
RESEARCH PAPER

Constrained Bayesian Methods for Union-Intersection
and Intersection-Union Hypotheses Testing Problems

K. J. Kachiashvili1,2,3 • A. SenGupta4,5,6

Received: 28 January 2024 / Accepted: 28 July 2024
� The Author(s), under exclusive licence to Shiraz University 2024

Abstract
The Union-Intersection and Intersection-Union hypotheses testing problems are considered for all possible combinations of

united and intersected sub-sets of hypotheses. Constrained Bayesian Method is developed for solving these problems.

Optimal decision rules are derived for all stated combinations of hypotheses. Theorems on the optimality of the derived

decision rules in the sense of the restrictions on Type-I and Type-II error rates to the desired levels are proved. The

proposed theoretical methods are enhanced for practical examples. Extensive simulation results are presented to confirm

the theoretical results and to illustrate the properties of the proposed procedures for a finite sample.

Keywords Constrained Bayesian method � Intersection-Union hypotheses � Statistical hypothesis � Type I and Type II error

rates � Union-Intersection hypotheses

1 Introduction

The consideration of the Union-Intersection (UI) problem

where the basic hypothesis H0 states the simultaneous

occurrence of several disjoint sub-hypotheses, i.e. when

H0 ¼
TS

i¼1 H0i, started in the middle of the last century

(Roy 1953). The reverse scenario where the basic

hypothesis H0 states the occurrence of at least one of the

sub-hypotheses, i.e. when H0 ¼
SS

i¼1 H0i, was considered

some time later (SenGupta 1991; SenGupta and Pal 2000,

2001) and was termed the Intersection-Union (IU) testing

of hypotheses problem. Both statements of the hypotheses

testing problem deserve attention as they appear in many

practical applications. For example, UI situations arise

when one considers multi-parameter testing problems in

multivariate distributions, while IU testing problems arise

in, e.g., one-parameter situations such as ‘‘equivalence’’

testing problems, acceptance sampling in statistical process

control, reliability and multivariate analysis (Pal and Sen-

Gupta 2000), directional statistics (Jammalamadaka and

SenGupta 2001, Section 6.3.3; SenGupta and Pal 2001),

multi-parameter problems like contaminated or mixture

models (Berger 1982; Choudhary and Nagaraja 2004;

Madallaz and Mau 1981; SenGupta 2007), multiple com-

parisons in verbal fluency-disorder studies (Soulakova

2017), group sequential clinical trials (Peng et al. 2018),

etc.

The intersection of the separate critical regions obtained

by the standard separate tests for each H0i for testing H0 is

considered in Choudhary and Nagaraja (2004). The general

uniformly most powerful (UMP) test is presented in

(Lehmann 1986) for solving this problem. An approach

based on a Pivotal Parametric Product (P3) as given by
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SenGupta (2007) is exemplified by computations for sev-

eral practical examples and by comparisons of the obtained

results with the results given in (Berger 1982).

To pursue the above problem, more general statements

of the UI and IU problems and application of Constrained

Bayesian Method (CBM) for solving it are presented

below. General statement of the problem is given in

Sect. 2, whereas its general solution is given in Sect. 3.

Some particular examples are considered in Sect. 4.

Numerical results for these examples are presented in

Sect. 5. These are computed for concrete data and are

given in Sect. 6. Final results are discussed in Sect. 7.

2 Statement of the Problem

Let’s consider the problem of testing a basic hypothesis

against alternative one when one of them is union or

intersection of a sub-set of hypotheses and another is

negation of the first one (SenGupta 2007; Roy 1953). Since

these two cases easily can be transformed to each other by

changing the basic (null) and alternative hypothesis and

vice versa, we will consider the case when the null (basic)

hypothesis is union or intersection of a sub-set of

hypotheses and the alternative is negation of the null, i.e.

aÞH0 �
[S0

i¼1
H0i andH1 � noH0

or

b)H0 �
\S0

i¼1
H0i andH1 � noH0

ð1aÞ

In general, this problem can be stated as follows: To test

the basic hypothesis H0, against the alternative one H1,

where H0 and H1 are the union or intersection of some sub-

sets of hypotheses H01,H02,…,H0S0 and H11,H12,…,H1S1 ,

respectively. Here H0

T
H1 ¼ ; (or more generally

H0i

T
H1j ¼ ;, i ¼ 1; ::; S0, j ¼ 1; ::; S1) and the fulfillment

of the condition H0

S
H1 ¼ Rm, where Rm is m dimensional

parametrical space, is not obligatory in contrast to the

classical case. Hypotheses from one sub-set can intersect

with each other but hypotheses from different sub-sets do

not intersect. These suppositions make the statistical

hypotheses similar to the hypotheses usually encountered

in real-life and, therefore, make them more natural.

In general, here we consider the following combinations

of testing of hypotheses:

aÞ H0 �
\S0

i¼1
H0i vs: H1 �

\S1

i¼1
H1i;

bÞ H0 �
[S0

i¼1
H0i vs: H1 �

[S1

i¼1
H1i;

cÞ H0 �
\S0

i¼1
H0i vs: H1 �

[S1

i¼1
H1i;

dÞ H0 �
[S0

i¼1
H0i vs: H1 �

\S1

i¼1
H1i:

ð1bÞ

It is obvious that hypotheses Eq. (1a) are particular cases

of hypotheses Eq. (1b).

The standard separate tests for each couple H0i and H1j,

offered in Choudhary and Nagaraja (2004), which yield a

test for H0 and H1 with the acceptance regions given by the

intersection or union of the separate acceptance regions,

has the following drawback. The information, that may be

contained in the hypotheses H0i and/or H1j concerning

other sub-hypotheses, are lost in such separate considera-

tions. Application of CBM for testing these hypotheses is

free from such drawback. It does not need the derivations

of a new test statistic for every concrete case and its dis-

tribution law (as P3 test needs) (see SenGupta 2007, 1991),

which may be non-trivial in many cases. Besides, it is free

from the necessity to have ‘‘exact separate tests’’ (Sen-

Gupta 2007).

Let us adopt the following notations for the application

of CBM to testing of hypotheses Eq. (1a) or Eq. (1b).

Denote H0
i � H0i, i ¼ 1; :::; S0, H0

i � H1i,

i ¼ S0 þ 1; :::; S0 þ S1. Then we have to test S ¼ S0 þ S1
hypotheses H0

1, H
0
2,…,H0

S (instead of S0 � S1 separate tests in
pairs). Let’s henceforth omit the upper index for simplicity.

Let a sample xT ¼ ðx1; :::; xnÞ be generated from proba-

bility distribution density pðx; hÞ and the problem of

interest is to test hypotheses Hi : hi 2 Hi, i ¼ 1; :::; S,

where Hi 2 Xm, i ¼ 1; :::; S, Xm is m dimensional param-

eter space and the requirement of being disjoint subsets of

Hi is not obligatory. Let the prior on h be denoted by
PS

i¼1 pðhjHiÞpðHiÞ, where for each i ¼ 1; :::; S, pðHiÞ is the
a priori probability of hypothesis Hi and pðhjHiÞ is a prior

density with support Hi; pðxjHiÞ denotes the marginal

density of x given Hi, i.e. pðxjHiÞ ¼
R
Hi
pðxjhÞpðhjHiÞdh;

D ¼ df g is the set of solutions, where d ¼ d1; :::; dSf g,

di ¼
1; if hypothesis Hi is accepted
0; otherwise

�

Let dðxÞ ¼ d1ðxÞ; d2ðxÞ; :::; dSðxÞf g is the decision

function that associates each observation vector x with a

certain decision

x�!dðxÞ d 2 D;

(notation: depending upon the choice of x, there is a

possibility that djðxÞ ¼ 1 for more than one j or djðxÞ ¼ 0

for all j ¼ 1; :::; S).

Let Ci ¼ x : diðxÞ ¼ 1f g, i ¼ 1; :::; S, denote the accep-

tance region of hypothesis Hi. Let L1ðHi; djðxÞ ¼ 1Þ and

L2ðHi; djðxÞ ¼ 0Þ be the losses of incorrectly accepted and

incorrectly rejected hypotheses, respectively.

One of the aims of CBM (Task 2) is the following

(Kachiashvili 2018): To determine Ci, i ¼ 1; :::; S, which
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minimize the average loss of incorrectly accepted

hypotheses

rd ¼ min
Cjf g

XS

i¼1
pðHiÞ

XS

j¼1

Z

Cj

L1ðHi; djðxÞ ¼ 1ÞpðxjHiÞdx
( )

ð2Þ

subject to the conditional probabilities of incorrectly

rejected hypotheses

pðHiÞ �
XS

j¼1

Z

Rn�Cj

L2ðHi; djðxÞ ¼ 0ÞpðxjHiÞdx� ri2; i

¼ 1; :::; S

ð3Þ

where ri2, i ¼ 1; :::; S, are some real numbers determining

the levels of the losses of incorrectly rejected hypotheses.

