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Abstract
The existence and uniqueness of positive solutions to a fractional dynamic equation involving integral boundary conditions

on time scale are examined using the Banach fixed point theorem and Schauder’s fixed point theorem. The existence of the

proposed dynamic equation has been determined using the Caputo nabla derivative operator (Caputo derivative on time

scale in the nabla sense), the upper and lower solution approach, and the characteristics of the Green’s function on time

scales. Further, some appropriate examples has been given to demonstrate the implementation of theoretical results.
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Schauder’s fixed point theorem � Green’s function � Upper and lower method of solutions
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1 Introduction

This manuscript focuses on the existence and uniqueness of

the positive solutions for the fractional boundary value

problem (FBVP) involving integral boundary conditions of

the type

CDbkðfÞ ¼ Kðf; kðfÞ;C DbkðfÞÞ; f 2 J

kðTÞ ¼ l
R T

o kðhÞrh; l 2 Rþ

kð0Þ ¼ 0;

8
><

>:
ð1:1Þ

where J ¼ ½0; T � \ TK for T 2 T. CDbkðfÞ is a Caputo

nabla derivative of ld (left dense) continuous function kðfÞ
of order b 2 ð0; 1� on the time scale interval J . The

mapping K : J � R� R ! R is a ld continuous which is

discussed in the paper.

Fractional calculus is one of the oldest branch of

mathematics similar to ordinary calculus. In short one can

say that ordinary calculus is a generalization of a fractional

calculus. In real world applications we prefer fractional

calculus over ordinary calculus due to the accuracy and

advantages in the practical field. There have been a lot of

work done on the topic of fractional differentail equation,

fractional integro-differential equation, qualitative study of

the solution of fractional differential equations with the

Caputo fractional derivative operator and study of the

existence of solution of a integral equations one can see

Alabedalhadi et al. (2020), Al-Smadi and Arqub (2019),

Al-Smadi (2021), Bohner et al. (2021), Chauhan et al.

(2022), Tunç et al. (2021) and Tunç and Tunç (2023).

Fractional dynamic equation is used to solve a dynamic

model in a common domain which is a unification of both

discrete and continuous cases called time scale T, which

generally takes the form T ¼
S1

m¼0½2m; 2mþ 1� for

m 2 N [ f0g. In such cases, solution of the dynamic

equation can give the required data of the dynamic model

under consideration. For convenience, one can see the
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model presented in the articles (Agarwal et al. 2002;

Agarwal and O’Regan 2001) and the books (Bohner and

Peterson 2003, 2001). Due to the wide application of the

dynamic equation in the field of mathematics, engineering,

economics, etc, many researchers are attracted to this topic

in recent times. In the literature an ample amount of work

exist in various fractional dynamic equations with initial

and boundary conditions on time scale (Bai and Lü 2005;

Benkhettou et al. 2016; Kumar and Malik 2019; Slavı́k

2012; Torres 2021; Zhao and You 2016; Zhao et al. 2016;

Zhu and Wu 2015; Wu and Zhu 2013). But as compared to

fractional dynamic equation involving initial conditions,

less number of work can be seen with boundary conditions.

However, the idea of the topic arises from the manuscripts

(Agarwal et al. 2002; Yan et al. 2016b) and the books

(Miller and Ross 1993; Podlubny 1999).

The discussion of the positive solution of the dynamic

equation has been a very impectfull research from the

inception of the topic. There have several manuscripts

published in order to investigate the existence and

uniqueness of the positive solution of a dynamic equation

by employing various fixed point theorem in time scale

(Feng et al. 2009; Kaufmann and Raffoul 2005; Dogan

2020; Yan et al. 2016a, b). Kaufmann et. al. Kaufmann and

Raffoul (2005) gave the sufficient conditions for the exis-

tence of positive solution to a nonlocal eigen value prob-

lems for a class of nonlinear functional dynamic equation

on time scale by emplyoing a cone theoretic fixed point

theorem. The necessary and sufficient criteria for the

existence of positive solution for singular boundary value

problems on time scales were obtained by Feng et al. Feng

et al. (2009). Goodrich (2011) studied the existence of a

positive solution to a system of discrete fractional bound-

ary value problems. Yan et al. (2016a) investigated the

existence and uniqueness of solution of the boundary value

problem of fractional order dynamic equation on time

scales,

CDauðtÞ ¼ f ðt; uðtÞÞ; t 2 ½0; 1�TK2 ; 1\a\2;

