d6§(zr +(r+1)(r—1))>}

W
= =% [B(r) —0(r— 1)] ,

where the function 6 is defined as

(s4+1)77" =287 4 (s —1)°"
= e =6
(s—1)" " =282 4 (s+ 1) "
" (EPED)
(s—l)]_“—Zs]_“—i—(s—&—l)l_“
+ 3(1 —a) '

On differentiating the function 60, we get
0'(s) =5(s) — (s — 1),
where the function § will be given by

s 2—o g2
)

i-9C-2

(s + 1)17“ — gl
(1-a)

GRS 1); -5

Now, on differentiating the function J, we get

&'(s) =n(s) = n(s = 1).

Here, the function # is given by

(s+ D" Ly 1
= 1 - = 1
1) = s+ 1) =2+ 1)
and its derivative will be
oo+ 1 e
n'(s) = (s+1)(s+1—cx)+% (s+1)7"2

It is easy to see that #'(s) > 0 for each s > 3. Therefore, the
function 7 is increasing, and so are the functions ¢ and 0 for
r > 3. This establishes our claim. O

Lemma A.3 There exists a constant M > 0 such that the truncation
error R;, defined in (2.5), satisfies

| Ry | <MK

Furthermore, the following holds true

0 for 0<1t, <rT,
7
5Mh4_“ for T <t <21,
2 i
> G) Mh* for 2t <t, <3,
Gee(tr) = Gl <8 5007

r—1 i
7
(—> Mh**  for (k — 1)t <t, <kr.

(A.5)

Proof From the Eq.s (2.3) and (2.5), one may derive the following
explicit expression for R;:

Ry = 1“2/,- »—5) "R 1J(s)a's

where

, @ (e,
R, (1) :}74(!%)

{(r— Bt — )t — f2) + (1 — )t — ) (¢ — 1)
(= )= )t — 1)+ (— r_,-fl)ufr,ffz)(rfrffs)}.

Now, from (Li et al. 2016), we get:

|R2|<C1{ max_y >(¢)} B = MR,

For 1, € [0, 7], we have {;.(z,) = {;,. Hence,

52, €\ Springer



Iranian Journal of Science

|Ckr(tr) - C/Cr' =0.

The definitions of y, and y(z,) in the Egs. (2.6)—(2.8) and
(2.9)—(2.11) along with the obtained result imply that

7
|y, —y(t,) |=| Ry | < EMh‘H‘ for t, € [0, 1]. (A.6)
Next, we consider the case ¢, € [0,21]. From the definition
of the function {;; in (A.2) and the function (i, in the
equations (2.9)-(2.11), we have

Celt) — O | 0 for 0<t, <,

t,) — =
§ ke |g(tr, y:(ty — 7)) — g(tr,¥777)|  for 1<1, <21,
(A.7)

where y| ™ represents the approximate value of y. (¢, — 1)
using the designed scheme (2.9)-(2.11) over the interval
[t,21]. Therefore, we have

0 for 0<t, <7,

|£kr(tr) - é/21| < th4foc

f <t <21.
> or T <2t

Using the above inequality, and the Egs. (2.6)-(2.8) and
(2.9)—(2.11), one can derive the following
7
~Mh*™*
2
lyr = y(t)] < 2 /7\!
> <§> MK for t<t, <2t.

i=1

for 0<t, <7,

Assume that the inequality (A.5) holds true for any
t, € [0, (k — 1)7]. Then, the Egs. (2.6)—(2.8) and (2.9)-
(2.11) imply the following result:

7 4—o

RS

i=1

e
=) Mr**
yr =yt <§ & <2)

for 0<t, <,

for t<1t, <21,

for 2t <t <3t,

x~

—1 i
G) MK for (k—2)t<t, < (k—1)1.
1

i

(A.8)

Next, we establish the result for the case f, € [0, kt]. Now,
the definitions of the functions {;, and (i, in the Eqgs. (A.2)
and (2.9)—(2.11), respectively, imply that

@ Springer

|Cke (1) = Ciel

0 for 0<t, <7,
‘g(trvyr(tr - T)) - g([hy?—r)l
|g(tr7y2r([r - T)) - g(tmyg_r)'

for t<1,. <21,
for 27 <t, <37,

for (k — 1)t <t, <kr,

(A.9)

|g(tr:Y(k—1)r(tr - T)) - g(lr,)’f;fl)”

where y;~* denotes the approximate value of y;. (¢, — 1), for
l=1,2,...,k — 1, using the designed scheme (2.9)-(2.11).
Now, using the inequality (A.8), the claim in (A.5)
holds. =
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