Remarks 1a Statement of the problem as in Eqs. (2 and 3)

is one of the possible forms that can be modified to other

forms depending on the specific hypotheses testing tech-

nique applied. So depending on the imposed restrictions

and minimizing kinds of errors, we can formulate nine

different statements of hypotheses testing, similar to

Eqs. (2 and 3) (see, for example, Kachiashvili 2011, 2018;

Kachiashvili et al. 2012).

Remarks 1b This problem may be viewed as a general-

ization of the optimization problem of Dantzig and Wald

which was considered in Lehmann (1986) for obtaining the

most powerful test.

3 General Solution of the Stated Problem

The solution of the problem Eqs. (2 and 3) by Lagrange

method gives

Cj ¼ x :
XS

i¼1
L1ðHi; djðxÞ ¼ 1ÞpðHiÞpðxjHiÞ

n

\
XS

i¼1
kiL2ðHi; djðxÞ ¼ 0ÞpðHiÞpðxjHiÞ

o
; j ¼ 1; :::; S

ð4Þ

where Lagrange multipliers ki, i ¼ 1; :::; S, are determined

so that in conditions Eq. (3) the equalities take place.

Using the concept of a posteriori probability, decision

making regions Eq. (4) can be rewritten in a more compact

form

Cj ¼ x :
XS

i¼1
L1ðHi; djðxÞ ¼ 1ÞpðHijxÞ

n

\
XS

i¼1
kiL2ðHi; djðxÞ ¼ 0ÞpðHijxÞ

o
; j ¼ 1; :::; S

ð5Þ

Let’s consider the following losses

L1ðHi; djðxÞ ¼ 1Þ ¼
0 at i ¼ j;

K1 at i 6¼ j

�

and

L2ðHi; djðxÞ ¼ 0Þ ¼
K0 at i ¼ j;

0 at i 6¼ j

� ð6Þ

where K1 and K0 are the values of the losses of incorrectly

accepted and incorrectly rejected hypotheses.

Then restriction conditions Eq. (3) take the form

pðHiÞ � K0 1�
Z

Ci

pðxjHiÞdx
� �

� ri2; i ¼ 1; :::; S;

i.e.

Z

Ci

pðxjHiÞdx� 1� ri2
pðHiÞ � K0

; i ¼ 1; :::; S ð7Þ

and expression Eq. (5) takes the form

Cj ¼ x : K1 �
XS

i¼1;i6¼j
pðHijxÞ\K0 � kj � pðHjjxÞ

n o
; j

¼ 1; :::; S ð8Þ

where kj, j ¼ 1; :::; S, are determined so that in conditions

Eq. (7) the equalities take place.

For testing hypotheses (1), decision making rules are

defined on the basis of the regions Eq. (8) as follows:

• for hypotheses of (1a)

(a) accept H0 if x belongs only to the union of the regions

Ci, i ¼ 1; ::; S0 (x 2
SS0

i¼1 Ci);

accept H1 if x belongs only to the region CS0þ1;

do not make a decision in any other case.

(b) accept H0 if x belongs only to the intersection of the

regions Ci, i ¼ 1; ::; S0 (x 2
TS0

i¼1 Ci);

accept H1 if x belongs only to the region CS0þ1;

do not make a decision in any other case.

• for hypotheses of Eq. (1b)

(a) accept H0 if x belongs only to the intersection of the

regions Ci, i ¼ 1; ::; S0 (x 2
TS0

i¼1 Ci);

accept H1 if x belongs only to the intersection of the

regions Ci, i ¼ S0 þ 1; :::; S0 þ S1 (x 2
TS0þS1

i¼S0þ1 Ci);

do not make a decision in any other case.

(b) accept H0 if x belongs only to the union of the regions

Ci, i ¼ 1; ::; S0 (x 2
SS0

i¼1 Ci);

accept H1 if x belongs only to the union of the regions Ci,

i ¼ S0 þ 1; :::; S0 þ S1 (x 2
SS0þS1

i¼S0þ1 Ci);

do not make a decision in any other case.

(c) accept H0 if x belongs only to the intersection of the

regions Ci, i ¼ 1; ::; S0 (x 2
TS0

i¼1 Ci);

accept H1 if x belongs only to the union of the regions Ci,

i ¼ S0 þ 1; :::; S0 þ S1 (x 2
SS0þS1

i¼S0þ1 Ci);

do not make a decision in any other case.

(d) accept H0 if x belongs only to the union of the regions

Ci, i ¼ 1; ::; S0 (x 2
S

i¼1 Ci);

accept H1 if x belongs only to the intersection of the

regions Ci, i ¼ S0 þ 1; :::; S0 þ S1 (x 2
TS0þS1

i¼S0þ1 Ci);

do not make a decision in any other case.
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Remarks 2a In all the above situations, the statement ‘‘do

not make a decision in any other case’’ was made since it is

impossible (see Eq. (3)) to make decision at the desired

levels on the basis of existing information.

Remarks 2b If making a decision on the basis of existing

information, i.e. on the basis of existing observations, is

impossible, then there are two ways of actions: to change

restriction levels ri2, i ¼ 1; :::; S, in Eq. (3), until a decision

will not be made, or to continue the sampling, i.e. to pass to

the sequential experiment, until a decision will not be made

(Kachiashvili 2014, 2018).

Theorem 1 CBM 2 defined in Eqs. (2 and 3), for

hypotheses (b) of (1a) and losses Eq. (6), ensures a deci-

sion rule with the error rates Type-I (alpha) and Type-II

(beta) restricted by the following inequalities.

a�
XS0

i¼1

ri2
K0 � pðHiÞ

;

b�
XS

i¼S0þ1

ri2
K0 � pðHiÞ

ð9Þ

Proof The Type-I and Type-II error rates for hypotheses

Eq. (1b) are the following.

a ¼
Z

C1

pðxjH0Þdx and b ¼
Z

C0

pðxjH1Þdx ð10Þ

For hypotheses of Eq. (1b) (b), expressions Eq. (10) can

be rewritten as follows

a ¼
Z

SS

j¼S0þ1
Cj

[S0

i¼1
pðxjHiÞdx

¼
XS0

i¼1

Z

SS

j¼S0þ1
Cj

pðxjHiÞdx

�
XS0

i¼1

XS

j¼S0þ1

Z

Cj

pðxjHiÞdx

¼
XS0

i¼1

XS

j¼S0þ1
pðx 2 CjjHiÞ

ð11Þ

and

b ¼
Z

SS0

j¼1
Cj

[S

i¼S0þ1
pðxjHiÞdx ¼

XS

i¼S0þ1

Z

SS0

j¼1
Cj

pðxjHiÞdx

�
XS

i¼S0þ1

XS0

j¼1

Z

Cj

pðxjHiÞdx

¼
XS

i¼S0þ1

XS0

j¼1
pðx 2 CjjHiÞ

ð12Þ

Since the following condition holds in CBM (Kachi-

ashvili 2018) when decision is made

XS0

j¼1
pðx 2 CjjHiÞ þ

XS

j¼S0þ1
pðx 2 CjjHiÞ ¼ 1; i

¼ 1; :::; S ð13Þ

conditions Eqs. (11 and 12) can be rewritten as follows

a�
XS0

i¼1
1�

XS0

j¼1
pðx 2 CjjHiÞ

h i

�
XS0

i¼1

ri2
pðHiÞ � K0

�
XS0

j¼1;j6¼i
pðx 2 CjjHiÞ

� �

�
XS0

i¼1

ri2
pðHiÞ � K0

and

b�
XS

i¼S0þ1
1�

XS

j¼S0þ1
pðx 2 CjjHiÞ

h i

�
XS

i¼S0þ1

ri2
pðHiÞ � K0

�
XS

j¼S0þ1;j6¼i
pðx 2 CjjHiÞ

� �

�
XS

i¼S0þ1

ri2
pðHiÞ � K0

Making the same transformations for other combina-

tions of hypotheses Eq. (1b), it is easily seen that the

theorem holds for all these hypotheses.

