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Abstract
This paper presents a polynomial sinc-based collocation method, combined with Gauss–Legendre/Newton–Cotes

quadrature rules, to solve stochastic fractional integro-differential equations (SFIDEs). The method approximates the

solution by applying Lagrangian polynomial interpolation at sinc collocation points and simplifies the SFIDE into a system

of algebraic equations, requiring low/moderate computational efforts. The proposed method is also accompanied by an

error analysis, and numerical examples are provided to demonstrate its efficiency and accuracy. In noiseless conditions, the

method achieves spectral accuracy and behaves like other conventional sinc methods. Finally, the paper simulates an

application of a class of these equations.

Keywords Stochastic fractional integro-differential equations � Poly-sinc collocation method � Itô integral, Brownian

motion process � Error analysis
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1 Introduction

Fractional calculus is a rapidly expanding field of research,

situated at the intersection of probability, differential

equations, and mathematical physics (Meerschaert and

Sikorskii 2019). It provides a valuable mathematical

framework for modeling complex natural phenomena in

fields such as physics, engineering, biology, and others

(Akbari and Navaei 2024; Bisheh-Niasar 2023). Its prop-

erties of non-linearity, memory and heredity, non-locality,

multi-scaling, Sun et al. (2018); Herrmann (2011) and

flexibility (see Bahloul et al. 2022 and references therein)

make it an adaptable and versatile modeling framework.

Stochastic functional equations, such as stochastic dif-

ferential equations, stochastic integral equations, and even

higher-dimensional stochastic partial differential equations,

are more effective than deterministic functional equations

in modeling physical systems across various scientific

domains. These equations incorporate unpredictable factors

into the modeling of real-life phenomena, allowing for

more accurate and consistent descriptions of such phe-

nomena in fields such as physics, biology, finance, engi-

neering, and chemistry. Studies have demonstrated their

greater efficacy in modeling real-world systems Mao 2007;

Oksendal 2013; Klebaner 2012; Stark and Woods 1986;

Bhattacharya and Waymire 2009.

Solving stochastic functional equations can be chal-

lenging due to the involvement of complex mathematical

operations and random variables, which often makes it

difficult or impossible to find exact solutions. Various

numerical methods are utilized to address this issue to

obtain approximate solutions.

This paper introduces a numerical approach for solving

stochastic fractional integro-differential equations

(SFIDEs). The Fokker-Planck equation is a type of

stochastic partial differential equation utilized to simulate

particle movements that undergo Brownian motion. By

incorporating fractional derivatives, it transforms into

SFIDE (Denisov et al. 2009). The mathematical structure

of this model can be outlined as follows:
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Dc
0;tyðtÞ ¼ gðt; yðtÞÞ þ

Z t

0

K1ðs; tÞyðsÞds

þ n
Z t

0

K2ðs; tÞyðsÞdWðsÞ;
ð1Þ

yð0Þ ¼ �y0; ð2Þ

for t 2 ½0; 1� and 0� c� 1. y, g, K1 and K2 are the

stochastic processes defined on a filtered probability space

ðX;F ;PÞ having a normal filtration indicated by fF tgt� 0,

and our numerical method seeks to determine the value of

y, which is currently unknown. W is a Brownian motion

process defined within the same filtered probability space

and the second integral represented in (1) is of Itô type.

Furthermore, g is a known process in the same space that

satisfied the Lipschitz condition concerning y. n is maxi-

mum amplitude of noise (Ahmadi et al. 2017). Also, �y0 is a

real-valued constant. Here, Dc
0;t refers to the left fractional

differential operator of order c according to the definition

of Caputo (Podulbny 1999; Saadatmandi et al. 2020),

Dc
0;tyðtÞ ¼

1

Cðm� cÞ

Z t

0

yðmÞðsÞðt � sÞm�c�1
ds;

m� 1\c�m; m 2 N;

ð3Þ

where Cð:Þ stands for Gamma function.

