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Abstract

In this work, we introduce a feasible and efficient method for solving weakly singular fractional pantograph delay integro-
differential equations. To implement the proposed method, we get the operational matrices based on the shifted fractional-
order fifth-kind Chebyshev polynomials. These matrices, together with the collocation method, are applied to convert the
main equation to a system of algebraic equations. We consider the existence and uniqueness of solutions and then give an
upper error bound for this method. At last, several numerical tests are carried out to demonstrate the usefulness and

capability of the suggested algorithm.

Keywords Delay inetgro-differential equation - Collocation method - Operational matrix - Shifted fractional-order fifth-
kind Chebyshev polynomials - Caputo fractional derivative - Riemann-Liouville integral - Weakly singular

1 Introduction

Fractional calculus is a part of mathematics that investi-
gates derivative and integral operators of arbitrary orders. It
is an attractive field of applied analysis having the aim of
simulating biological issues in science (Ata and Kiymaz
2023; Jafari et al. 2023; Bhatter et al. 2024; Singh et al.
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2023). The numerous properties of fractional operators
have generated considerable interest in fractional calculus
in recent years. As well as, it has provided a powerful tool
for describing many physical phenomena so that nowadays,
many researchers widely utilize fractional differential
equations for modeling in engineering science and mathe-
matics problems, you can see Podlubny (1998); Hilfer
(2000); Sweilam et al. (2007); Khan and Atangana (2020);
Atanackovi et al. (2014); Baleanu and Agarwal (2021).
The fractional integro-differential equations have good
applications for describing the physical phenomena in the
real world system. The fractional delay integro-differential
equations are a category of these equations which are of
interest to scientists due to the better clarification of
behavior of the real processes. Therefore, finding the
solutions of the fractional delay integro-differential equa-
tions is very important, but most of them do not have
analytical solutions or the calculations of the analytic
solutions of these equations are hard and even impossible.
Due to the practical application of these equations, getting
a numerical solution is essential. In recent years, a good
deal of the attempt has been devoted to the numerical
solutions of the delay integro-differential equations. For
example, In Rezabeyk et al. (2020), authors have used the
operational matrices based on the fractional-order Euler
polynomials to solve fractional-order delay integro-
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diferential equations. Doha and Ezz-Eldien applied a col-
location spectral approach based on shifted Chebyshev
polynomials to solve a general form of PVIDEs (Ezz-
Eldien and Doha 2019). In Yang and Huang (2013), a
spectral Jacobi-collocation approximation was proposed
for fractional-order PVIDEs. The Legendre spectral col-
location methods were used to approximate smooth solu-
tion PVIDEs (Yunxia and Yanping 2012). The Sinc
collocation method was considered to obtain the numerical
solution of PVIDEs (Zhao et al. 2017). A collocation
method based on the Laguerre polynomials was presented
in Yiizbas1 (2014) to solve PVIDEs under the initial con-
ditions. In Bellour et al. (2020), an algorithm based on the
Taylor polynomials was presented for approximating the
solution of second-order linear delay differential and inte-
gro-differential equations. A numerical technique based on
the Dickson polynomials was investigated for solving
generalized delay integro-differential equations with
functional bounds (Kiirkgii et al. 2018). In this paper, we
consider the following weakly singular fractional pan-
tograph delay integro-differential equations (FPDIDEs)
with proportional delay:

s [TK(x2)y(2) o [ K 2vaz)
D}y(x)—/h/o =2 dz + 2/0 =2 dz

qx
+},3/ K3(x,2)y(z) dz
0

+ g(x)y(gx) + p(x)y(x) +f(x),
YW(0) =¥,

m—1<y<m,

x €[0,1],

j=01,...m—1,

(1)

where m=[y] is the ceiling function of 7y,
Ki(x,z),K2(x,z),K3(x,z) are continuous known functions
defined on [0,1] x [0,1] , O<u,v<1, 41,42, 43 € R are
constants, g € (0,1), D’ is the Caputo fractional derivative
operator, and y(x) is an unknown function.

Since the fractional derivative is essentially a global
differential operator, so using a global method is normal.
Therefore, the spectral method for its global feature and
high order accuracy is natural. For some of the important
applications of these methods, see Singh et al. (2020);
Babolian and Shamloo (2008); Sabermahani et al. (2020);
Boyd (2001); Doha et al. (2019); Zheng and Chen (2021).
The spectral collocation method presents the approximate
solutions as a finite series of basic functions that are usually
orthogonal polynomials. One of these orthogonal polyno-
mials is the Chebyshev polynomials that have been
extensively applied to solve various problems (Azevedo
et al. 2020; Sahlan and Feyzollahzadeh 2017; Abd-Elha-
meed and Bassuony 2015; Abd-Elhameed and Youssri

52, €\ Springer

2019). In Masjed-Jamei (2006), Masjed-Jamei introduced
the new categories of the Chebyshev polynomials that
recently have been used by a few authors Babaei et al.
(2020); Abd-Elhameed and Youssri (2018); Atta et al.
(2021); Abd-Elhameed and Youssri (2019). Less being
considered the fifth-kind Chebyshev polynomials as basis
functions and also the importance of the pantograph
equations for modelling many phenomena motivate us to
present a new algorithm for solving equation (1). There-
fore, by applying the shifted fractional-order fifth-kind
Chebyshev polynomials, we demonstrate their efficiency as
a basis function. For this aim, first, by utilizing the com-
bination of the collocation method with operational
matrices, the main equation is converted to an algebraic
equation. Then, by substituting roots of the (N + 1)-th
shifted fifth-kind Chebyshev polynomials as the collocation
points, we get the algebraic system that can be solved by
Newton’s iterative method. The rest of the article is
arranged as follows: In Sect. 2, we review some necessary
definitions and properties of the fractional calculus. Then,
we consider the existence and uniqueness of the problem
under-study in Sect. 3. The shifted fractional-order fifth-
kind Chebyshev polynomials are introduced in Sect. 4, and
we get the operational matrices in Sect. 5. In Sect. 6, we
present the numerical method and get the error bound in
Sect. 7. In Sect. 8, we solve some numerical test examples
for indicating the efficiency of the proposed method. At
last, we present the main conclusions in Sect. 9.