3.1 Another Loss Function

Let us, instead of losses Eq. (6), consider the following loss

functions for hypotheses of Eq. (1b):

L1ðHi; djðxÞ ¼ 1Þ ¼

0; at i; j 2 ð1; :::; S0Þ or i; j 2 ðS0 þ 1; :::; SÞ;

K1; at i 2 ð1; :::; S0Þ and j 2 ðS0 þ 1; :::; SÞ or

at i 2 ðS0 þ 1; :::; SÞ and j 2 ð1; :::; S0Þ;

8
>>><

>>>:

ð14Þ

and

L2ðHi; djðxÞ ¼ 0Þ

¼

K0; at i; j 2 ð1; :::; S0Þ or i; j 2 ðS0 þ 1; :::; SÞ;

0; at i 2 ð1; :::; S0Þ and j 2 ðS0 þ 1; :::; SÞ or;

at i 2 ðS0 þ 1; :::; SÞ and j 2 ð1; :::; S0Þ:

8
>>><

>>>:

ð15Þ

Then CBM 2, i.e. statement of the problem (1)-(2), for

hypotheses (b) of Eq. (1b), takes the following form

rd ¼ min
Cjf g

K1 �
XS0

i¼1
pðHiÞ

XS

j¼S0þ1

Z

Cj

pðxjHiÞdx
"(

þ
XS

i¼S0þ1
pðHiÞ

XS0

j¼1

Z

Cj

pðxjHiÞdx
#) ð16Þ

subject to
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K0 � pðHiÞ �
XS0

j¼1

Z

Rn�Cj

pðxjHiÞdx� ri2; i ¼ 1; :::; S0;

K0 � pðHiÞ �
XS

j¼S0þ1

Z

Rn�Cj

pðxjHiÞdx� ri2; i ¼ S0 þ 1; :::; S

ð17Þ

Application of the Lagrange method for solving of the

constrained optimization problem Eqs. (16 and 17), gives

Cj ¼ x : K1 �
XS

i¼S0þ1
pðHiÞpðxjHiÞ\K0 �

XS0

i¼1

ki � pðHiÞpðxjHiÞ
( )

;

j ¼ 1; :::; S0;

Cj ¼ x : K1 �
XS0

i¼1
pðHiÞpðxjHiÞ\K0 �

XS

i¼S0þ1

ki � pðHiÞpðxjHiÞ
( )

;

j ¼ S0 þ 1; :::; S

ð18Þ

where Lagrange multipliers ki,i ¼ 1; :::; S, are determined

so that equality holds in Eq. (17). Thus, we have C1 �
::: � CS0 ¼ C0 and CS0þ1 � ::: � CS ¼ C1, i.e. we have

only two regions of making a decision. One of them is

basic hypothesis acceptance region and another is alterna-

tive hypothesis acceptance region.

Theorem 2 CBM 2 defined in Eqs. (2 and 3), for

hypotheses (b) of Eq. (1b) and losses Eqs. (14 and 15)

ensures a decision rule with the error rates Type-I (alpha)

and Type-II (beta) restricted by the following inequalities.

a�
XS0

i¼1

ri2
K0 � S0 � pðHiÞ

; b�
XS

i¼S0þ1

ri2
K0 � ðS� S0Þ � pðHiÞ

ð19Þ

Proof Restrictions Eq. (17) for hypotheses acceptance

regions Eq. (18) are transformed to the forms.

K0 � pðHiÞ � S0 � 1� pðx 2 C0jHiÞð Þ
� ri2; i ¼ 1; :::; S0;

K0 � pðHiÞ � ðS� S0Þ � 1� pðx 2 C1jHiÞð Þ
� ri2; i ¼ S0 þ 1; :::; S

ð20Þ

The use of these ratios for the Type-I and Type-II error

rates Eqs. (11 and 12) respectively, gives

a�
XS0

i¼1
pðx 2 C1jHiÞ

¼
XS0

i¼1
1� pðx 2 C0jHiÞð Þ�

XS0

i¼1

ri2
K0 � S0 � pðHiÞ

;

and

b�
XS

i¼S0þ1
pðx 2 C0jHiÞ

¼
XS

i¼S0þ1
1� pðx 2 C1jHiÞð Þ

�
XS

i¼S0þ1

ri2
K0 � ðS� S0Þ � pðHiÞ

Similarly, this Theorem can be proved for other

combinations of hypotheses Eq. (1b).

4 Examples

Let’s consider examples for illustrating the fact that well

known cases of statistical hypotheses formulations are

particular cases of hypotheses given by formula (1).

Example 1 Case of One-parameter H0 (SenGupta 2007,

p. 4).

Let a random variable X follow the distribution f ðx; hÞ,
where h is scalar parameter. Let’s consider testing

H0 : h� h1 or h� h2 vs H1 : h1\h\h2 ð21Þ

Let’s denote: H01 : h� h1, H02 : h� h2, H11 : h[ h1
and H12 : h\h2. Then hypotheses Eq. (21) can be rewritten

in the form

H0 : H01

[
H02 vs: H1 : H11

\
H12 ð22Þ

i.e. we have case Eq. (1b) (d), where S0 ¼ 2, S1 ¼ 2 and

S ¼ S0 þ S1 ¼ 4.

Remark 3 We are forced to choose four hypotheses (H01,

H02, H11 and H12) instead of three H01, H02 and H1 (to

which correspond disjoint parametrical subsets

H01 ¼ l : l� l1f g, H02 ¼ l : l� l2f g and

H1 ¼ l : l1\l\l2f g) because of the specificity of the

example under consideration. Otherwise the suitable choice

of the parameter l of truncated normal distribution at H1 is

impossible and the quality of decision made depends on a

chosen value of l (l 2 ðl1; l2Þ). This note will be more

evident when presenting concrete examples in Item 6.

(a) Let’s consider the case of loss functions Eq. (6).

Restrictions Eq. (7) and decision regions Eq. (8)

take the following forms in this case
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Z

C01

pðxjH01Þdx� 1� r012
K0 � pðH01Þ

;

Z

C02

pðxjH02Þdx� 1� r022
K0 � pðH02Þ

;

Z

C11

pðxjH11Þdx� 1� r112
K0 � pðH11Þ

;

Z

C12

pðxjH12Þdx� 1� r122
K0 � pðH12Þ

ð23Þ

C01¼ x:K1 � pðH02jxÞþpðH11jxÞþpðH12jxÞð Þ\K0 �k01 �pðH01jxÞf g;
C02¼ x:K1 � pðH01jxÞþpðH11jxÞþpðH12jxÞð Þ\K0 �k02 �pðH02jxÞf g;
C11¼ x:K1 � pðH01jxÞþpðH02jxÞþpðH12jxÞð Þ\K0 �k11 �pðH11jxÞf g;
C12¼ x:K1 � pðH01jxÞþpðH02jxÞþpðH11jxÞð Þ\K0 �k12 �pðH12jxÞf g

ð24Þ

The errors of the Type-I and the Type-II accord-

ingly are:

a ¼
Z

C1

pðxjH01Þdx

þ
Z

C1

pðxjH02Þdx ¼ pðx 2 C1jH01Þ þ pðx 2 C1jH02Þ;

b ¼
Z

C0

pðxjH11Þdx

þ
Z

C0

pðxjH12Þdx ¼ pðx 2 C0jH11Þ þ pðx 2 C0jH12Þ

ð25Þ

and, by Theorem 1, for their restriction on the

desired levels at making decision, restriction levels

in Eq. (23) must be chosen on the basis of the fol-

lowing conditions

a� r012
K0 � pðH01Þ

þ r022
K0 � pðH02Þ

;

b� r112
K0 � pðH11Þ

þ r122
K0 � pðH12Þ

ð26Þ

(b) Let’s consider the case of the restriction functions

Eqs. (14 and 15).

Risk function Eq. (16) and restriction conditions

Eq. (17) take following forms in this case

rd ¼min
Cjf g

K1 �
Z

C11

pðH01ÞpðxjH01Þ þ pðH02ÞpðxjH02Þð Þdx
��

þ
Z

C12

pðH01ÞpðxjH01Þ þ pðH02ÞpðxjH02Þð Þdx

þ
Z

C01

pðH11ÞpðxjH11Þ þ pðH12ÞpðxjH12Þð Þdx

þ
Z

C02

pðH11ÞpðxjH11Þ þ pðH12ÞpðxjH12Þð Þdx
��

ð27Þ

and

K0 � pðH01Þ �
Z

Rn�C01

pðxjH01Þdxþ
Z

Rn�C02

pðxjH01Þdx
� �

� r012 ;

K0 � pðH02Þ �
Z

Rn�C01

pðxjH02Þdxþ
Z

Rn�C02

pðxjH02Þdx
� �

� r022 ;

K0 � pðH11Þ �
Z

Rn�C11

pðxjH11Þdxþ
Z

Rn�C12

pðxjH11Þdx
� �

� r112 ;

K0 � pðH12Þ �
Z

Rn�C11

pðxjH12Þdxþ
Z

Rn�C12

pðxjH12Þdx
� �

� r122

ð28Þ

Solution of Eqs. (27 and 28) gives the hypotheses

acceptance regions C01 � C02 � C0 and C11 � C12 � C1,

where

C0 ¼ x : K1 � pðH11ÞpðxjH11Þ þ pðH12ÞpðxjH12Þð Þf
\K0 � k01 � pðH01ÞpðxjH01Þ þ k02 � pðH02ÞpðxjH02Þð Þg;

C1 ¼ x : K1 � pðH01ÞpðxjH01Þ þ pðH02ÞpðxjH02Þð Þf
\K0 � k11 � pðH11ÞpðxjH11Þ þ k12 � pðH12ÞpðxjH12Þð Þg

ð29Þ

Here, Lagrange multipliers k01, k02, k11 and k12 are

determined so that in the conditions Eq. (28) equalities

hold.