There exist several numerical methods to solve equa-

tions of this kind. Taheri et al. (2017) focused on using

shifted Legendre polynomials with a spectral collocation

method. The Galerkin method based on Jacobi polynomials

was utilized by Kamrani (2015). Mirzaee and Samadyar

(2019) developed a meshless approach that involves radial

basis functions. In their latest publications, Singh and

Mehra (2021) presented a Legendre wavelet collocation

method and introduced a collocation method based on

Muntz-Legendre polynomials (Singh and Mehra 2023). In

this regard, novel research has been conducted by Mirzaee

and his students, including spline-based methods (Mirzaee

and Alipour 2020a, b; Mirzaee et al. 2020; Mirzaee and

Alipour 2021a), moving least square schemes (Mirzaee

et al. 2021; Solhi et al. 2024, 2023) and finite difference

and meshfree methods (Mirzaee and Alipour 2021b).

Notably, Mirzaee et al. have recently employed Floater-

Hormann interpolation (Mirzaee et al. 2023) and meshless

barycentric rational interpolation (Mirzaee et al. 2024) to

solve SIVIEs and SFIDEs, respectively.

In the present paper, we introduce a novel and reliable

collocation technique based on Lagrange polynomial

approximation at non-equidistant sinc interpolation points

generated by a conformal map. Sinc techniques have been

recognized as a valuable tool for numerical analysis and

simulation in various fields, including applied physics and

engineering (Stenger 1993; Lund and Bowers 1992). The

exponential convergence rate of classical sinc functions

(Stenger 1993) has made them a popular choice for inter-

polation. However, when using the sinc interpolation for-

mula to estimate the derivative of a function on a finite or

semi-infinite interval, accuracy near the endpoints of these

intervals may be poor (Stenger 1993; Lund and Bowers

1992). Overcoming this challenge was the philosophy

behind the creation of interpolation polynomial approxi-

mation at sinc points, so-called poly-sinc approximation by

Stenger (2009), which inspired further discussions among

him and other researchers (Youssef and Baumann 2014;

Youssef et al. 2016; Stenger et al. 2013). It is possible to

achieve a uniformly accurate approximation of a function’s

derivative over a finite/infinite interval using poly-sinc

approximation, as given in Stenger (2009). In addition to

this feature, the poly-sinc approximation has an error of

exponential order (Stenger 2009), and the estimation of its

Lebesgue constant follows a logarithmic asymptotic pat-

tern (Youssef et al. 2016). This approach has also been

rated as a reliable and quite efficient way of handling

ordinary differential equations with endpoint singularities

(Youssef and Baumann 2014, 2015, 2019; Eftekhari 2023)

and has outstanding performance in solving some frac-

tional/stochastic differential or integral equations (Mosh-

taghi and Saadatmandi 2021, 2020; Youssef and Pulch

2021). These advantages, in addition to the spectral accu-

racy of the poly-sinc method and the convenience of per-

forming algebraic calculations on polynomials, motivate us

to use this approach in solving Equations (1)-(2). In sum-

mary, the appealing features of the investigated method

include:

• Polynomial-based computations

• Spectral convergence (in deterministic cases)

• Low/moderate spectral resolution

• Problem reduction to a nonlinear system of equations

• Straightforward implementation

Our paper is organized as follows: The preliminaries of

stochastic calculus and poly-sinc interpolation are pre-

sented in Sect. 2. Section 3 outlines a spectral collocation

method based on poly-sinc approximation for solving

fractional stochastic integro-differential equations in the

form of (1). The analysis of the convergence and error of
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the proposed method is performed in Sect. 4. Section 5

contains numerical experiments that demonstrate the

effectiveness of our approach. Additionally, we provide an

example of a real-life application of SFIDEs in section 6.

Finally, we conclude our paper with a brief summary in the

last section.

2 Preliminaries and Requirements

This section overviews the mathematical foundations nec-

essary for our subsequent discussion, including stochastic

calculus and poly-sinc interpolation.

2.1 Stochastic Calculus

In 1827, botanist Robert Brown observed that tiny pollen

grains suspended in water move irregularly and unpre-

dictably. This led to the formal definition of Brownian

motion, considered one of the most important stochastic

processes (Calin 2015).

Definition 2.1 (Klebaner 2012) A Brownian motion pro-

cess is a continuous-time stochastic process W(t) , t� 0,

that starts at the origin ðWð0Þ ¼ 0;with probability 1Þ and

satisfies the following properties

(i) W(t) has independent increments;

(ii) W(t) is a continuous function of t; and

(iii) The increments WðtÞ �WðsÞ are normally dis-

tributed with mean zero and variance equal to the

absolute difference between t and s, i.e.,

WðtÞ �WðsÞ�N ð0; j t � s jÞ.