2 Fractional Operators

In this section, we present some definitions and properties
of fractional integral and derivative operators, which will
be used later.

Definition 2.1 Let « > 0, the operator J”, defined on
L'[0,00) by Podlubny (1998); Nemati et al. (2016):

Jf(x) = FL)/OX(X — 2" (2) dz, o>0, x>0.

(o

is called the Riemann-Liouville fractional integral operator
of order a.

Definition 2.2 Let a € R, n—1<ua<n, ne N, and
f(x) € C"[0,00), then the Caputo fractional derivative of
order « > 0 is defined by Podlubny (1998); Nemati et al.
(2016) as:

aprn L @)
0D (x) = I'( )/0 (x —z)"" %

n—ao
f(n) (Z),

where I'(x) is the Gamma function:

o =n,
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I'(x) = / e dz, Re(z) > 0,
0

I'(x+1) =xI"(x),
1
r
B(uﬂ}) :/ 1“71(1 — Z)V_l dz = M,
0 (u+v)
Re(u),Re(v) >0
The last integral is often called the Beta integral.

The Riemann-Liouville integral operator J* and the
Caputo fractional derivative operator D* satisfy the fol-
lowing properties:

L B = ) = 3

(
) =ad )+ gx),

3 Sy(bf( (x—
Zf ())i' n—1l<oa<n, x>0,
0, o>y,
gy INE 1 , .
4. Dx 1_((/—’__'_)1))5’“, otherwise,
Y — o
5. S“xvz%xwa, v> —1,

where o, o1, 00,7 € RT and ¢1, ¢, € R.

3 Existence and Uniqueness of the Solution
of Fractional-Order Delay Integro-
Differential Equation

The main aim of the current section is to prove the
uniqueness of the solution of Eq. (1). For this aim, we use
the fixed point theorem. We denote Banach continuous
functions by C(J),J = [0,1] with the maximum norm as
llglls = max lg(x)] for g€ C{J). Moreover,

C™?(J),m>0,0 €[0,1] is the space of all functions
whose m—th derivatives are Holder continuous with the
exponent ¢ and equipped with the following norm:

llene = max max [y (x)]

0<k<m
YW ) —y W ()]

+ max sup |x—t\”

0<k<m XAt

Furthermore, suppose that B, is a closed ball defined as
B, = {y(x) € C"(J) | [yl s < 1}

Now, we apply the Riemann-Liouville fractional inte-
gral operator of the order y on Eq. (1) and get the following
integral equation:

_ )vll"(l — ,I.L)
/ox(x —2) "Ki(x,2)y(2) dz
% /0 (x—2)""Ka(x, 2)y(q2) dz

+ 1% ( /qu K3(x,2)y(z) dz)

" ﬁ/ox(x — )" g(2)y(q2) dz

- ﬁ/ox(x —2)"'pl2)y(z) dz

1 * .
+W /0 (x— 2" Yf(2) dz,
Z Y (0) ") 0 .

|21 [C(1— )M,
T(y—p+2)

<y <1 then fractional-order delay integro-differ-

where G(x) =

T(=0My | slgM
+ 2( )—v+2) + AE;{H; +

Theorem 3. 1 If

(N14N,)
T'(y+1)
ential Eq. (1) has a unique solution (Biazar and Sadri
2019) .

Proof Suppose that V = C"™°(J) and we define the map-
ping Ey(x) : V. — V as follows:

Fufe) — A1 —p)

/0 "6 — 2K (6, 2)y(2) de

Hl(1=v) [ -
m/o (x = 2)" " Ka(x, 2)y(gz2) dz

+ 3y ( /qu K3(x,2)y(z) dz)

T I G
R CCL:
+ r(lv) /Ox(x — 2" f(2) dz.

To use the fixed point theorem, we must show that = has a
fixed point. For this purpose we must prove that 2B, C B,
while  r>n (|Gl + ;) where oy #£0,-+
m<1,F = max[[f(x)]l, and set [Kill <My, [[Ko]l <

Mo, Kl <M. gl <N [Pl < Na- So we have:
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—_ 1 * el
nnﬂumsnGmﬁ+f:—/\x—4’uﬂudz

|;u[|r / |
Il —pu+y)

IbW /|
rl—v+y

+Mﬂ?(A 1K oo Il e 2)

4 /ﬂ gl
P X—2z 8 y
F(y) 0 *©

1 /" b1
+ = x=z" Pl vl gne dz

— 2 MK oIy

omo A2

"Il Yl one dz

ome dZ

F
< (/|G —_
n <|)~1|r(1 — WMy ||T(1 —v)My
ToG—pu+2)  Th—v+2)
|}v3|M3q (N1 +N2)>
+
r'y+2 TI(y+1)
< L+mr§r.
M

Thus, = maps B, into itself, so we show that this map has a
fixed point. For y;(x),y2(x) € V, we have:

I1Ey1 — Eyall one

|41 (1 / _
Si e — 2Kl = 2l ome
F(“/ u+ «

v y—y
/ e =2 Kl llyr = y2
0

F(y—v+ 1)
o~ qx
AT ([ 1Kalelr = s2lenr @)

| cme dz

1 / -
== k=2 lellollyr = y2llens dz
F(”/) 0 ¢

1 /" i
+=— [ k=2 lpllsllyr — y2llcne dz
() Jo > ¢

< (farU=st, Vol v
TANT@-p+2)  TO-v+2)
|23|M3g (N1 + N>)

To12) T o)~ velene

According to the assumption of the theorem we have

[T (1=p)M, [T (1=v)M, |73]gM3 (N1+N>)

Mo T TG T o) T rgen <M<l the
operator Z is a contraction mapping, therefor a unique
fixed point y(x) € B, exists such that Ey(x) = y(x). O

22, Q) Springer

4 Fractional-Order Fifth-Kind Chebyshev
Polynomials

In this section, we introduce the shifted fifth-kind Cheby-
shev polynomials (SFKCP). Then, we present relations
associated with the shifted fifth-kind Chebyshev polyno-
mials of the fractional order.