Taking into account Eq. (29), restriction conditions

Eq. (28) take the forms
Z

C0

pðxjH01Þdx� 1� r012
2 � K0 � pðH01Þ

;

Z

C0

pðxjH02Þdx� 1� r022
2 � K0 � pðH02Þ

;

Z

C1

pðxjH11Þdx� 1� r112
2 � K0 � pðH11Þ

;

Z

C1

pðxjH12Þdx� 1� r122
2 � K0 � pðH12Þ

ð30Þ

It should be noted that the determination of Lagrange

multipliers is more difficult for Eqs. (14 and 15) than for

Eq. (6), because in the first case the two-dimensional

equations with respect to Lagrange multipliers must be

solved, instead of one-dimensional in the second case.

For guaranteeing restrictions of Type-I and Type-II error

rates at the desired levels, according to Theorem 2,

restriction levels in conditions Eq. (30) must be chosen so

that the following inequalities are fulfilled

a� r012
2 � K0 � pðH01Þ

þ r022
2 � K0 � pðH02Þ

;

b� r112
2 � K0 � pðH11Þ

þ r122
2 � K0 � pðH12Þ

ð31Þ

The comparison of Eq. (26 and 31) allows us to con-

clude that at identical K0, pðH01Þ, pðH02Þ, pðH11Þ, pðH12Þ,
r012 , r022 , r112 and r122 , Type I and Type II error rates for
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losses Eqs. (14 and 15), in general, are less than the same

error rates for losses Eq. (6) at the solution of the stated

condition of the problem (see, Remark 4 below). Therefore,

the use of losses Eqs. (14 and 15) is not only more logical

than the use of losses Eq. (6) but, also, it is preferable for

minimization of Type I and Type II error rates.

Example 2 Case of Multi-parameter H0 (SenGupta 2007,

p. 13).

Let’s consider the mixture model with density

gðxjp; h; #Þ ¼ p � f ðxjh; #Þ þ ð1� pÞ � f ðxjh0; #Þ ð32Þ

where 0� p� 1, h 2 H, an interval of the real line; both

p; h are unknown and h0 is a known point of H; and # is an

unknown parameter (possibly vector-valued), to be inter-

preted as a nuisance parameter. The density f ðxjh; #Þ is

assumed to be sufficiently ‘‘regular’’. We want to test the

null hypothesis H0: ‘‘no contamination’’ against the alter-

native H1: ‘‘there is contamination’’. Under the above

setup, the null hypothesis of the contamination translates to

the union of three parametric hypotheses:

H01 : p ¼ 0
S
H02 : h ¼ h0

S
H03 : p ¼ 0 and h ¼ h0½ �.

Taking into account Eq. (32), the null parametric sub-

hypotheses are

H01 : g01ðxjh; #Þ ¼ f ðxjh0; #Þ;
H02 : g02ðxjp; h; #Þ ¼ p � f ðxjh0; #Þ
þð1� pÞ � f ðxjh0; #Þ ¼ f ðxjh0; #Þ;

H03 : g03ðxjh; #Þ ¼ f ðxjh0; #Þ

ð33Þ

Because of g01 � g02 � g03, hypotheses H01, H02 and

H03 are the same.

It is obvious that to the alternative hypothesis corre-

spond the following parametric hypothesis H1 : p 6¼
0 and h 6¼ h0 with underlying density Eq. (32). Finally, we

have the following set of hypotheses for testing

H0 : X� f ðxjh0; #Þ vs:H1 � gðxjp; h; #Þ ð34Þ

Thus we have S0 ¼ 1 and S1 ¼ 1.

Let’s introduce pðHiÞ, i ¼ 0; 1, a priori probabilities;

pðxjHiÞ, a priori density with support Xi (x � ðp; h; #Þ);
and pðxjHiÞ the marginal density of x given Hi, i.e.

pðxjHiÞ ¼
Z

Xi

giðxjxÞpðxjHiÞdx; i ¼ 0; 1 ð35Þ

Taking into account Eq. (33), more specifically, for

marginal densities we have

pðxjH0Þ¼
Z

Q

f ðxjh0;#Þpð#jH0Þd#;

pðxjH1Þ¼
Z 1

0

Z

H=h0

Z

Q

p � f ðxjh;#ÞpðpjH1Þpð#jH1Þdpdhd#

þ
Z 1

0

Z

Q

ð1�pÞ � f ðxjh0;#ÞpðpjH1Þpð#jH1Þdpd#

ð36Þ

Here Q is the domain of support of #. It is obvious that

we have a particular situation of the previous case (see

Example 1), where for testing we use again CBM 2.

Therefore, the results obtained for Example 1, and, in

particular, Theorem 2, are in force but conditions Eq. (26)

are simplified and have the following forms

a� r02
K0 � pðH0Þ

;

b� r12
K0 � pðH1Þ

ð37Þ

5 Calculations for Concrete Examples

With the purpose to reinforce the theoretical results given

above, and for investigation of their behavior depending on

different parameters, let us consider the following

examples.

Examples

Example 1 (a) For testing hypotheses Eq. (22), let us use a

sample X1;X2; :::;Xn, obtained from Nðxjl; r2Þ with known

r2. Because the sub-hypotheses introduced above are

complex, with appropriate densities, let us use Stein’s

method for finding the uniformly most powerful invariant

test (Wijsman 1967; Andersson 1982; Kachiashvili 2016).

Let’s introduce pðljHiÞ, a prior density with support Hi,

i 2 ð01; 02; 11; 12Þ. Here H01 ¼ l : l� l1f g,
H02 ¼ l : l� l2f g, H11 ¼ l : l[ l1f g and H12 ¼ l :f
l\l2g. As densities pðljHiÞ, i 2 ð01; 02; 11; 12Þ, let us

use truncated normal densities f ðl; li; r1; a; bÞ over

ð�1; l1Þ, ðl2;þ1Þ, ðl1;þ1Þ and ð�1; l2Þ, respec-

tively. Here l01, l02, l11 and l12 belong to the appropriate

regions. Because x is a sufficient statistic with normality of

distribution, we use x as a test statistic. Then for the mar-

ginal densities of x given Hi, we have
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pðxjH01Þ ¼
Z l1

�1
Nðxjl; r2xÞf ðl; l01; r1;�1; l1Þdl;

pðxjH02Þ ¼
Z þ1

l2

Nðxjl; r2xÞf ðl; l02; r1; l2;þ1Þdl;

pðxjH11Þ ¼
Z þ1

l1

Nðxjl; r2xÞf ðl; l11; r1; l1;þ1Þdl;

pðxjH12Þ ¼
Z l2

�1
Nðxjl; r2xÞf ðl; l12; r1;�1; l2Þdl

ð38Þ

Probability density function of the truncated normal

distribution is (Johnson et al. 2004, p. 156):

f ðx; l; r; a; bÞ ¼ r�1/
x� l
r

� 	
U

b� l
r

� �

� U
a� l
r

� 	� ��1

ð39Þ

where / nð Þ ¼ 1ffiffiffiffi
2p

p exp � 1
2
n2

� �
is the probability density

function of the standard normal distribution and U �ð Þ is its
cumulative distribution function.

Thus acceptance regions are given by Eq. (24), where a

posterior probabilities pðH01jxÞ, pðH02jxÞ, pðH11jxÞ and

pðH12jxÞ are computed using appropriate a priori proba-

bilities of hypotheses and marginal densities Eq. (38), and

truncated normal densities Eq. (39) for unknown parame-

ters of initial distribution.

Remark 4 Because of the difficulties to find common

(sufficient) statistics for all densities Eq. (38), we are

forced to use these densities for determination of Lagrange

multipliers and decision making regions. But at modeling,

for making decision, we simulate test statistic x which is

normally distributed (as is in the assumed situation). As a

result, the condition of Theorem 1 is violated and it is

expected that its result will not hold.

(b) Let us consider the same example when r2 is

unknown. In this case we can consider two methods based

on the maximum likelihood ratio and Stein’s method

(Anderson 1982; Wijsman 1967; Kachiashvili 2016). In the

first case instead of r2 we use its estimator s2 ¼
1

n�1

Pn
i ðxi � xÞ2 in formulae Eq. (38). In the second case,

for averaging influence of r2, we use a prior density

pðs2Þ � v2n�1ðs2Þ, that is the chi-square densities with n� 1

degree of freedom over ð0;1Þ. Then the marginal densities

of x given Hi are:

pðxjH01Þ ¼
Z l1

�1

Z 1

0

Nðx; l; s2=nÞf ðl; l01; r1;�1;l1Þv2n�1ðs2Þdlds2;

pðxjH02Þ ¼
Z þ1

l2

Z 1

0

Nðx; l; s2=nÞf ðl; l02; r1;l2;þ1Þv2n�1ðs2Þdlds2;

pðxjH11Þ ¼
Z þ1

l1

Z 1

0

Nðx; l; s2=nÞf ðl; l11; r1;l1;þ1Þv2n�1ðs2Þdlds2;

pðxjH12Þ ¼
Z l2

�1

Z 1

0

Nðx; l; s2=nÞf ðl; l12; r1;�1;l2Þv2n�1ðs2Þdlds2

ð40Þ

Example 2 In this example we can consider two methods

too based on the maximum likelihood ratio and Stein’s

method.