Theorem 2.2 (Oksendal 2013) (Integration by parts)

Assuming that yðs;xÞ ¼ yðsÞ is a continuous function and

of bounded variation with respect to s 2 ½0; t� for almost all
x. Then the following property holdsZ t

0

yðsÞdWðsÞ ¼ yðtÞWðtÞ �
Z t

0

WðsÞdyðsÞ: ð4Þ

2.2 Poly-sinc Interpolation

Assume that u : ½a; b� ! R is a continuous function. The

accuracy of the Lagrange polynomial approximation for u

is dependent on the set of interpolation points ftk; uðtkÞgnk¼0

(Smith 2006). Equidistant points, which are the most fre-

quently used set of points, have yielded poor results in the

Lagrange polynomial approximation (Stenger et al. 2013).

Alternative point sets like Chebyshev and modified Che-

byshev points can improve function approximation accu-

racy (Smith 2006). Recent studies have demonstrated that

the utilization of sinc points as interpolation points are also

useful and effective (Youssef et al. 2016).

To construct the Lagrange polynomial approximation

using sinc points, we will use some mathematical notation.

Throughout this paper, Z denotes the set of all integers, and

R and C stand for the real line and complex plane,

respectively. We denote by h[ 0 the mesh size associated

with an evenly spaced grid fkhgNk¼�N , where N 2 Zþ.

Given that our problem is focused on a subset of the real

numbers, specifically the interval ½a; b� ¼ ½0; 1�. Therefore,

we apply the conformal map

w ¼ /ðzÞ ¼ ln
z

1 � z

� �

from the simply connected region (known as eye-shaped

region) defined as

DE ¼ z 2 C : arg
z

1 � z

� �����
����\d

� �
; ð5Þ

to the strip-shaped region

Dd ¼ w 2 C : j=ðwÞj\df g; ð6Þ

with a width of 2d where d 2 ð0; p
2
Þ. The rule of / implies

that 0 ¼ /�1ð�1Þ and 1 ¼ /�1ð1Þ. The collection of

separated sinc points is also defined as follows

tk ¼ /�1ðkhÞ ¼ ekh

1 þ ekh
; k ¼ �N; . . .;N: ð7Þ

Let Pn be the space of polynomials having a degree no

more than n ¼ 2N. Now, we focus on constructing the

Lagrange interpolating polynomials of degree 6 n based

on sinc points using the set of interpolation points

ðtk; uðtkÞÞ, where ftkgNk¼�N represent sinc points obtained at

(7) and fukgNk¼�N are the values of u at sinc points. The

one-dimensional interpolation approximation for u on the

interval [0, 1] using nþ 1 sinc points can be expressed as
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UNðtÞ ¼
XN
k¼�N

u tkð ÞLkðtÞ; ð8Þ

where fLkgNk¼�N are the Lagrange basis polynomials at

sinc points in the following form

LkðtÞ ¼
YN

j ¼ �N

j 6¼ k

t � tj
tk � tj

; k ¼ �N; . . .;N:
ð9Þ

To effectively obtain the fractional derivative of poly-sinc

interpolation and analyze errors, we follow (Moshtaghi and

Saadatmandi 2021) and adopt the interpolation UN as

follows:

UNðtÞ ¼
X2Nþ1

k¼1

u �tkð Þ �LkðtÞ; ð10Þ

where, �tk ¼ tk�N�1 and �LkðtÞ denotes the expansion of

Lk�N�1ðtÞ in terms of powers of t,

�LkðtÞ ¼
X2N
i¼0

ai;kt
i; k ¼ 1; � � � ; 2N þ 1: ð11Þ

Similar to the regular sinc approximation, UNðtÞ provides a

spectral accuracy in approximating the function u(t) known

at sinc points (Stenger 1993). However, compared to

classical sinc methods, it has the privilege that it approxi-

mates u0ðtÞ uniformly on [0, 1] with an exponential accu-

racy (Stenger 2009).

The following convergence theorems concerning the

poly-sinc approximation are presented.