4.1 Shifted Fifth-Kind Chebyshev Polynomials

The shifted fifth-kind Chebyshev polynomials are defined
on the interval [0, 1]. These polynomials are orthogonal
with the weight function w(r) = (2¢ — 1)*/v/t — 2 which
these polynomials are determined by the recurrence rela-
tion as follows:

Fi (1) = (2t — 1)F; (1)
G-
4G-1) il
j>1, te€]o,1],
Fi(r) =1, Fi(r)=2r—1,

And the orthogonality relation of Chebyshev polynomials
is as:

/1 F; (1)F; (t)w(1) dt = bidy;,
0

where
s .
W’ 1 even,
bi = n(i + 2) . (3)
2T odd.

The analytic form of the fifth-kind Chebyshev polynomials
is shown as the following series:

J
F; (t) = Z érljlra (4)
r=0
J
20 (=" md, @QmAr—1)
3%_: IJ 2m —r)! o Jeven
.2 )T
Crj “on i1 (5)
L& ()" Qm+ 1) @m+ )
}Zr @m—r+ 1)l J odd,
f:LEJ
where
1
(Sm = 5, "= 0’
1, m>0,
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And 50’2]' = 2—11 fOI'j = O, 1,2 .
4.2 Shifted Fractional-Order Fifth-Kind
Chebyshev Polynomials

The shifted fractional-order fifth-kind Chebyshev polyno-
mials (SFFKCP) are obtained by changing ¢ to x(g > 0)
dependent on the shifted fifth-kind Chebyshev polynomi-
als. We denote the fractional-order fifth-kind Chebyshev
polynomials, F;(x?) by F\”)(x). It is clear that the shifted
fifth-kind Chebyshev polynomials are got for ¢ = 1. The
weight function is w(®(x) = ox1(2x7 — 1) /V/x7 — x29.
Additionally, the relations (2)—(5) are changed over to:

= (2" = )F" (v)

LG EY @) e
j>1, xelo,1],
FOW =1, F7270x)=2"-1,

©)(x) dx = b3y,

and the analytic form of these equations is:

J
§ or
= ér.j X,

r=0

where b; and £, ; are the same in (3) and (5), respectively.
We can approximate a continuous function y over the
interval [0, 1] by a finite series of the shifted fractional-
order fifth-kind Chebyshev polynomials as follows:

(o)
~ > GF7(x)

=0

= CTF) (x) = F9T(x)C,

where
T
F() =AY @), F ), FY )]
T
C :|:C0aC17' "7CN:| )

Such thatthe coefficients C; are obtained by:

= / YEE? () (x) di, )

b; Jo
And b, is defined in Eq. (3). Also, we can express any
continuous two-variable functions, say K(x, z), defined on

the domain [0, 1] x [0, 1] in the finite series of the shifted
fractional-order fifth-kind Chebyshev polynomials as
follows:

()F" (z) = FOT (x)KF©)(z),

i=0 j=0

where K is a (N + 1)
obtained as follows:

X (N + 1) matrix and its entries are

1 1 1
K :W/ K(x, z)Fl@ (x)F;U) (2)w' (x)w'?)(2) dxdz,
i 0

i,j=0,1,2,...,N.

5 Operational Matrices

In this section, we present how to obtain the operational
matrices for all of the terms in (1).

5.1 The Integral Operational Matrix

To derive the integral operational matrix, we first apply the
Riemann-Liouville integral operator to SFFKCPs analytic

form as follows:
(Z 511 )

d Col+1) .,

Cri
' T(ol+y+1)

RIGUOIEN
(8)

b

Then, we expand X7 in terms of the shifted fractional-
order fifth-kind Chebyshev polynomials:

N
O Z CIJFj(a) (x),
=0

Using orthogonality properties of SFFKCPs, the coeffi-
cients C;; are gotten by Eq. (7) as below:

I .

Clj=¢ / *E (0w d,
biJo

By calculating coefficients C;; and replacing the approxi-

mate value of x”*7 in Eq. (8), we have:
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N i
=~y ( (o) N (ol +1)yn
J(F7 W) ~Z{1_0 S

i AT(L+k+7y/a+5/2)
Xzék'f{ T(l+k+7y/0+3)

_AT(I+k+y/0+3/2)
T(l+k+7/o+2)

F'tk+1+y/c+1/2) (o)
T TUtktyjor D) ”FJ ),

S (@)
= pli.)F°

J=0

Let F()(x) be the SEFKCPs vector, we can rewrite the last
relation in the matrix form as follows:

I (F () = PYF (), ©)

where PU) is the integral operational matrix with the fol-
lowing entries:

(ol +1)yn
Zé” (ol + 7y + 1)b;
J AT(I+k+7y/o+5/2)
Zé”[ T(I+k+y/c+3)
_4T(l+k+y/0+3/2) r(k+l+y/a+1/2)]
IF(l+k+7y/c+2) I(l+k+y/c+1)

5.2 The Product Operational Matrix

To obtain the product consider

F7(x),F" (x),F" (x) that are ith, jth, kth shifted frac-

tional-order fifth-kind Chebyshev polynomials, respec-
(x) and F

,@ (x) as

operational matrix,

tively. We can obtain the product of F j(“)
follows:

QN () = F7F (x) = Y 209x, (10)

where the coefficients /lg’k) are determined by the following

algorithm:

22, Q) Springer

Ifj>k:
r=0,1,....7+k,
ifr>jthen
I SR
l=r—j
else

7 = min{r, k}

AU l;) &1, &k

end if. .
r=0,1,...5+k,
if r < j then

7= min{r it

AR = Z ISR RIS

else

7 = min{r, k}

R
I=k—j
end if.