(a) The maximum likelihood ratio:

at H0 : f ðxjh0; #Þ � Nðx; h0; s20=nÞ, where s20 	
1
n

Pn
i ðxi � h0Þ2 and

at H1 :

gðxjp; h; #Þ ¼ 1

2

Z h0

�1
Nðxjl; s20=nÞf ðl; l01; r1;�1; h0Þdlþ

þ 1
2

Rþ1
h0

Nðxjl; s20=nÞf ðl; l02; r1; h0;þ1Þdl
þ 1

2
Nðxjh0; s20=nÞ.
In this case, hypotheses acceptance regions are

C0 ¼ x : K1 � pðH1jxÞ\K0 � k0 � pðH0jxÞf g;
C1 ¼ x : K1 � pðH0jxÞ\K0 � k1 � pðH1jxÞf g

ð41Þ

where pðxjH0Þ ¼
ffiffi
n

p
ffiffiffiffi
2p

p
�s0
exp � nðx�h0Þ2

2s2
0

n o
;

pðxjH1Þ ¼
A21
ffiffiffi
2

p
ffiffiffiffiffi
p
a2

r

� exp ðb221ðxÞ þ 4a2c21ðxÞÞ=ð4a2Þ

 �

� 2U d21ð Þ � 1ð Þ � I21

þ A22
ffiffiffi
2

p
ffiffiffiffiffi
p
a2

r

� exp ðb222ðxÞ þ 4a2c22ðxÞÞ=ð4a2Þ

 �

� I22 þ
ffiffiffi
n

p

2
ffiffiffiffiffiffi
2p

p
s0
exp � nðx� h0Þ2

2s20

( )

ð42Þ

where

I21 ¼
0; if d21 � 0;

1; if d21 [ 0;

(

and

I22 ¼

ffiffiffi
2

p
; if d22 � 0;

2
ffiffiffi
2

p
1� U d22ð Þð Þ; if d22 [ 0:

8
<

:

Here
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A21 ¼
ffiffiffi
n

p

4ps20U
h0�l01

s0

� 	 ; a2 ¼
ns201 þ s20
2s20s

2
01

; b21

¼ � 2nxs201 þ 2l01s
2
0

2s20s
2
01

; c21 ¼ � nx2s201 þ l201s
2
0

2s20s
2
01

;

A22 ¼
ffiffiffi
n

p

4ps20 1� U h0�l02
s0

� 	h i ; b22 ¼ � 2nxs201 þ 2l02s
2
0

2s20s
2
01

; c22

¼ � nxs201 þ l202s
2
0

2s20s
2
01

;

d21 ¼ h0
ffiffiffiffiffi
a2

p þ b21
2

ffiffiffiffiffi
a2

p ; d22 ¼ h0
ffiffiffiffiffi
a2

p þ b22
2

ffiffiffiffiffi
a2

p

(b) Stein’s method

at H0 : f ðxjh0; #Þ ¼
R1
0

Nðx; h0; s2=nÞv2n�1ðs2Þds2, where
s2 ¼ 1

n�1

Pn
i¼1 ðxi � xÞ2, x ¼ 1

n

Pn
i¼1 xi.

at

H1 : gðxjp; h; #Þ

¼ 1

2

Z h0

�1

Z 1

0

Nðxjl; s2=nÞf ðl; l01; r1;�1; h0Þv2n�1ðs2Þdlds2

þ 1

2

Z 1

h0

Z 1

0

Nðxjl; s2=nÞf ðl; l02; r1; h0;þ1Þv2n�1ðs2Þdhds2

þ 1

2

Z 1

0

Z 1

0

ð1� pÞNðxjh0; s2=nÞv2n�1ðs2Þdpds2

ð43Þ

6 Computational Results

Let’s compute example 1 with the following initial data:

the values of the loss functions K0 ¼ K1 ¼ 1, variance

r2 ¼ 0:0025, l1 ¼ �0:05, l2 ¼ 0:02, l01 ¼ �0:05,

l02 ¼ 0:02, l11 ¼ �0:0499, l12 ¼ 0:0199, r21 ¼ x�1
0 � r2,

pðH01Þ ¼ pðH02Þ ¼ pðH11Þ ¼ pðH12Þ ¼ 1=4,

r012 ¼ r022 ¼ 0.00625, r111 ¼ r112 ¼ 0.0025.

Let’s consider the case of loss functions Eq. (6). For the

determination of Lagrange multipliers, probability integrals

in the suitable restriction conditions Eq. (23) were com-

puted by Monte-Carlo method using appropriate samples

(distributed with densities of Eq. (38)) with size 5000. For

computation of Type-I and Type-II error rates by formulae

Eq. (25) for acceptance regions Eq. (24), normally dis-

tributed samples of 10,000 were used. This sample size is

used below in all Monte-Carlo computations for similar

probabilities.

For the considered data, in accordance with Eq. (23),

restriction levels in the restriction conditions are 0.975 and

0.99 under H0 and H1, respectively. Therefore, in accor-

dance with Eq. (19), Type-I and Type-II error rates for

testing of hypotheses must be restricted at the levels 0.05

and 0.02, respectively.

Lagrange multipliers computed for these data are:

k01 = 16.40625, k02 = 12.451171875, k11 = 16.40625 and

k12 = 15.625. The values of acceptance probabilities

depending on l (mathematical expectation of generated

normally distributed random variables) are given in

Table 1. Hypotheses acceptance probabilities depending on

the variance of truncated normal distribution

(r21 ¼ x�1
0 � r2), when expectation of generated normally

distributed random variables l ¼ �0:049, i.e. hypothesis

H1 is true but sample distribution is close to hypothesis H0,

are given in Table 2. And hypotheses acceptance proba-

bilities depending on expectation of truncated normal dis-

tribution (l01), when expectation of generated normally

distributed random variables l ¼ �0:049, i.e. hypothesis

H1 is true but sample distribution is close to hypothesis H0,

are given in Table 3 (here x0 ¼ 1). Appropriate graphical

illustrations of computed results are presented in Figs. 1, 2

and 3, respectively.

On the basis of these results the following conclusions

follow:

– because of Remark 4 the computed values of Type-I

and Type-II error probabilities exceed the values 0.05

and 0.02, respectively, determined in accordance with

Theorem 1; discrepancies are greater, the closer is the

expectation of sample’s distribution to the borders of

hypotheses domains of definitions;

– probabilities of correct decisions at hypothesis H0 are

higher than at hypothesis H1 for small distances

between mathematical expectation of sample’s distri-

bution and the borders of hypotheses;

– when distances between mathematical expectation of

sample’s distribution and the borders of hypotheses

domains of definitions are increasing, Type-I and Type-

II error probabilities are decreasing and condition of

Theorem 1 is satisfied;

– the number of observations necessary for making a

decision at hypothesis H1 is greater than at hypothesis

H0 in average; at hypothesis H0 it quickly decreases at

increasing distances between mathematical expectation

of sample’s distribution and the borders of hypotheses

domains of definitions;

– at decreasing variance of truncated normal distribution,

true hypothesis acceptance probabilities increase at

hypothesis H1;

– at increasing variance of truncated normal distribution,

sample size, necessary for making decision, increases at

hypothesis H1;

– at increase of distances between parameters l01 and l02
of truncated normal distributions at H0 and the borders

of tested hypotheses domains of definitions,
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Table 1 Hypotheses acceptance

probabilities depending on

mathematical expectation of

generated random variables at

losses Eq. (6)