uð0Þ þ uDð0Þ ¼ 0; uð1Þ þ uDð1Þ ¼ 0;
ð1:2Þ

where T is a general time scale with 0; 1 2 T; CDa is the

Caputo D-fractional derivatives. Then they have discussed

the existence of the positive solution of the problem (1.2)

by using the Krasonoseleskii theorem. But best of our

knowledge no work has been done on implicit type frac-

tional dynamic equation with periodic integral boundary

conditions involving Caputo nabla fractional derivative on

time scale. However, Abdo et al. (2018) discussed the

existence and uniqueness of a positive solution of similar

type problem by using the method of upper and lower

control functions in fractional calculus.

The rest of the manuscript is presented as follows. In

Sect. 2, we provide the auxiliary results related to the

fractional dynamic equation on time scales. In Sect. 3, we

highlight the existence and uniqueness result of the FBVP

(1.1). In Sect. 4, we give certain examples to demonstrate

the implementation of theoretical results. Finally, the

conclusion of the paper is presented in Sect. 5.

2 Preliminaries

Time scale T is a closed subset of R, inherited from the

standard topology of R with the properties qðfÞ ¼ supfh 2
T : h\fg and rðfÞ ¼ inffh 2 T : h[ fg which is used for

connectedness of T.

Throughtout the paper we assume

J ¼ ff 2 T : 0� f� T ; T 2 Rþg.
In Anastassiou (2010), Anastassiou presented the nabla

fractional integration in the following way

Ib
0þgðfÞ ¼

Z f

0

hb�1ðf; qðhÞÞgðhÞrh; h 2 U; ð2:1Þ

where U is a neihbourhood of f and g is a Lebsesgue r-

integrable function on the time scale interval ½0; T � \ T ¼
J and

hb�1ðf; qðhÞÞ ¼
ðf� qðhÞÞb�1

CðbÞ

varies with respect to different time scales.

If T ¼ R; then qðhÞ ¼ h; hence

hb�1ðf; qðhÞÞ ¼
ðf� hÞb�1

CðbÞ ;

therefore the Eq. (2.1) become

Ib
0þgðfÞ ¼

Z f

0

ðf� hÞb�1

CðbÞ gðhÞdh:

If T ¼ Z, then hb�1ðf; qðhÞÞ ¼ ðf�qðhÞÞb�1

CðbÞ , so from the

Eq. (2.1), we get

Ib
0þgðfÞ ¼

Z f

0

hb�1ðf; qðhÞÞgðfÞrh

¼ 1

CðbÞ

Z f

0

ðf� qðhÞÞb�1gðhÞrh

¼ 1

CðbÞ
Xf�1

f¼0

ðf� ðh� 1ÞÞb�1gðhÞ:

If T ¼ qN0 , then hb�1ðf; qðhÞÞ ¼ CqðbÞ q
b�1
q�1

ðf� qhÞb�1
q ,

where Cq is a q-gamma function. For detailed of the

Eq. (2.1), we prefer the reader to see the book (Georgiev
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2018). Later, in the literature, we have seen that a lot of

work has already been done based on (Benkhettou et al.

2016, Definition 10) which is

Ib
0þgðfÞ ¼

1

C

Z f

0

ðf� hÞb�1gðhÞrh: ð2:2Þ

As an improvement of the Eq. (2.2), in (Torres

2021, Definition 4) Torres proposed the most natural def-

inition of fractional integral in a pure sense of Riemann-

Liouville, which is

Ib
0þgðfÞ ¼

1

CðbÞ

Z f

0

ðf� qðhÞÞb�1gðhÞrh: ð2:3Þ

For checking the existence of the dynamic Eq. (1.1), we

use the Eq. (2.3). On the basis of the definition given in

Torres (2021), we introduce the Caputo nabla fractional

derivative as follows

CDbgðfÞ ¼ 1

Cðn� bÞ

Z f

0

ðf� qðhÞÞn�b�1grnðhÞrh;

ð2:4Þ

where n ¼ ½b� þ 1. If b 2 ð0; 1Þ; then

CDbgðfÞ ¼ 1

Cð1� bÞ

Z f

0

ðf� qðhÞÞ�bgrðhÞrh;

where gðfÞ 2 TKm ; n\m. TKm is attained by cutting out

‘m0 right scattered minimum left end points of T.