1,5 &Lk

The quantities & and ¢,_;; are the coefficients in the

analytic form of F\”)(x) and F j@ (x) that were introduced in
Eq. (5). Now, suppose V is a (N + 1)—vector and let
F(x)F7 (x)V ~ VF“(x) where V is the (N+1) x
(N + 1) product operational matrix of SFFKCPs and its
entries are obtained by

/k - bk Z V Sijk s

where V; is the element of the vector V and s is got as
follows:

1
S = / FOWF (@)F (0w (x) dx.
0

Using Eq. (10), we have:

J+k

Sijk = Z 20 / X7 (x)w'? (x) dx,

By substituting the analytic form of SFFKCPs in the above
integral and calculating the integral, we have:

Jj+k
i 72;@;( th {w

+1+3)
_4r(r+l+3/2) I(r +l+1/2)}
L(r+1+2) L(r+1+1)
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5.3 Approximating the Basis Functions Including
the Delay

Here, we consider delay function % :[0,1] — [0,1] as
h(x) = gx. To find the relation between basic functions
including the delay and the desired basic functions, we
assume:

T
F(gx) = [F§(g0), " (@), ..

FY (a0

where

J
= Z ér,j(qx)gr'
r=0

Now, we approximate Ah(x) =gx using SFFKCPs as
follows:

N
(g0)" = Y ayF}” (),

j=0
where a,,; are gotten by applying Eq. (7), thus we have:

ar

) = - [ ) . (1)

By substituting the analytic form of SFFKCPs and per-
forming integral (11), we obtain:

N i ar
F =330 O
Jj=0

! AT(r +m+5/2)
ZO [ (r+m+3)

F(r+m+l/2) ()
" TeimrD }}FJ (x)

_AL(r+m+3/2)
I'(r+m+2)

Also, the last relation can be rewritten as a matrix form as
follows:

F©(gx) ~ DF'")(x), (12)
where

doo dor ... don

do dn ... diy
D = ,

dNO le “ e dNN

And its entries are as below:

[4F r+m+5/2)

i Ur
Dz] = Z ér,[

r=0 m=0 r+m+3
41"(r+m+3/) F(r+m+1/2)] =01 N
— i,j=0,1,...,N.
I'(r+m+2) I'r+m+1) J ’ ’

5.4 Approximating the Integral Part
with a Singular Kernel

Now, we present a matrix form of the integral with the

singular kernel in Eq. (1). For this aim, suppose that
T

FO)(x) = [F(()”) (), F(x),...,F (x)] is the SFFKCPs

vector and 0 < u< 1. Then, we have:
X F(G)T(Z / 70m
m, — d )
A ( Z) [mzoé 0 X — Z)u Z
. rX Z(T”l
"'sz::gm.N ‘/mzom dz}

om+ I)F(l :u) om—p+1
Lzofmo T(om— p+2) * ’

ZCmN

m=0

(Tm + l)r(l - :u)x(rm—;ﬁ»l
T(om—p+2) ’

We approximate x”"**! in terms of SFFKCPs:

N

om—u+1 (o)

x0T NZalij (x),
Jj=0

where

1

’l
b / x”’”’““[v“j(”)(x)w(“)(x) dx.
i

ag =

According to the analytic form of SFFKCPs and

w@) (x) = ax”1(2x7 — 1)*/v/x% — x2%, we have:
1 ! (2" — 1)
—— & am—pi+1 -1 d ,
ajj I)i; 'kd/() X ox 0 /x

Using the definition of the Beta function to calculate
integral, we obtain:

Zémt

N N (om+ 1)I'(1 — p)v/m
Nz{zf,n, s

am+ (1 —p)
(om —p+2)

xom= 1

1 4T (m+k+5/2+ 12
Xzé’”[ T(m+k+3+ ”)

AT (m+k +3/2 + 14
C(m+k+2+14

X (o)
= biF7(x),

Jj=0

r(m+k+1/2+%)] F ()
C(m+k+1+128 !

i=0,1,...,N,

Thus, we get:
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xF(a)T(Z>
dz ~ BWF© (x), 13
;G e B )

where B is an (N + 1) x
the following entries:

(N + 1) operational matrix with

Z Com+ DIT(1 — p)v/n
” Smi (om — u+2)b;
zf':é {4Fm+k+5/2+1 Ly
YU T+ e+ 3+18)
_4r(m+k+3/2+%)
C(m+k+2+134)

m=0

F(m+k+1/2+%)}
T(m+k+1+18

6 Application of the Operational Matrices

In this section, we explain how the fractional-order delay
integro-differential equations are solved using the obtained
operational matrices and presenting appropriate approxi-
mations. To implement the method, we first consider
Eq. (1) under the given initial conditions. We approximate
the function ©’y(x) in a matrix form as follows:

Dy(x) ~ FT(0)C, (14)
Also, we  approximate the known  function
G(x) =30, y(kl)d(()) xk, we have:
1 /! ”
G(x) ~FOT(x)€, G -5 / G(x) F\” (x)w(® (x) dx.
iJo

(15)

Then, we apply properties of the Caputo fractional
derivative operator and using the integral operational

matrix P() that has been obtained in the previous sec-
tion. Thus, we get:

y(x) = FO ()P

By utilizing approximations obtained in Sect. 5, we have
for the remaining terms:

NC 4+ FOT(x)€ = FOT (x)U. (16)

Ki(x,2) ~ FT (x)KiF)(2),
Ka(x,2) ~ FOT (x) KoF)(2),
K3(x,2) ~ FT (x) K;F)(2), (17)
g(x)y(gx) ~ g(x)F(”)T(X)DU

p()y(x) ~ p()F T (x)U.