Nðxjl; r2Þ,l p011 p021 p01 p111 p121 p11 AN

- 0.049 0.4587 0 0.4587 0.5411 0.0002 0.5413 47.9315

- 0.045 0.1494 0 0.1494 0.8495 0.0011 0.8506 36.9096

- 0.03 0.0113 0.0002 0.0115 0.9302 0.0583 0.9885 24.6289

- 0.015 (MP) 0.001 0.0021 0.0031 0.3999 0.597 0.9969 23.2197

0 0.0004 0.0107 0.0111 0.0287 0.9602 0.9889 22.8407

0.015 0 0.1521 0.1521 0.0008 0.8471 0.8479 30.8568

0.019 0 0.4188 0.4188 0 0.5812 0.5812 38.6426

p011 p021 p01 p111 p121 p11 AN

- 0.05 0.6312 0 0.6312 0.3687 0.0001 0.3688 47.616

- 0.051 0.7697 0 0.7697 0.2303 0 0.2303 45.5127

- 0.065 0.9998 0 0.9998 0.0002 0 0.0002 10.8521

- 0.08 1 0 1 0 0 0 5.2847

- 0.095 1 0 1 0 0 0 3.2542

p011 p021 p01 p111 p121 p11 AN

0.02 0 0.5576 0.5576 0.0001 0.4423 0.4424 38.9823

0.021 0 0.7008 0.7008 0.0001 0.2991 0.2992 38.7634

0.035 0 0.9997 0.9997 0 0.0003 0.0003 10.4433

0.05 0 1 1 0 0 0 5.1322

0.065 0 1 1 0 0 0 3.2211

AN—average number of observations for making a decision; MP—middle point

p011 � Pðx 2 C01jH1Þ, p021 � Pðx 2 C02jH1Þ, p01 � Pðx 2 C0jH1Þ- Type II error rate,

p111 � Pðx 2 C11jH1Þ, p121 � Pðx 2 C12jH1Þ, p11 � Pðx 2 C1jH1Þ- power

Table 2 Hypotheses acceptance probabilities depending on variance of truncated normal distribution at losses Eq. (6), when mathematical

expectation of generated random variables l ¼ �0:049

x0 p011 p021 p01 p111 p121 p11 AN

1 0.4587 0 0.4587 0.5411 0.0002 0.5413 47.9315

2 0.2555 0 0.2555 0.7441 0.0004 0.7445 145.3

3 0.115 0 0.115 0.8846 0.0004 0.885 376.1434

4 0.0388 0 0.0388 0.9612 0 0.9612 819.2266

Table 3 Hypotheses acceptance

probabilities depending on

mathematical expectation of

truncated normal distribution

(l01) at H01 and losses Eq. (6),

when mathematical expectation

of generated random variables

l ¼ �0:049

l01 p011 p021 p01 p111 p121 p11 AN

- 0.05 0.4587 0 0.4587 0.5411 0.0002 0.5413 47.9315

- 0.051 0.7697 0 0.7697 0.2303 0 0.2303 45.5127

- 0.065 0.3827 0 0.3827 0.6172 0.0001 0.6173 22.3593

- 0.08 0.2736 0 0.2736 0.7264 0 0.7264 13.4365

- 0.095 0.2006 0.0001 0.2007 0.7993 0 0.7993 9.9875

- 0.11 0.1447 0 0.1447 0.8553 0 0.8553 8.274

- 0.125 0.1042 0 0.1042 0.8958 0 0.8958 7.2969

- 0.15 0.0594 0 0.0594 0.9406 0 0.9406 6.4671

- 0.2 0.0173 0 0.0173 0.9827 0 0.9827 6.0286
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probabilities of acceptance of true H1 hypotheses

improves, and sample size, necessary for making

decision, decreases.

Fig. 1 Dependence of hypotheses acceptance probabilities on expec-

tation of generated random variables at losses Eq. (6) when l011 ¼
�0:05 and l012 ¼ 0:02

Fig. 2 Dependence of hypotheses acceptance probabilities on vari-

ance of truncated normal distributions at losses Eq. (6)

(r21 ¼ x�1
0 � r2, x0 ¼ 1, 2, 3, 4), when expectation of generated

random variables l ¼ �0:049

Fig. 3 Dependence of hypotheses acceptance probabilities on expec-

tation (l01) of truncated normal distribution at H01 and losses Eq. (6),

when expectation of generated random variables l ¼ �0:049

Table 4 Dependence of hypotheses acceptance probabilities on

expectation of generated random variables at losses Eqs. (26 and 27)

Nðxjl; r2Þ, l p01 p11 AN

- 0.049 0.0612/0.3069 0.9388/0.6931 3.7334/2.9333

- 0.045 0.0409/0.244 0.9591/0.756 3.4617/2.8923

- 0.03 0.008/0.0989 0.992/0.9011 2.8928/2.6634

- 0.015 (MP) 0.0031/0.0598 0.9969/0.9402 2.725/2.5945

0 0.0086/0.0974 0.9914/0.9026 2.8954/2.6708

0.015 0.0411/0.2332 0.9589/0.7668 3.4736/2.8694

0.019 0.0673/0.3087 0.9327/0.6913 3.7763/2.9215

p01 p11 AN

- 0.05 0.076/0.323 0.924/0.677 3.8517/2.9552

- 0.051 0.0894/0.3527 0.9106/0.6473 3.9212/2.9655

- 0.065 0.4264/0.6217 0.5736/0.3783 4.8223/2.8564

- 0.08 0.7611/0.8371 0.2389/0.1629 4.2269/2.5113

- 0.095 0.9087/0.9405 0.0913/0.0595 3.5008/2.1674

- 0.11 0.9703/0.9760 0.0297/0.0240 2.8979/1.8609

p01 p11 AN

0.02 0.0812/0.3255 0.9188/0.6745 3.8245/2.945

0.021 0.0894/0.3474 0.9106/0.6526 3.9141/2.9412

0.035 0.4360/0.6234 0.5640/0.3766 4.8511/2.8493

0.05 0.7658/0.8396 0.2342/0.1604 4.2833/2.5103

0.065 0.9099/0.9385 0.0901/0.0615 3.5095/2.1603

0.08 0.9707/0.9730 0.0293/0.0270 2.8937/1.8599
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Now let’s compute for the same initial data by decision

rule Eq. (29) when Loss functions are determined by

Eq. (14 and 15). Initial data are the same as for the previous

case. Therefore, restriction levels in conditions Eq. (30) are

0.9875 and 0.995 under H0 and H1, respectively. Lagrange

multipliers determined by solution of Eq. (30) are: k01 ¼
k02 ¼ 2.2198486328125 and k11 ¼ k12 ¼ 8.59375. Com-

puted results of hypotheses acceptance probabilities,

depending on mathematical expectation of generated ran-

dom variables, are given in Table 4 (see left side of the

oblique line). Computed results for restriction levels

r012 ¼ r022 ¼r111 ¼ r112 ¼ 0.025, i.e. when restriction proba-

bilities in Eq. (30) are equal to 0.95, are given in Table 4

too (see right side of the oblique line). In this case

Lagrange multipliers are equal to: k01 ¼ k02 ¼
2.2137451171875 and k11 ¼ k12 ¼ 2.65380859375.

Dependences of hypotheses acceptance probabilities on

mathematical expectation of generated random variables

for the considered restriction levels are graphically pre-

sented in Fig. 4.

From the obtained results, it is seen that:

– sample size for making decision is quite small;

– despite such small sample size, probabilities of accep-

tance of true hypotheses are quite great and by choosing

restriction levels they can be adjusted in favor of one of

the hypotheses H0 or H1.

For the elimination of the situation when probability

distribution law of a sample differs from the probability

distribution laws used for determination of Lagrange

multipliers and for making decision, let us consider the

following. It is clear that for hypotheses H01 : h� h1,
H02 : h� h2, H11 : h[ h1 and H12 : h\h2, more logical is,

instead of losses Eq. (6), the use of the following losses

L1ðHi; djðxÞ ¼ 1Þ ¼
0; at i ¼ j&Hi

T
Hj 6¼ ;;

K1; at i 6¼ j

8
<

:
and

L2ðHi; djðxÞ ¼ 0Þ ¼
K0; at i ¼ j;

0; at i 6¼ j

(

ð44Þ

These losses are not fully correct because L1ðHi; djðxÞ ¼
1Þ must be equal to zero not only when i ¼ j&Hi

T
Hj 6¼ ;;

but also when i ¼ 01 and j ¼ 02, or for inverse values of

indices. We ignore this situation because the sub-hy-

potheses, forming the null hypotheses, are distinct from

each other. Generally speaking, loss L2ðHi; djðxÞ ¼ 0Þ
requires to add some additional conditions too.

In this case, hypotheses acceptance regions Eq. (8)

transform to the forms

C01 ¼ x : K1 � pðH11jxÞ\K0 � k01 � pðH01jxÞf g;
C02 ¼ x : K1 � pðH12jxÞ\K0 � k02 � pðH02jxÞf g;
C11 ¼ x : K1 � pðH01jxÞ\K0 � k11 � pðH11jxÞf g;
C12 ¼ x : K1 � pðH02jxÞ\K0 � k12 � pðH12jxÞf g

ð45Þ

where k01, k02, k11 and k12 are determined so that in con-

ditions Eq. (7) the equalities take place.

Taking into account the fact that risk of incorrect deci-

sion in CBM, as well as in other hypotheses testing

methods, decreases when information distances between

tested hypotheses increase, instead of composite ones, we

consider the simple hypotheses: H01 : X�Nðxjl01;r2Þ,
H02 : X�Nðxjl02; r2Þ, H11 : X�Nðxjl11; r2Þ and H12 :

X�Nðxjl12; r2Þ two by two, i.e. H01 vs. H11 and H02 vs.