Definition 2.1 (Tikare and Tisdell 2020) A function K :

J ! R is said to be a left-dense (ld) continuous if, at all

left dense point of T, the function is continuous, and at the

right dense point of T the right sided limit exists.

The set of all function from J to R is said to be a space

of ld continuous function which is denoted by CðJ ;RÞ:

Remark 2.2 CðJ ;RÞ form a Banach space endowed with

the supremum norm, for k 2 CðJ ;RÞ such that

kkkC ¼ sup
f2J

jkðfÞj: ð2:5Þ

Definition 2.3 (Gogoi et al. 2021) For a ld continuous

function gðfÞ 2 T, the nabla derivative does not exist.

Define TK ¼ Tnftg; else TK ¼ T, where t is the right

scattered minimum left end point of T.

Definition 2.4 (Agarwal et al. 2021) Let A � CðJ ;RÞ be
nonempty, closed and convex set. We say that A is a cone

in CðJ ;RÞ, if

(1) kA � A for all k� 0

(2) �A \A ¼ f0cg, where 0c is the zero vector of

CðJ ;RÞ.

The cone A induces a partial ordering � in CðJ ;RÞ
defined by

k�Ag () g� k 2 A:

The cone A is said to be normal or solid cone, if there

exists q� 1 such that

0c �Ak�Ag ) kkkC � qkgkC
for all k; g 2 CðJ ;RÞ:

Definition 2.5 (Abbas 2022) A mapping W is a non neg-

ative, continuous concave functional on a cone A, if it

satisfies the conditions:

(1) W : A ! ½0;1Þ is continuous.
(2) Wðfk þ ð1� fÞgÞ� fWðkÞ þ ð1� fÞWðgÞ for all

k; g 2 A and 0� f� 1:

Definition 2.6 (Agarwal and O’Regan 2001) If

KrðfÞ ¼ kðfÞ, then the nabla integral is defined by
Z z2

z1

kðfÞrf ¼ Kðz2Þ � Kðz1Þ:

Theorem 2.7 (Tikare and Tisdell 2020) Let D � CðJ ;RÞ
be a non empty set. D is a relatively compact, if it is

bounded and equicontinuous simultaneously.

Definition 2.8 (Tikare and Tisdell 2020) A mapping K :
A ! B is completely continuous, if for a bounded subset

B 	 A; KðBÞ is relatively compact in A.

Proposition 2.9 (Benkhettou et al. 2016) For a non

decreasing ld continuous function kðfÞ, defined on a time

scale interval ½0; T �T, and if K is the extension of k to the

real line interval [0, T] such that

KðfÞ ¼
kðfÞ if ; f 2 T

kðhÞ if ; f 2 ðbðhÞ; hÞ 62 T;

�

then

Z T

0

kðfÞrf�
Z T

0

KðfÞdf:

3 Existence and Uniqueness of Positive
Solutions

Definition 3.1 A ld continuous function k 2 CðJ ;RÞ \
C1ðJ ;RÞ is a solution of the FPBVP (1.1), if k satisfies the

equation CDbkðfÞ ¼ Kðf; kðfÞ;C DbkðfÞÞ for f 2 J along

with the boundary condition.
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C1ðJ ;RÞ is used to denote the set of all continuous

functions, whose first order nabla derivatives are ld

continuous.

The following lemma helps us to transform the FBVP

(1.1) into integral equation, which is key to apply fixed

point theorem.