Now, using approximations (17), we get:

52, €\ Springer

/OxKl(m)y(Z) dz%/o"F“’)T() ( "QFTQU

(x—2)" x—z)

_ [T F)(z)
~F (x)K,U / d
WY J G

~ F(")T(x)Kl UBWF(©) (x),

(18)

Such that U is the operational matrix of the product cor-

responding to the vector U and B™W is the matrix intro-
duced in (13). Similarly, using the approximations in (12)
and (17), we have:

* K> (x,2)y(qz) *FOT (x) K,F) (2)F7 (2)U,
/o - ’“/o Ty &

~ [FFO(@)
~F9x)K, U / d
S e}

~FT(x)K,U;BYF) (x),

U =D"U
(19)
Also, we can approximate the integral [ K3(x,z)y(z) dz as
follows:
s _
K3(x,2)y(z) dz ~ FOT (x) K3 UMF) (x), (20)
0

where M is a (N + 1) x (N + 1) matrix and its entries are
obtained from the following relation:

ok+1 _J
My = Z fkl\/_ q Zém,/‘

O-k +1 j m=0

{41"(k+m+5/2+ 1/0)
I'k+m+3+1/0)
_4T(k+m+3/2+1/0)
T(k+m+2+1/0)
I'k+m+1/2+1/0)
T(k+m+1+1/0)
i,j=0,1,...,N.

By substituting approximations (18)—(20) into Eq. (1), we
calculate the residual function as follows:

FOT (x)C — 1, F7T (x)K, UBWF (x)
— JoFT (x)K, U BYF) (x)
— J3FOT () K3 UME) (x)
— g()F " (x)DU — p(x)F " (x)U — f(x) ~ 0.
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We choose roots of the (N + 1)-th shifted fifth-kind Che-
byshev polynomials as the collocation points and by
solving the resultant algebraic system by Newton’s itera-
tive method, therefore, we can determine the vector C.
Finally, we substitute the vector C into Eq. (16) and get an
approximation for y(x).

7 Error Analysis

In this section, we first present some theorems and after-
ward we get an upper error bound for the proposed method.
For this aim, we use the following norm:

WW{AWMMHLQW

Theorem 7.1 If f(x) € C[0, 1] is any continuous function,
then we can expand it as SFFKCPs on the interval [0, 1],

N
e fu(x) =Y CiFi(a) (x). In this case, the error bound for
i=0
coefficients C;, i =0,1,...,N, are determined as follows:
(Szego 1975)
Mf\/_ +1/2)
Gl < F+l+1 22
Ci| < Zfl, sy CHirD, (22)

where M; denotes the maximum value of f(x) on the
interval [0, 1].

Proof According to the orthogonality properties of the
shifted fractional-order fifth-kind Chebyshev polynomials
and the analytic form of these polynomials, we have:

L N R
C"b,»/of(x)F

1 i 1
I & ol (o) d
Z4Aﬂmw(mx

i =0

wl? (x) dx
(23)

Since f{x) is a continuous function on the interval [0, 1], so
there is a constant My such that:

vxe[01],  [fx)I<My, (24)
Using (24) and calculating the integral in Eq. (23), we
deduce the inequality (22). O

Theorem 7.2 Let fy(x) be an approximation based on
SFFKCPs for the continuous function f(x) on the interval
[0, 1]. Then, we can derive a bound for the approximation
error as follows:

1
2

IW@—h@Ny§<§:E>=YM (25)
i=N+1
where
Min (IS ET(1+1/2) 2
Y= (lzo T3 (P+1+1)

Proof Consider the arbitrary function f(x) and fy(x) as
series of SFFCKPs as follows:

0 N
=>_ar” =Y GF)
i=0 i=0
Then,
) —fvx) =Y CGF9(x) (26)
i=N+1
Using Eq. (26) and Theorem 7.1, we have:
If () = v ()2
/ [f (x) x)[* dx
2
- o) (0)
/0 (; CiF, (x)) w' (x) dx
i=N+1
1 oo 0
:/ Z Z C,-CjFl@(x)F}U)(x)w(@(x)dx
0 j=N+1i=N+1
= Z C?bi
i=N+1
< Z Y
i=N+1
O

Theorem 7.3 Suppose that K(x, z) is any continuous

function with two variables on the interval [0,1] x [0, 1]
N N

=2 S KF7 ()F7(x) is an SFFKCPs
i=0j=0

approximation of K(x, z) then coefficients K; can be

bounded as follows:

Mgn~—=&,T(1+1/2)
K[ < i Z -
bb; Ir'i+3)

XN: &, T(k+1/2)
I'(k+3)

and Ky(x,z)

(P+1+1)

=0

(K +k+1),
k=0

where M indicates the maximum value of K(x, z) on the
interval [0, 1] x [0, 1].
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Proof Using orthogonality properties and analytic form of
the shifted fractional-order fifth-kind Chebyshev polyno-
mials, we do the following:

Kijzﬁ/l/lK(x,z)Ffa)(x)

[)l Zé,,x wle /( (x,z Zﬁka wle )dxdz

0 =0

bb Zf,,z@w/o ./0 x"lk(x,z)zﬂl‘w()

7 1=0

FO(w® (0w (2) dxdz

()W (z) dxdz.
(27)

Since K(x, z) is a continuous function on the interval
[0,1] x [0, 1], so there is a constant My such that:

Y(x,z) € [0,1] x [0, 1],

Using Egs. (27) and (28), we achieve the desired result. [

K (x,2)| < Mk, (28)

Theorem 7.4 Let K(x, z) be a continuous function of two
variables, such that Ky(x,z) is the SFFKCPs approxima-
tion to K(x, z). Then, an error bound can be obtained as
follows:

1K (x,2) — Kn(x,2)]]2

(X3 M)

i=0 j=N+1

(X

1

]OA ) — Oy
Ak

Mg IS & T+ 1/2)
blbj 1=0 r(l + 3)

MGk +1/2)
T(k+3)

(P+1+1)

(K +k+1)
k=0

Proof Assume that K(x, 7) and its approximation have the
following forms in terms of SFFKCPs:

K(x,2) =Y Y KiFO (0)F(2),
i=0 j=0
Gl e P
Ky(x,2) => > KuF,” (0)F" (2),
i=0 j=0

22, Q) Springer

K(x,z) — Ky(x,2) ZZKUF >()
i=0 j=N+1 (29)
+ 3 SKEO 0F (2).
i=Nt1j=0

Using orthogonality properties of the shifted fractional-
order fifth-kind Chebyshev polynomials, Eq. (29), and
Theorem 7.3, we get:

1K (%, 2) = Kn(x,2)|[ 2

N 00
<> KETWE )

=0 j=N+1

12

S S KO W )

i=N+1 j=0

2

=([ [ (3 3 xrro)
(

11—

(x)w'(z) dxdz)

i=0 j=N+1

O

Using the definition of L?-norm and Theorems 7.1
and 7.2, we have the following inequalities:

Lo lF(g) = fv(g)ll2 < T,
M:n T(+1/2
2 o)l < (S (S 2 (2 +1

) _ZNa

)|l < 2

3. Hf/v(

Theorem 7.5 Suppose that y(x) is the exact solution and
yn(x) is the approximate solution in terms of SFFKCPs of

Eq. (). If My, + 3 M, + ¢ M+
Bet+vab,

NANGESY <1 where Mg, , Mg, , Mk, are maximum values of
7

K1, K>, K3, respectively. Then a bound for the method error
can be gotten as follows:

P—u+2)

[ly(x) = yn ()l 2

< Qv + (wrwz Oy + \/‘/‘zr“_ \+2 Oy +r ol GW>ZN
- |4 [T (1—p) Ja|T(1—v Bet/ab,
lf(lil( —u+2) MKIJF\/“?‘ \+)2MK2+F?‘ ‘MKXJF\/‘F +1I)

Proof We use the Riemann—Liouville integral operator on
Eq. (1) to get the following equation:



Iranian Journal of Science

_ A1 —p)
o) = )+ £
L[@—ﬁ”&@@ﬂ@&
% /Ox(x —2) ' Ka(x,2)y(gz) dz

+ 13 ( /qu K3(x,2)y(z) dz)
- ﬁ/ox(x —2)" 'g(2)y(qz) dz

+ﬁWKWwWWM@@

Also, the approximate equation corresponding to Eq. (30)
can be written as follows:

(1 —p)

yn(x) =¥(x) + To—g+ 1) /0 (x = 2)" " Kin(x, 2)yn(z) dz

%\;vl)) _ /:(x — )" Kan (%, 2)yw(4z) dz

o qx
+ 233 </ Ksn(x,2)yn(z) dz)
0

" ﬁ/o (x—2)" 'g(z)yn(qz) dz
+ L[
() Jo

+ Hy(x).

(x—2)"'p(2)yn(z) dz

By subtracting (30) from (31), we obtain the following
equation:

y(x) —yn(x)

= 7HN(X)+M

Cy—p+1)

/0 x(x —2)" " (Ki(x,2)y(z) — Kin(x,2)yw(2)) dz
JT(1 =)
Ty—v+1)

’ /0 X(x —2)"7" (Ka(x, 2)y(gz) — Kav (x, 2)yw(g2)) dz

+ 7-33"( /0 " (K3(x,2)y(2) — Kan(x, 2)yn (2)) dZ)

+ ﬁ / "= 2 8(2) (la2) — ww(g0)) de
By -

5 [ 6= 00 —w@) ds

where Hy(x) is the residual function. First, we determine a

bound for the perturbation term Hy(x). For this aim, we
apply the L?>-norm on Eq. (32):

([ ()]l 2

< Iy = o) L=,

Ly —p+1)

/ be— 2 (I1K1 (x,2)y(2) = Kin (v, 2)yn (2)llp2) dz
[72]0(1 —v)
I'(y—v+1)

/0 "= 2 (1K, y(g2) — Ko, w2 32) de
il ([ (152500 ~ Kantr @) )
+$ / "= e @l (1v(a0) — (@) de
+%)/ = @ () — (@)

Using inequality 2 and Theorems 7.2 and 7.4, we get:

LT —u
PO [ 1K (12150 ~ K w0

S D)
SWMKIHY()C)
|1 — p)
Ly —u+2)
|20 = )
“Fo-st2)

= vl
Oy [lyw (x)ll2
(/W[(1 YN + ZNQIN)-

From inequalities 1 and 3 and Theorem 7.4, we have:

PR [ el Kot 3(a0) — Kav(x ot

[22]C(1 = v)
STh-vr2)
[42]T(1 = v)
To—v+2)
|22 (1 — v)

- \/471"(;) —v+2)

Mg, ||ly(gx) — yn(gx)ll;2

Oon|lyn(gx)ll 2
(Mg, Xy + ZyOay),

(35)

And using Theorems 7.2, 7.4 and inequality 2, we obtain
the following inequality:

|)v3|3""(/0qx 1K3(x, 2)y(z) — Kan (%, 2)yw (2) 2 dz)

61|13|
“T(y+2)

(36)
(MK3YN + ZN®3N)-

Also, according to inequality 1 and [|g(x)||;> < f3,, we have:

1 / | )
LI N
I'(y)

"g@ 2 lv(g2)
B Y

= VG’
and using Theorem 7.2 and ||p(x)||,> < f,, we find:

—yv(q2)ll 2 dz
(37)
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By Yn

1 * .
[lx—d’WM@MNﬂd—yN

F("/) A (Z)HL7 dZ<

(38)

By substituting inequalities (34)—(38) into Eq. (33), we can
get the following upper bound for Hy(x):

I o)1 < (1 + M, + e,
* r(q‘ i‘z) My, + \ﬂ/%;(ﬁ/ip) )t
(=i s
+ r(({,‘ﬁi‘z) Oy ) Zy = .