H12, where l01 ¼-0.05, l02 ¼ 0.02, l11 ¼-0.0499 and

l12 ¼ 0.0199. The hypotheses acceptance regions are:

C0 ¼ C01

S
C02 and C1 ¼ C11

T
C12.

In this case, computations can be made analytically with

the following Lagrange multipliers and decision regions:

Fig. 4 Dependence of hypotheses acceptance probabilities on expec-

tation of generated random variables when l011 ¼ �0:05 and l012 ¼
0:02 at losses Eqs. (26 and 27)
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k01 ¼
K1 � pðH11Þ
K0 � pðH01Þ

� �

exp 2 � r � l11 � l1ð Þ � U�1 1� r012
K0 � pðH01Þ

� �

þ ðl21 � l211Þ þ 2ðl11 � l1Þl1
� �

=ð2r2Þ
� �

;

k02 ¼
K1 � pðH12Þ
K0 � pðH02Þ

� �

exp 2 � r � l12 � l2ð Þ � U�1 r022
K0 � pðH02Þ

� �

þ ðl22 � l212Þ þ 2ðl12 � l2Þl2
� �

=ð2r2Þ
� �

;

1

k11
¼ K0 � pðH11Þ

K1 � pðH01Þ

� �

exp 2 � r � l11 � l1ð Þ � U�1 r112
K0 � pðH11Þ

� �

þ ðl21 � l211Þ þ 2ðl11 � l1Þl11
� �

=ð2r2Þ
� �

;

1

k12
¼ K0 � pðH12Þ

K1 � pðH02Þ

� �

exp 2 � r � l12 � l2ð Þ � U�1 1� r122
K0 � pðH12Þ

� �

þ ðl22 � l212Þ þ 2ðl12 � l2Þl12
� �

=ð2r2Þ
� �

;

C01 ¼ x : exp
2ðl11 � l1Þxþ ðl21 � l211Þ

2r2x

� �

\k01
K0 � pðH01Þ
K1 � pðH11Þ

� �

;

C02 ¼ x : exp
2ðl12 � l2Þxþ ðl22 � l212Þ

2r2x

� �

\k02
K0 � pðH02Þ
K1 � pðH12Þ

� �

;

C11 ¼ x : exp
2ðl11 � l1Þxþ ðl21 � l211Þ

2r2x

� �

[
1

k11

K1 � pðH01Þ
K0 � pðH11Þ

� �

;

C12 ¼ x : exp
2ðl12 � l2Þxþ ðl22 � l212Þ

2r2x

� �

[
1

k12

K1 � pðH02Þ
K0 � pðH12Þ

� �

Computational results are given in Table 5. Three

computed values of the appropriate probabilities are given

in each cell. They are separated by oblique lines. Computed

results for r012 ¼ r022 ¼ r112 ¼ r122 ¼ 0.0125 are given from

the left side, i.e. for the restriction levels in Eq. (7) equal to

0.95, for r012 ¼ r022 ¼ r112 ¼ r122 ¼ 0.01—in the middle, i.e.

for restriction levels in Eq. (7) equal to 0.96 and for r012 ¼
r022 ¼ r112 ¼ r122 ¼ 0.0025—from the right side, i.e. for

restriction levels in Eq. (7) equal to 0.99. Dependences of

hypotheses acceptance probabilities on mathematical

expectation of generated random variables at losses

Eq. (44), for different restriction levels, are given in Fig. 5.

Table 5 Hypotheses acceptance probabilities depending on mathematical expectation of generated random variables at losses Eq. (44)

Nðxjl; r2Þ, l p011 p021 p01 p11 AN

- 0.049 0.5606/0.4010/0.3897 0.0002/0/0 0.5608/0.4010/0.3897 0.4392/0.599/0.6103 13.49/52.94/53.53

- 0.045 0.3201/0.1055/0.1003 0.0003/0/0 0.3204/0.1055/0.1003 0.6796/0.8945/0.8997 12.92/35.36/34.94

- 0.03 0.0475/0.0068/0.0064 0.0023/0.0005/0 0.0498/0.0073/0.0064 0.9502/0.9927/0.9936 9.70/17.12/17.11

- 0.0225 0.0207/0.0024/0.0026 0.0048/0.0003/0.003 0.0255/0.0027/0.0029 0.9745/0.9973/0.9971 9.14/15.65/15.61

- 0.015 (MP) 0.0079/0.0006/0.0007 0.0096/0.001/0.0005 0.0175/0.0016/0.0012 0.9825/0.9984/0.9988 8.96/15.22/15.23

- 0.0075 0.0057/0.0006/0.0005 0.0222/0.0034/0.0023 0.0279/0.0040/0.0028 0.9721/0.9960/0.9972 9.14/15.64/15.63

0 0.0017/0.0003/0.0002 0.0502/0.006/0.0065 0.0519/0.0063/0.0067 0.9481/0.9937/0.9933 9.66/17.16/17.11

0.015 0.0003/0.0001/0 0.3254/0.1028/0.1055 0.3257/0.1029/0.1055 0.6743/0.8971/0.8945 12.84/35.11/35.15

0.019 0.0002/0.0001/0 0.5515/0.3842/0.4014 0.5517/0.3843/0.4014 0.4483/0.6157/0.5986 13.54/53.31/53.34

p011 p021 p01 p11 AN

- 0.05 0.6265/0.5684/0.5645 0.0003/0/0.0001 0.6268/0.5684/0.5646 0.3732/0.4316/0.4354 13.45/56.67/55.18

- 0.051 0.7014/0.7277/0.7277 0/0/0 0.7014/0.7277/0.7277 0.2986/0.2723/0.2723 13.04/51.77/51.08

- 0.065 0.9892/0.9993/0.9993 0.0002/0/0 0.9894/0.9993/0.9993 0.0106/0.0007/0.0007 6.67/12.96/13.07

- 0.08 0.9997/1/1 0/0/0 0.9997/1/1 0.0003/0/0 4.27/6.77/6.82

- 0.095 1/1/1 0/0/0 1/1/1 0/0/0 3.20/4.52/4.55

p011 p021 p01 p11 AN

0.02 0.0001/0/0 0.6267/0.5646/0.5657 0.6268/0.5646/0.5657 0.3732/0.4354/0.4343 13.40/55.55/54.86

0.021 0.0003/0/0 0.6986/0.7235/0.7300 0.6989/0.7235/0.7300 0.3011/0.2765/0.2700 12.89/52.51/52.11

0.035 0/0/0 0.9901/0.9995/0.9996 0.9901/0.9995/0.9996 0.0099/0.0005/0.0004 6.67/13.13/13.06

0.05 0/0/0 0.9997/1/1 0.9997/1/1 0.0003/0/0 4.20/6.71/6.76

0.065 0/0/0 1/1/1 1/1/1 0/0/0 3.22/4.53/4.57
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It is clear that the increase of restriction levels in Eq. (7)

entails the increase of qualities of decisions made for both

hypotheses.

Finally, for the same aim that was expressed in previous

case and for more complete use of existing information,

let’s consider hypotheses acceptance regions Eq. (8) when

loss functions Eq. (6) are used. Let’s again use the fact that

probabilities of errors at testing hypotheses decrease when

information distance between hypotheses increase. For

determination of Lagrange multipliers, let’s consider

hypotheses H01, H02, H11 and H12 pairwise, similar to the

previous case (H01 vs. H11 and H02 vs. H12), using

restriction conditions Eq. (23) and hypotheses acceptance

regions Eq. (24). Normal distributions correspond to the

hypotheses with the worst expectations among all possible

values in the appropriate sets of composite hypotheses, i.e.

we consider the cases when l01 ¼ - 0.05; l02 ¼ 0.02;

l11 ¼-0.0499 and l12 ¼ 0.0199. The hypotheses accep-

tance regions are: C0 ¼ C01

S
C02 and C1 ¼ C11

T
C12

where sub-regions are determined by Eq. (24).

Further computational results are given in Table 6.

Lagrange Multipliers, computed for r012 ¼ r022 ¼ r112 ¼
r122 ¼ 0.0125, i.e. for restriction levels in Eq. (23) equal to

0.95, are k01 ¼ 8.125, k02 ¼ 8.4375, k11 ¼ 8.4375 and

k12 ¼ 8.4375. Samples with sizes 10,000 observations are

used in computations, as at determination of Lagrange

multipliers, so at computation of error probabilities.

Despite of ideal results at making decision (all decisions

are correct), its practical value is limited because for

making decisions a huge number of observations are nec-

essary, which is less likely to be possible when solving

many practical problems.

But still, the results of making decisions are so

impressive that we consider it more appropriate to discuss

this case in more details in cases where a large number of

observational results can be obtained, i.e. for big data.