Lemma 3.2 Let 1\b� 2 and k 2 CðJ ;RÞ \ C1ðJ ;RÞ
for f 2 J . Then the FBVP (1.1) has a unique solution

given by

kðfÞ ¼
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh; ð3:1Þ

where Gðf; hÞ is the Green function defined by

Proof For 1\b\2, in view of the Eq. (2.4) we have
CDbkðfÞ ¼ I 2�bg2rðfÞ; f 2 J

Next, from the Lemma 2.7 (Yan et al. 2016b), we obtain

IbCDbkðfÞ ¼IbI 2�bk2rðfÞ
¼I 2k2rðfÞ
¼kðfÞ þ p0 þ p1f:

For p0; p1 2 R. Again assuming, CDbkðfÞ ¼ gðfÞ; f 2 J ,

then we get

kðfÞ ¼IbgðfÞ � p0 � p1f

¼ 1

CðbÞ

Z f

0

ðf� qðhÞÞb�1gðhÞrh� p0 � p1f:
ð3:3Þ

Now using the boundary conditions of the FPBVP (1.1) we

obtain p0 ¼ 0, hence

kðTÞ ¼ 1

CðbÞ

Z T

0

ðT � qðhÞÞb�1gðhÞrh� p1T: ð3:4Þ

Using the Fubini theorem on time scale (Benchohra and

Ouaar 2010, Lemma 3.2) in the Eq. (3.28), then

Z T

0

kðhÞrh ¼
Z T

0

�Z f

0

ðf� qðgÞÞb�1

CðbÞ gðgÞrg� p1f
�
rh

¼
Z T

0

�Z T

g

ðh� qðgÞÞb�1

CðbÞ rh
�
gðgÞrg� p1

2
T2

¼
Z T

0

ðT � qðgÞÞb

Cðbþ 1Þ gðgÞrg� p1
2
T2:

ð3:5Þ

Applying the Eqs. (3.4) and (3.5) in the boundary condi-

tions of the FPBVP (1.1), we get

p1 ¼
Z T

0

h 2lðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ þ
�2ðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ

i
gðhÞrh:

ð3:6Þ

Now using the Eqs. (3.4), (3.5) and (3.6) in Eq. (3.28) we

obtain

kðfÞ ¼
Z f

0

ðf� qðhÞÞb�1

CðbÞ gðhÞrh

�
Z T

0

h 2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ

þ �2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ

i
gðhÞrh

¼
Z f

0

ðf� qðhÞÞb�1

CðbÞ gðhÞrh

�
�Z f

0

h 2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ

þ �2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ

i
gðhÞrh

þ
Z T

f

h 2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ

þ �2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ

i
gðhÞrh

�

¼
Z f

0

h ðf� qðhÞÞb�1

CðbÞ þ 2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ

þ �2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ

i
gðhÞrh

þ
Z T

f

h 2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ

þ �2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ

i
gðhÞrh

¼
Z T

0

Gðf; hÞgðhÞrh:

Gðf; hÞ ¼

ðf� qðhÞÞb�1

CðbÞ þ 2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ þ
�2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ ; if 0� h\f

2fðT � qðhÞÞb�1

ðlT2 � 2TÞCðbÞ þ
�2flðT � qðhÞÞb

ðlT2 � 2TÞCðbþ 1Þ ; if f� h\T :

8
>>><

>>>:

ð3:2Þ
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For the existence and uniqueness result, we assume the

following:

(A1) The mapping K ¼ J � R� R ! R is a ld con-

tinuous in its first variable and continuous in its

second and third variable separately.

(A2) For a function K in (A1), there exists a function

A 2 CðJ ;RÞ, and two constants B[ 0; 0\C\1

such that

jKðf; g1; g2Þj � jAðfÞj þBjg1j þ Cjg2j;

for ðf; g1; g2Þ 2 J � R� R:

(A3) For a function K in (A1), there exist two constants

G;H[ 0 such that

jKðf; g1; g2Þ �Kðf; h1; h2Þj
�Gjg1 � h1j þHjg2 � h2j;

for ðf; hi; giÞ 2 J � R� R, for i ¼ 1; 2:

(A4) The Green function Gðf; hÞ is bounded piece wise

continuous on [0, T]. Moreover, G is non negative

increasing, such that

G ¼ sup
f2J

Z T

0

Gðf; hÞrh:

Later, to prove the existence and uniqueness of the positive

solution of the FPBVP (1.1), we shall use fixed point the-

orems. For this, first we consider the following essential

notations.