Now, we again consider the residual function (32).
Therefore, by substituting all the obtained boundaries into
Eq. (32), the error bound of the method can be obtained as
follows:

() =y ()l.2

AT(1—
< s + )

Ly —p+1)

/x e — 2l (1K1 (x, 2)y(z) — Kin (%, 2w () 2) dz

\ﬂz\r / -
y—v+1)

— Kon(x,2)yn(gz) HLZ) Z

+ |Z3|3},</0‘1~‘ (I1K3(x, 2)y(2) — Kan (x, 2)yn (@)l 2) dz)

(K2 (x, 2)y(q2)

ﬁ/ "= e @ s (Iy(a2) — yw(@)lse) de

t ot [l @l (b6 @)
2| TC(1 — p)
SR ST
1l = 1)
Fy—nu+2)
Rl =y)
Var(y—v+2)
liaT(1 = v)
mZNGZN
q|);| (x
l—‘(y+2)MK3”)( )

ql43|
+ ZnOsy +
F(y+2)

My [[y(x) = yn(¥)]l2
ZyOn
Mi, [|y(x) = yn ()| 2

+

=)z

+ Vb,
\/L?I"(H 1)

() = v ()l 2

Finally, the desired result is achieved:

ly(x) = yn ()l 2
Qy + |4 T (1 @ + [42|T(1-v) @ + l]\/a| @ 7
T(y ;L+2 Val(p—v+2) DN T T 3N ) &N

< .
- |4 [r(—p) oI (1—v) Bet/aby
1= ( l"l( —p+2) M + \/'i" —v+2) \/qr@url))

My, + {75 My, +

22, Q) Springer
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8 Numerical Results

In this section, we consider some examples that demon-
strate the applicability of the shifted fractional-order fifth-
kind Chebyshev polynomials in the proposed operational
method for solving fractional-order delay integro-differ-
ential equations. Also, we compute the absolute errors to
indicate the accuracy of the presented method.

Example 8.1 Consider the following fractional-order
integro-differential equation:

D%y(x) = /Oxy(z)dz + y(x) +y(%) +f(x),

8 o, 14 1,
A TR

(39)
€ [0,1].

The initial condition is y(0) = 0 and the exact solution is
y(x) = x*. The Fig. 1 shows a comparison between the
absolute error functions with ¢ = 0.5, 1 and N = 10. Also,
Table 1 presents values of absolute errors at equally spaced
points for N = 5,10 and ¢ = 0.5, 1. The results presented
in Table 1 and Fig. 1 show that using the fractional-order
fifth-kind Chebyshev polynomials increases the accuracy.

Example 8.2 Consider the following problem:

x

Dy(x) = / ) ¢ y(z)dz + / (2 de

0 0

1
+330) +3(3) +70),
1 X ox x2 1 3x 2x
f(x)_5_164+3_2_26 +e x € [0,1],
(40)
with initial condition y(0) =0 and exact solution

y(x) = ¢* — 1. Figure 2 demonstrates maximum absolute
errors for different values of N. Table 2 indicates the
comparison between our operational method with other
methods. Table 3 shows the maximum absolute errors of
the approximate solutions for ¢ = 0.5,1 and N =4,5,6.
From the obtained results, it is concluded that in this case,
the use of the shifted fifth-kind Chebyshev polynomials for
g = 1 gives more accurate results than shifted fractional-
order fifth-kind Chebyshev polynomials for ¢ = 0.5. Also,
the proposed method has provided acceptable results
compared to other methods such that Chebyshev spectral
and FEuler operational methods. Furthermore, Table 2
confirms our method needs a lower number of basis
functions in compared to the Sinc collocation method to
converge to the exact solution.

Example 8.3 Consider the following pantograph-type
Volterra integro-differential equation (PTVIDE):



Iranian Journal of Science

(€)

0.000104

0.00009+

0.00008

0n

.S 0.00007+
0.000064
0.00005

0.00004

absolute error funct

0.00003

0.00002

0.00001

0 0.2 0.4 0.6 0.8 1
X

()

1.x 10 12
§8x10 134
5
E=
S
g 6.%x 10 13
L5}
Q
g
2
] 4.x 1013

2.% 10 134

0 02 04 06 08 1

X

Fig. 1 a Absolute error function with ¢ = 1, b Absolute error function with ¢ = 0.5 and N = 10 in Example 8.1

Table 1 Absolute errors for ¢ = 0.5,1 and N = 5, 10 in Example 8.1

X c=1,N=5 c=1,N=10 g=05N=10
0.1 1.7302 x 10~* 8.3780 x 1077 1.7754 x 1013
0.2 1.0729 x 10~* 1.4695 x 1073 6.4545 x 10713
0.3 8.7989 x 107° 3.9424 x 107° 6.8549 x 10715
0.4 2.5405 x 107* 1.7088 x 107> 1.4756 x 1013
0.5 5.8837 x 1074 4.9806 x 1073 3.7867 x 10713
0.6 9.9164 x 1074 4.6884 x 107 8.2943 x 10713
0.7 1.3562 x 1073 3.5759 x 1073 7.5163 x 1013
0.8 1.6398 x 1073 5.7626 x 1073 5.3343 x 10713
0.9 1.9395 x 1073 7.6691 x 1073 8.6295 x 10713
1 2.5657 x 1073 1.0705 x 10~* 1.0786 x 10~12
X 1 ! X+2
D) =y(;) + 0+ [ @
JECrs
+ y(z)az+fx
Y fx), (a1)
flx)=2x-— ixz ——x* —x%e*
16 45
+ 2xe* — 2% + 26, x €[0,1],

where initial condition is y(0) = 0 and the exact solution is
y(x) = x*>. We solved the Eq. (41) using the presented
method in Sect. 6 and we reported the numerical results in
Table 4 and Fig. 3. Table 4 shows the maximum absolute
errors for different values of N and Fig. 3 displays the
absolute error functions for ¢ = 0.5, 1. Table 4 and Fig. 3
indicate the results obtained in ¢ = 1 are more accurate
than ¢ = 0.5.

Example 8.4 Consider the following delay fractional
integro-differential equation:

Dy(x) = /0 2D ey /0 "oz,

Dl—

(x — 2 (x— 2
1
+y<2x> +f(x)a
32 ; 243 4 1
fx) :2x—3—x7—%x7—1x2, x €[0,1].
(42)

where the exact solution for v = 1 is y(x) = x?. Figure 4
shows the approximate solutions for values of
v=0.5,0.6,0.7,0.8,09,1, 6 =1, and N = 3. It can be
seen the numerical solution converges to the exact solution
when v — 1. We obtained the MAE = 6.9722 x 107> for
N =3.