Therefore, computation results of this case for different

restriction levels are presented in next Table 7. Here

computation results for three different cases are divided by

Table 6 Hypotheses acceptance

probabilities depending on

mathematical expectation of

generated random variables at

losses Eq. (6) and at the worst

versions of hypotheses, i.e.

when l11 ¼ �0:0499 and

l12 ¼ 0:0199, for restriction
level equal to 0.95

Nðxjl; r2Þ
l

p011 p021 p01 p111 p121 p11 AN

At H1: - 0.049 0 0 0 1 0 1 26606.3153

- 0.045 0 0 0 1 0 1 8052.9062

- 0.03 0 0 0 1 0 1 2361.1116

- 0.015 (MP) 0 0 0 0.7694 0.2306 1 1484.1451

0 0 0 0 0 1 1 2410.1896

0.015 0 0 0 0 1 1 8227.5673

0.019 0 0 0 0 1 1 27292.1561

At H01 p011 p021 p01 p111 p121 p11 AN

- 0.051 1 0 1 0 0 0 25417.4772

- 0.065 1 0 1 0 0 0 3095.4674

- 0.08 1 0 1 0 0 0 1631.9951

- 0.095 1 0 1 0 0 0 1112.812

At H02 p011 p021 p01 p111 p121 p11 AN

0.021 0 1 1 0 0 0 25625.7289

0.035 0 1 1 0 0 0 3112.2344

0.05 0 1 1 0 0 0 1642.3756

0.065 0 1 1 0 0 0 1118.9968

Fig. 5 Dependence of hypotheses acceptance probabilities on math-

ematical expectation of generated random variables at losses Eq. (44)
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slanting lines. The sequence of calculation results corre-

sponds to the next sequence of data: (1) r012 ¼ r022 ¼ r112 ¼
r122 ¼ 0.075 (restriction levels in Eq. (23) are equal to 0.7),

k01 = 2.584228515625, k02 = 2.568359375,

k11 = 2.578125, k12 = 2.548599243164063; (2) r012 ¼
r022 ¼ r112 ¼ r122 ¼ 0.1 (restriction levels in Eq. (23) are

equal to 0.6), k01 = 2.03125; k02 = 2.08038330078125;

k11 = 2.086811065673828; k12 = 2.060518189682625 and

(3) r012 ¼ r022 ¼ r112 ¼ r122 ¼ 0.125 (restriction levels in

Eq. (23) are equal to 0.5), k01 = 1.7431640625;

k02 = 1.7626953125; k11 = 1.73828125;

k12 = 1.75933837890625, are divided.

Here, as well as in the previous case, computations are

realized very fast because normal distributions are used.

It is obvious that the obtained results are excellent for all

considered restriction levels but the number of

observations necessary for making decision are quite big

especially when restriction levels in Eq. (23) are high. The

necessary number for making decision increases at

increasing restriction levels in Eq. (23).

The results, given in Tables 6 and 7, confirm Theorem 1,

because the conditions therein are satisfied (see Remark 4).

7 Discussions

– It is clear that the changes of the values of Type-I and

Type-II error rates in all the considered cases is possible

not only by changing restriction levels in the appro-

priate restriction conditions but, also by changing a

prior probabilities and by choosing the values of loss

functions.

Table 7 Hypotheses acceptance probabilities depending on expectation of generated random variables at losses Eq. (6) and at the worst versions

of hypotheses when l11 ¼ �0:0499 and l12 ¼ 0:0199, for different restriction levels

Nðxjl; r2Þl p011 p021 p01 p111 p121 p11 AN

At

H1: - 0.049

0/0/0.0005 0.0008/0.0016/

0

0.0008/0.0016/

0.0005

0.9974/0.9970/

0.9958

0.0018/0.0014/

0.0037

0.9992/0.9984/

0.9995

9165.39/5858.21/

4304.59

- 0.045 0/0/0.0006 0.0015/0.0023/

0

0.0015/0.0023/

0.0006

0.9957/0.9954/

0.9935

0.0028/0.0023/

0.0059

0.9985/0.9977/

0.9994

3242.24/2210.27/

1716.65

- 0.03 0/0/0.0002 0.0018/0.0041/

0

0.0018/0.0041/

0.0002

0.9420/0.9416/

0.9159

0.0562/0.0543/

0.0839

0.9982/0.9959/

0.9998

897.61/5794.11/

465.10

- 0.015 (MP) 0/0/0.0003 0.0016/0.0059/

0

0.0016/0.0059/

0.0003

0.5149/0.6193/

0.5048

0.4835/0.3748/

0.4949

0.9984/0.9941/

0.9997

83.6327/61.5289/

61.00

0 0/0/0.0002 0.0027/0.0044/

0

0.0027/0.0044/

0.0002

0.0652/0.1468/

0.0829

0.9321/0.8488/

0.9169

0.9973/0.9956/

0.9998

893.77/615.71/

477.58

0.015 0/0/0 0.0022/0.004/0 0.0022/0.004/0 0.0071/0.0301/

0.0072

0.9907/0.9659/

0.9928

0.9978/0.9960/

1

3214.92/2329.36/

1755.67

0.019 0/0/0.0001 0.0009/0.0047/

0.0001

0.0009/0.0047/

0.0002

0.0044/0.0178/

0.0026

0.9947/0.9775/

0.9972

0.9991/0.9953/

0.9998

9080.27/6280.02/

4427.65

At H01 p011 p021 p01 p111 p121 p11 AN

- 0.051 0.9940/0.9627/

0.9907

0.0013/0.0020/

0

0.9953/0.9647/

0.9907

0.0033/0.0348/

0.007

0.0014/0.0005/

0.0023

0.0047/0.0353/

0.0093

8700.52/5959.13/

4120.99

- 0.065 0.9985/0.9865/

0.9981

0.0006/0.0004/

0

0.9991/0.9869/

0.9981

0.0007/0.0130/

0.0016

0.0002/0.0001/

0.0003

0.0009/0.0131/

0.0019

1312.68/989.83/

734.88

- 0.08 0.9990/0.9927/

0.9995

0.0006/0.0005/

0

0.9996/0.9932/

0.9995

0.0004/0.0068/

0.0003

0/0/0.0002 0.0004/0.0068/

0.0005

708.38/541.25/

404.41

- 0.095 0.9997/0.9978/

1

0.0002/0.0001/

0

0.9999/0.9979/

1

0.0001/0.0021/

0

0/0/0 0.0001/0.0021/

0

487.62/375.57/

280.52

At H02 p011 p021 p01 p111 p121 p11 AN

0.021 0/0/0.0001 0.9952/0.9830/

0.9884

0.9952/0.9830/

0.9885

0.0033/0.0148/

0.0028

0.0015/0.0022/

0.0087

0.0048/0.0170/

0.0115

8566.59/5924.53/

4236.15

0.035 0/0/0 0.9992/0.9943/

0.9976

0.9992/0.9943/

0.9976

0.0006/0.0053/

0.0002

0.0002/0.0004/

0.0022

0.0008/0.0057/

0.0024

1296.07/975.92/

751.73

0.05 0/0/0.0001 0.9998/0.9983/

0.9996

0.9998/0.9983/

0.9997

0.0002/0.0017/

0

0/0/0.0003 0.0002/0.0017/

0.0003

699.57/533.93/

413.95

0.065 0/0/0 1/0.9993/

0.9997

1/0.9993/

0.9997

0/0.0007/0 0/0/0.0003 0/0.0007/

0.0003

481.61/369.24/

286.82
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– Probabilities of acceptance of hypothesis H1 when it is

true at losses Eqs. (14 and 15) are greater than at losses

Eq. (6) and, on the contrary, probabilities of acceptance

of hypothesis H0 when it is true at losses Eqs. (14 and

15) are lower than at losses Eq. (6).

– The sample size for making decision at losses Eqs. (14

and 15) is significantly less than for losses Eq. (6).

– Probabilities of acceptance of hypotheses H0 and H1,

when these are valid, are higher in Table 5 (i.e. at losses

Eq. (44)) than in Table 1 (i.e. at losses Eq. (6)); at the

same time, necessary sample size at losses Eq. (44) is

significantly less than at losses Eq. (6) and computa-

tions are realized analytically in the first case.

– Probabilities of acceptance of hypothesis H1 when it is

true at losses Eqs. (14 and 15) (Table 4) are a little

better than at losses Eq. (44) (Table 5); on the other

hand, probabilities of acceptance of hypothesis H0

when it is true, at losses Eq. (44), are significantly better

than at losses Eqs. (14 and 15); sample size at Eq. (44)

is no much higher than at Eqs. (14 and 15).

– On the basis of above findings, we conclude that losses

Eq. (44) are preferable than losses Eq. (6) and losses

Eqs. (14 and 15) as well; moreover, the computations at

losses Eq. (44) are realized analytically and, therefore,

are very fast.

– The best results are obtained at losses Eq. (6) when the

densities of the worst simple hypotheses are used

instead of averaged ones over the appropriate parameter

subsets (see Tables 6 and 7).
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