Consider a set

AC ¼
�
k 2 CðJ ;RÞ : kkkC � a; kðfÞ� 0; f 2 J

�
ð3:7Þ

and an operator F : AC ! AC defined by

F ðkðfÞÞ ¼
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh: ð3:8Þ

It is obvious that AC is a normal cone in CðJ ;RÞ. h

Definition 3.3 (Abbas 2022, Method of upper and lower

solutions) Consider that Kðf; �; �Þ be a ld continuous

functions for each f 2 J . Let c; d 2 J satisfy

0� c\d� T , and a function k such that k 2 ½c; d�. Define,
the upper and lower control function as Kðf; k; hÞ ¼

sup
c� g� k;h� r

Kðf; g; rÞ and Kðf; k; hÞ ¼

inf
k� g� b;h� r

Kðf; g; rÞ; respectively, where r is a function of

k. Clearly the functions Kðf; k; hÞ and Kðf; k; hÞ is non-

decreasing on k and satisfies the following condition:

Kðf; k; hÞ�Kðf; k; hÞ�Kðf; k; hÞ ð3:9Þ

Definition 3.4 let k; k 2 AC, for f 2 J ¼ ½0; T � such that

0� kðfÞ� kðfÞ� T conform to

kðfÞ ¼
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh ð3:10Þ

kðfÞ ¼
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh: ð3:11Þ

Then the function kðfÞ is a upper solution and kðfÞ is a

lower solution of the FBVP (1.1).

Next theorem is based on the Schauder’s fixed point

theorem (see Tikare and Tisdell 2020).

Theorem 3.5 If the assumptions (A1)–(A4) hold and

0\G ¼ sup
f2J

Z T

0

Gðf; hÞrh� T

for T 2 Rþ, then the Eq. (1.1) has at least one solution.

Proof Assume that CDbknðfÞ ¼ gnðfÞ; n 2 N and
CDbkðfÞ ¼ gðfÞ; f 2 J . Consider F : AC ! AC, the

mapping defined in (3.8). We divide the proof into the

following steps:

Step 1: The operator F : AC ! AC is continuous.

Let fkngn2N be a sequence in AC which is converges to

k in AC. Now, for f 2 J we have

jF ½kn�ðfÞ � F ½k�ðfÞj �
Z T

0

jGðf; hÞ
�
Kðh; knðhÞ; gnðhÞ �Kðh; kðhÞ; gðhÞ

�
jrh

�
Z T

0

jGðf; hÞjjgnðhÞ � gðhÞjrh:

ð3:12Þ

For, gn; g 2 AC: In view of (1.1) for h 2 J we get

jgnðhÞ � gðhÞj ¼ jKðh; knðhÞ; gnðhÞÞ �Kðh; kðhÞ; gðhÞÞj

�
ðA3Þ

GjknðhÞ � kðhÞj þHjgnðhÞ � gðhÞj:

This gives

jgnðhÞ � gðhÞj � G

1�H
jknðhÞ � kðhÞj: ð3:13Þ

Now using the Eqs. (3.13) in (3.12), and taking the norm of

CðJ ;RÞ, we get

kF ½kn� � F ½k�kC �
ðA4Þ GG

1�H
jjkn � kjjC; ð3:14Þ

This yields that the right side of (3.14) approaches to 0 as

kn approaches k. Hence, F : AC ! AC is continuous.

Step 2: The operator F : AC ! AC is bounded. From

(3.7), one can write for f 2 J
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kF ½k�ðfÞk�
Z T

0

jGðf; hÞKðh; kðhÞ;C DbkðhÞÞjrh

�
Z T

0

jGðf; hÞKðh; kðhÞ; gðhÞÞjrh

�
Z T

0

jGðf; hÞjjgðhÞjrh:

ð3:15Þ

For g 2 AC; h 2 J . In view of Eq. (1.1) for h 2 J we

have

jgðhÞj ¼ jKðh; kðhÞ; gðhÞÞj

�
ðA2Þ

jAðhÞj þ BjkðhÞj þ CjgðhÞj:
ð3:16Þ

Using the Eq. (3.7) we have

jgðhÞj � jAðhÞj þ BjkðhÞj
1� C

: ð3:17Þ

Using (3.17) in (3.16) and applying the norm of CðJ ;RÞ,
we obtain

kF ½g�ðfÞk�
Z T

0

jGðf; hÞj kAk þ Bkkk
1� C

rh:

�
ðA4ÞGðkAk þ BaÞ

1� C
:

That is

kF ½g�ðfÞk� TðkAk þ BaÞ
1� C

: ð3:18Þ

Thus, the operator F : AC ! AC is bounded.