Example 8.5 As the final example, consider the following
delay fractional integro-differential equation with the

solution y(x) = x2:
Diy(x) = /0 y(2)dz + y(x) + y(g) +£(x),

f(x)z%ﬁx—%x%— (l—l—\/Tz)x% x€[0,1].

(43)

The initial condition is y(0) = 0. Figure 5 shows the
absolute error functions for ¢ = 0.5,1 with N = 6. Also,
Table 5 presents absolute errors in equally spaced points
for 0 =0.25,0.5,0.75,1 with N = 6. As you can see, the

@ Springer
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Fig. 2 Maximum absolute
errors for different values of N
and ¢ =1 in Example 8.2 5
10+
10-34
—
o
E5 1075
EY
x 2
gg 10737
©
1076+
1077,

Table 2 Comparison of maximum absolute errors of SFFKCP operational method with other methods in Example 8.2

N Sinc collocation method in Zhao et al. (2017) N

Euler operational method in Rezabeyk et al. (2020) N

Our method for

c=1
10 2.2328x10°* 4 5.1681 x 1073 4.5357 x 1074
20 4.7215x 107 5 2.6343 x 107° 2.6962 x 107°
60  2.2096 x 1078 6 1.9487 x 107 4.5160 x 10~%

Table 3 Maximum absolute errors for various values of ¢ and N in
Example 8.2

N g=1 c=05
4.5320 x 107* 7.1246 x 1073
1.5164 x 10~ 2.0147 x 1072
2.6848 x 107° 8.7324 x 10~

Table 4 Maximum absolute errors in Example 8.3

N g=1 =05
5.7222 x 1072 9.7296 x 1072
2.1652 x 10~ 3.5249 x 1073
5.6744 x 1077 7.6891 x 1074

obtained results demonstrate that the approximate solutions
in ¢ = 0.5 are more accurate.

“ @ Springer

9 Conclusion

In this paper, the numerical method was presented for
solving fractional-order delay integro-differential equations
using operational matrices based on fractional-order fifth-
kind Chebyshev polynomials. We substituted the obtained
approximations into the main equation and got the alge-
braic system by applying the collocation method, then, we
solved these equations by Newton’s iterative method and
obtained the approximation solutions. Moreover, we
proved the existence and uniqueness of the solution to
problem (1) and derived the error bound. The Holder
exponent o refers to the regularity of the function y(x) in a
Holder space C™°(J). The order of a fractional derivative
DVy(x) is related to g as y = g + r where r is the integer
part of y. The order of an Abel-type integral, y, in a sin-
gular integral or integro-differential equation, has a relation
as u= o0 —s where s is the integer part of ¢. So, the
relation between g, 7, and pisas20 —y —u+r—s=0or
equivalently y — ¢ — r — s = 0. Based on some coefficients
in terms of these factors in Theorem 7.5, one has
y—pn# —2. We solved some examples to show the
applicability of the proposed method. This method pro-
vides several advantages, such as simple calculation and
easy implementation. Also, the numerical results reported
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Fig. 3 a Absolute error function with ¢ = 1, b Absolute error function with ¢ = 0.5 and N = 6 in Example 8.3

Fig. 4 Exact and approximate 2.5 7]

solutions of the function y(x) for //

N =3 with v = /

0.5,0.6,0.7,0.8,0.9,1 and ¢ = 2 //

1 for Example 8.4 . Exact solution

y(x)
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2.5% 10717
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0.00064 2.x 10717
= =
2 S
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Fig. 5 a Absolute error function with ¢ = 1, b Absolute error function with ¢ = 0.5 and N = 6 in Example 8.5
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Table 5 Absolute errors for ¢ = 0.25,0.5,0.75,1 and N =06 in
Example 8.5

X g =0.25 og=0.5 g =0.75 =1

0.1 2777 x10™* 3.538 x 107"  6.601 x 107> 1.853 x 10~*
02 1264 x107* 4183 x107'% 4428 x 107> 7.545 x 1073
03 1.024 x 1073 4.600 x 107'® 1496 x 107> 3.518 x 10~*
04 1.767x 1073 5200 x107'®  1.133 x 107> 5.788 x 1073
0.5 2383x107° 6.170 x 107 3323 x 107> 6.561 x 10~
0.6 3.014x 107 7.740 x 10~'®  6.808 x 107> 7.877 x 10~*
0.7 3.814x 103 1.058x10°"7 1.021 x10™* 3.767 x 10~*
0.8 4.922x 1073 1.439x 1077 1.281 x 107* 1.742 x 107>
09 6459 x 1073 1954 x 1077 1524 x10™* 3.296 x 10~*
I 8530x 1073 2681 x 1077 1996 x 107* 5.490 x 10~*

in the given examples confirmed that the SFFKCP opera-
tional method has an acceptable performance in compar-
ison with other methods, such as Sinc collocation method
Zhao et al. (2017), Chebyshev spectral method Ezz-Eldien
and Doha (2019), and Euler operational method Rezabeyk
et al. (2020). The results obtained from the tables and
figures showed that there is a good agreement between the
approximate and the exact solutions, even using a few
terms of the proposed expansion. Furthermore, the errors of
our presented method decreased with increasing N. By
choosing diverse values of o, values of absolute error can
be controlled. However, our method can be helpful and
efficient for solving these kinds of equations. Also, the
other fractional operators such as the Caputo-Fabrizio and
MSM operators have been introduced by researchers that
the equations under study can be rewritten based on these
fractional operators and obtained results can be compared
with the results reported in papers Ata and Kiymaz (2023);
Jafari et al. (2023); Bhatter et al. (2024); Singh et al.
(2023). The authors of the current article will try to con-
sider them in future works.
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