Step 3: The operator F : AC ! AC is equicontinuous.

Let f1; f2 2 J such that f1\f2, then for g 2 AC; we get

kF ½g�ðf1Þ � F ½g�ðf2ÞkC

�
Z T

0

	
	
	Gðf1; hÞKðh; kðhÞ;C DbkðhÞÞrh

� Gðf2; hÞKðh; kðhÞ;C DbkðhÞÞrh
	
	
	

¼
Z T

0

	
	
	Gðf1; hÞrh� Gðf2; hÞrh

	
	
	jKðh; kðhÞ;C DbkðhÞÞj

¼
Z T

0

	
	
	Gðf1; hÞrh� Gðf2; hÞrh

	
	
	jgðhÞj

�
ð3:1Þ Z T

0

	
	
	Gðf1; hÞrh� Gðf2; hÞrh

	
	
	
� jAðhÞj þ BjkðhÞj

1� C

�
:

That is

kF ½g�ðf1Þ � F ½g�ðf2Þk�
GðkAk þ BaÞ

1� C
Z T

0

	
	
	Gðf1; hÞrh� Gðf2; hÞrh

	
	
	:

ð3:19Þ

Since, the Green’s function is continuous so f1 ! f2, then
kF ½g�ðf1Þ � F ½g�ðf2Þk ! 0. Thus the operator F : AC !
AC is equicontinuous. Now, since F ðACÞ is bounded and

equicontinuous, then by the Theorem 2.7 the operator F :

AC ! AC is relatively compact. So, by virtue of Schau-

der’s fixed point theorem the operator has a fixed point,

which is the solution of the FBVP (1.1). h

The existence of positive solution of the FBVP (1.1) is

based on the Schauder’s fixed point theorem.

Theorem 3.6 If the assumptions (A1) - (A4) hold and if

kðfÞ and kðfÞ be a pair of upper and lower solutions, then

the FBVP (1.1) possess at least one postive solution.

Additionally

kðfÞ� kðfÞ� kðfÞ; f 2 J :

Proof Consider a set

D ¼
�
kðfÞ 2 AC : kðfÞ� kðfÞ� kðfÞ; f 2 J

�
:

Clearly, the set D is convex, bounded, and closed subset of

CðJ ;RÞ: Taking into account of Theorem 3.5, we have

that the opeartor F : D ! D is relatively compact. Now

for k 2 D; f 2 J we have

kðfÞ� kðfÞ� kðfÞ.
By using (3.9) we obtain

F ½k�ðfÞ ¼
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

�
ð3:9Þ Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

�
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

� kðfÞ:

ð3:20Þ

Similarly

F ½k�ðfÞ ¼
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

�
ð3:9Þ Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

�
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

� kðfÞ:

ð3:21Þ

From (3.20) and (3.21) we get

kðfÞ�F ½k�ðfÞ� kðfÞ; f 2 J :

Thus F ½k� 2 D, hence the operator F : D ! D is relatively

compact. So by virtue of Schauder’s fixed point theorem,
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F has a fixed point in D, which is a positive solution of the

FBVP (1.1) in AC. h

Corollary 3.7 Suppose the assumption (A1) hold. If there

exist M1;M2 2 Rþ, 0\M1 �M2 such that

M1 �Kðf;w;/Þ�M2 ð3:22Þ

for ðf;w;/Þ 2 J � R� R, then the FBVP (1.1) has at

least one positive solution k 2 AC. Moreover kðfÞ satisfies
Z T

0

Gðf; hÞM1rh� kðfÞ �
Z T

0

Gðf; hÞM2rh: ð3:23Þ

Proof Using (3.9) we have

M1 �Kðf;w;/Þ�Kðf;w;/Þ�M2: ð3:24Þ

Let us consider the equation

CDbkðfÞ ¼ M2; f 2 J

kðTÞ ¼ l
R T

o kðhÞrh; l 2 R

kð0Þ ¼ 0;

8
><

>:
ð3:25Þ

which has a positive solution given by

kðfÞ ¼
Z T

0

Gðf; hÞM2rh:

In view of (3.24), we obtain

kðfÞ�
Z T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞrh: ð3:26Þ

Similarly, for the dynamic equation

CDbkðfÞ ¼ M1; f 2 J

kðTÞ ¼ l
R T
o kðhÞrh; l 2 R

kð0Þ ¼ 0;

8
><

>:

has a positive solution given by

kðfÞ ¼
Z T

0

Gðf; hÞM1rh

�
3:24ÞZ T

0

Gðf; hÞKðh; kðhÞ;C DbkðhÞÞrh

ð3:27Þ

Thus, from (3.26) and (3.27), we obtain the solutions

kðfÞ; kðfÞ are the upper and lower solution of the equation

(1.1), respectively. Hence, an implementation of Theo-

rem 3.6 we conclude that the FBVP (1.1) has atleast one

positive solution kðfÞ 2 AC; f 2 J which satisfies the

inequality (3.23). h

For uniqueness of the positive solution, we use Banach

fixed point theorem (Tikare and Tisdell 2020).

Theorem 3.8 Let the assumptions (A3), (A4) hold. If

GG

1�H
\1;

then the equation (1.1) has a unique solution.

Proof Let CDbkiðfÞ ¼ giðfÞ; f 2 J and i ¼ 1; 2. Then

for k1; k2 2 AC we have

kF ½k1�ðfÞ�F ½k2�ðfÞk

�
Z T

0

	
	Gðf;hÞKðh;k1ðhÞ;CDbk1ðhÞÞrh

�Gðf;hÞKðh;k2ðhÞ;CDbk2ðhÞÞrh
	
	
	
	

�
Z T

0

	
	Gðf;hÞrh

	
	
	
	
	Kðh;k1ðhÞ;g1ðhÞ�Kðh;k1ðhÞ;g2ðhÞÞ

	
	
	

�
Z T

0

	
	Gðf;hÞrh

	
	jg1ðhÞ�g2ðhÞj:

ð3:28Þ

For g1; g22AC. But in view of (1.1) for h2J

jg1ðhÞ � g2ðhÞj ¼ jKðh; k1ðhÞ; g1ðhÞÞ �Kðh; k2ðhÞ; g2ðhÞÞj

�
ðA3Þ

Gjk1ðhÞ � k2ðhÞj þHjg1ðhÞ � g2ðhÞj

� G

1�H
jk1ðhÞ � k2ðhÞj:

This gives

jg1ðhÞ � g2ðhÞj �
G

1�H
jk1ðhÞ � k2ðhÞj: ð3:29Þ

Now using (3.29) in (3.28), we obtain

kF ½k1�ðfÞ � F ½k2�ðfÞk�
G

1�H

Z T

0

Gðf; hÞkk1 � k2krh

�
ðA4Þ GG

1�H
kk1 � k2k

ð3:30Þ

Since, GG
1�H\1, the mapping F : AC ! AC is contractive.

Hence, by Banach contraction theorem the operator has a

unique fixed point, which is a solution of the FBVP

(1.1). h

4 Illustrative Example

Example 4.1 Consider a time scale T ¼ ½0; 1� [ ½2; 3� and
T = 2, then J ¼ ½0; 2� \ f2g ¼ ½0; 1� [ f2g. Consider the
FPBVP

Iranian Journal of Science

123



CD1:5kðfÞ ¼ e�2f

5ð2þ e3fÞ
�
1þ kðfÞ þC DbkðfÞ

�
; f 2 J

kð2Þ ¼
R 2

0
kðhÞr

kð0Þ ¼ 0:

8
>>><

>>>:

ð4:1Þ

Here

Kðf; kðfÞ;C D1:5kðfÞÞ ¼ e�2f

5ð2þ e3fÞ
�
1þ kðfÞ;C D1:5kðfÞ

�

ð4:2Þ

which satisfies condition (A1).

Again,let

CD1:5kðfÞ ¼ gðfÞ; f 2 J ; for g 2 AC

we have

jKðf; kðfÞ; gðfÞÞj ¼
	
	
	

e�2f

5ð2þ e3fÞ

�
1þ kðfÞ þC D1:5kðfÞ

�		
	

� j 1
15

j þ 1

15
jkðfÞj þ 1

15
jgðfÞj:

ð4:3Þ

Here (A2) is satisfy with A ¼ 1
15
; B ¼ 1

15
; C ¼ 1

15
. Simi-

larly, assume that

CD1:5kiðfÞ ¼ giðfÞ for giðfÞ 2 AC; f 2 J :

Then

jKðf; k1ðfÞ; g1ðfÞÞ �Kðf; k2ðfÞ; g2ðfÞÞj

¼
	
	
	

e�2f

5ð2þ e3fÞ
�
1þ k1ðfÞ þ g1ðfÞ

�

� e�2f

5ð2þ e3fÞ

�
1þ k2ðfÞ þ g2ðfÞ

�		
	

� 1

15
jk1ðfÞ � k2ðfÞj þ

1

15
jg1ðfÞ � g2ðfÞj:

That is,

jKðf; k1ðfÞ; g1ðfÞÞ �Kðf; k2ðfÞ; g2ðfÞÞj

� 1

15
jk1 � k2j þ

1

15
jg1 � g2j

ð4:4Þ

which satisfies the condition (A3), with G ¼ 1
15
; H ¼ 1

15
.

Further, from the boundary conditions

kð0Þ ¼ 0; kð2Þ ¼
R 2

0
kðhÞrh, using the Eq. (3.2) of Green

function for T ¼ 2 and the Proposition 2.9, we have

	
	
	

Z 2

0

Gðf; hÞrh
	
	
	�

	
	
	

Z 2

0

Gðf; hÞdh
	
	
	

�
	
	
	

1

Cð0:5Þ

Z f

0

ðf� hÞ0:5dh
	
	
	

� 2:

That is, for f 2 J we can assume

G ¼ sup
f2J

Z 2

0

Gðf; hÞrh� 2: ð4:5Þ

This yields that (A4) is satisfied. Thus in view of

Eqs. (4.2), (4.3), (4.4) and (4.5) we have, all conditions of

the Theorem 3.5 is satisfied. Hence, the FBVP (4.2) has a

solution.

Putting the above data from (4.4) and (4.5), the

inequality

GG

1�H
� 2

14
\1; is satisfied. ð4:6Þ

Thus, in view of (4.4), (4.5) and (4.6), all the condition of

the Theorem 3.8 are satisfied which implies the unique

solution of the FBVP (4.1). Again, for any k 2 AC, from

Lemma 3.7, the solution is given by

kðfÞ ¼
Z 2

0

Gðf; hÞ
h e�2f

5ð2þ e3fÞ
�
1þ kðfÞ þC D1:5kðfÞ

�i
rh:

Setting kðfÞ ¼ f, for f 2 ½0; 1� [ f2g then we obtain

1

15
� kðfÞ� 2

15
:

In view of the Corollary 3.7, M1 ¼ 1
5
; M2 ¼ 2

5
. Hence, we

say that the positive solution kðfÞ of the FBVP (4.1) satisfy

the following condition:

1

5

Z 2

0

Gðf; hÞrh� kðfÞ� 2

5

Z 2

0

Gðf; hÞrh:

Thus, as an implimentation of the Theorem 3.6, the upper

and lower solutions are given by

kðfÞ ¼ 2
5

R 2

0
Gðf; hÞrh and kðfÞ ¼ 1

5

R 2

0
Gðf; hÞrh.

.

5 Conclusion

In this paper, we have discussed the existence and

uniqueness of the positive solution of a fractional dynamic

equation involving integral boundary condition on time
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scales with the newly developed Caputo derivative (see

Gogoi et al. 2021) in the sense of nabla (r) derivative on

time scales. Our approach is based on the Schauder’s fixed

point theorem which allows to prove the existence of the

required solution. For the gurantee of the unique solution

we apply Banach fixed point theorem. One illustrative

example is also given for better understanding the results.

We believe the results presented here are employable in the

mathematical modelling of hybrid continuous and discrete

phenomena. Further, the involvment of nabla (r) deriva-

tive gives significantly better accuracy in the modelling

procss. Apart from this, we can say that the topic has

potential application in population dynamics, Engineering

sciences, Economics, etc.

The discussion of the qualitative properties of the

solutions such as stability analysis, continuous dependency,

etc. of nonlinear fractional dynamic equation with different

types of boundary conditions will be our future work.
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