Theorem 2.3 (Stenger 2009; Moshtaghi and Saadatmandi

2021) Let the set DE be defined as the inverse image of Dd

under the conformal mapping /ðtÞ ¼ ln t
1�t

� �
, where Dd is

defined in (6). Let D2 be the union of DE with the discs

Bd ¼ fz 2 C : jz� dj\eg, where d 2 ð0; 1Þ and e[ 0. If y

is an analytic function that is uniformly bounded by C[ 0

on D2, and we let h ¼ mffiffiffiffi
N

p , where m[ 0, and set yNðtÞ as

defined in (8), then we can obtain a bound on the error

jyðtÞ � yNðtÞj for t 2 ½0; 1�, as follows:

jyðtÞ � yNðtÞj �A

ffiffiffiffi
N

p

ð2eÞ2N
exp

�p2
ffiffiffiffi
N

p

2m

� �
; ð12Þ

where A is a constant, independent of N.

Theorem 2.4 (Moshtaghi and Saadatmandi 2021) Let y be

an analytic function that is uniformly bounded on some

closed disk D3 ¼ fz 2 C : jz� 1=2j\q; q[ 3=2g con-

tainig the interval [0, 1]. Additionally, suppose that

0\c\1. Then, under the assumptions of Theorem 2.3,

there exist constants Sc [ 0 and 0\.\1, independent of

N, such that

jDc
0;tyðtÞ � Dc

0;tyNðtÞj

� Sc

ðq� 1

2
Þ2Nþ2

(
ð2N þ 1Þ.2N þ

ffiffiffiffi
N

p

22N
exp

 
�p2

ffiffiffiffi
N

p

2m

!)
:

ð13Þ

3 Methodology Description

In this section, we utilize the poly-sinc collocation tech-

nique to solve the SFIDE Eqs. (1)-(2). For this purpose,

upon choosing a fixed positive integer N and applying the

poly-sinc interpolation to y, we can approximate it as

follows

yðtÞ � yNðtÞ ¼
X2Nþ1

i¼1

yiL
^

iðtÞ; ð14Þ

where fyi :¼ yN �tið Þg2Nþ1
i¼1 is a collection of unknown

coefficients. Substituting (14) into Equations (1) and (2)

allows us to evaluate the unknown coefficients yi and

obtain yNðtÞ. Hence, the following equations must be

imposed

Dc
0;tyNðtÞ ¼ gðt; yNðtÞÞ þ

Z t

0

K1ðs; tÞyNðsÞds

þ n
Z t

0

K2ðs; tÞyNðsÞdWðsÞ;
ð15Þ

yNð0Þ ¼ �y0: ð16Þ

Thanks to Theorem 2.2, with a little rewriting of the

Wiener integral in (15), the aforementioned equation will

get the following form

Dc
0;tyNðsÞ ¼ gðt; yNðtÞÞ þ n K2ðt; tÞyNðtÞWðtÞ

þ
Z t

0

K1ðs; tÞyNðsÞds

� n
Z t

0

K2ðs; t; yNðsÞÞWðsÞds;

ð17Þ

where K2ðs; t; yNðsÞÞ ¼
o

os
ðK2ðs; tÞyNðsÞÞ:
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We now provide approximations for the integrals in (17)

with the help of the so-called Gauss–Legendre and New-

ton–Cotes quadratures. Having focused on the first integral

of (17), we can employ the Gauss–Legendre rule to obtain

a desirable approximation. Introducing the change of

variable g ¼ 2s� t

t
or s ¼ t

2
ðgþ 1Þ for integration, gives

Z t

0

K1 s; tð ÞyNðsÞds ¼
t

2

Z 1

�1

K1

t

2
ðgþ 1Þ; t


 �
yN

t

2
ðgþ 1Þ


 �
dg:

ð18Þ

Then, using the M1-point Gauss–Legendre quadrature rule,

with the integration abscissae fgig
M1

i¼1 and weights f-igM1

i¼1,

we obtain the following approximation for (18)

Z t

0

K1ðs; tÞyNðsÞds ’
t

2

XM1

i¼1

-iK1

t

2
ðgi þ 1Þ; t


 �
yN

t

2
ðgi þ 1Þ


 �
:

ð19Þ

We now turn to numerically approximate the second inte-

gral given in (17) using a composite Newton–Cotes

quadrature, which has demonstrated its compatibility and

efficiency in dealing with integrals involving non-smooth

integrands (Delves and Mohamed 1985). To accomplish

this method, for fixed positive integers M2 and P, we use

the M2-point quadrature rule with P panels in the following

manner:

Making the variable transformation h ¼ s
t
, for the

aforementioned integration yieldsZ t

0

K2ðs; t; yNðsÞÞWðsÞds ¼ t

Z 1

0

K2ðth; t; yNðthÞÞWðthÞdh:

ð20Þ

Then, we employ the M2-point quadrature rule with P

panels to approximate the right-hand side of (20) as follows

(Delves and Mohamed 1985)

t

Z 1

0

K2ðth; t; yNðthÞÞWðthÞdh

’ t
XP
j¼1

XM2

k¼1

w
ðjÞ
k K2ðthðjÞk ; t; yNðthðjÞk ÞÞWðthðjÞk Þ;

ð21Þ

where fhðjÞk gM2

k¼1 and fwðjÞ
k gM2

k¼1, j ¼ 1; :::;P, are the

quadrature nodes and weights of the closed Newton–Cotes

rule, respectively.

To discretize the equation, by substituting (19) and (21)

into (17), we arrive at

Dc
0;tyNðtÞ ¼ gðt; yNðtÞÞ þ n K2ðt; tÞyNðtÞWðtÞ

þ t

2

XM1

i¼1

-iK1ð
t

2
ðgi þ 1Þ; tÞyNð

t

2
ðgi þ 1ÞÞ

� t
XP
j¼1

XM2

k¼1

w
ðjÞ
k K2ðthðjÞk ; t; yNðthðjÞk ÞÞWðthðjÞk Þ;

ð22Þ

where fgigM1

i¼1, f-igM1

i¼1, fhðjÞk gM2

k¼1 and fwðjÞ
k gM2

k¼1,

j ¼ 1; :::; P, correspond to the previously defined values.

Collocating (22) at the sinc points f�trg2Nþ1
r¼2 , we obtain

the discrete system

Dc
0;tyNð�trÞ ¼ gð�tr; yNð�trÞÞ þ n K2ð�tr; �trÞyNð�trÞWð�trÞ

þ
�tr
2

XM1

i¼1

-iK1ð
�tr
2
ðgi þ 1Þ; �trÞyNð

�tr
2
ðgi þ 1ÞÞ

� �tr
XP
j¼1

XM2

k¼1

w
ðjÞ
k K2ð�trhðjÞk ; �tr; yNð�trhðjÞk ÞÞ

Wð�trhðjÞk Þ; r ¼ 2; � � � ; 2N þ 1:

ð23Þ

An alternative equation can be derived by substituting

yNð0Þ in the initial condition (2) as follows

yNð0Þ ¼ �y0: ð24Þ

Let us define

y ¼ y1; . . .; y2Nþ1ð ÞT ;
H1ðyÞ ¼ yNð0Þ � �y0;

HrðyÞ ¼ Dc
0;tyNð�trÞ � gð�tr; yNð�trÞÞ � n K2ð�tr; �trÞyNð�trÞWð�trÞ

�
�tr
2

XM1

i¼1

-iK1ð
�tr
2
ðgi þ 1Þ; �trÞyNð

�tr
2
ðgi þ 1ÞÞ

� �tr
XP
j¼1

XM2

k¼1

w
ðjÞ
k K2ð�trhðjÞk ; �tr; yNð�trhðjÞk ÞÞ

Wð�trhðjÞk Þ; r ¼ 2; . . .; 2N þ 1;

and

HðyÞ ¼ H1ðyÞ; . . .;H2Nþ1ðyÞð ÞT :

Thus, the system of Equations (23) and (24) can be reduced

to

HðyÞ ¼ 0; ð25Þ

for unknown coefficients fyrg2Nþ1
r¼1 . The system (25) can be

solved for yr ðr ¼ 1; . . .; 2N þ 1Þ using a suitable iterative

solver such as Newton’s method, ultimately yields an

estimate for yNðtÞ. In the following, we outline the algo-

rithm for the proposed scheme.
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Algorithm 1 Poly-sinc Collocation Method

4 Error Bound and Convergence Analysis

In this section, we will present two theorems concerning

numerical integration over the unit interval ½0; 1� 	 R

(Delves and Mohamed 1985), before delving into error

analysis.

Theorem 4.1 (Gauss–Legendre quadrature) Let M1 [ 0

be a fixed integer, and the function f : ½0; 1� �! R be

sufficiently smooth. Then, the definite integral of f over

[0, 1], denoted If, is approximated as follows

If ¼
Z 1

0

f ðtÞdt ’ Qf ¼
XM1

i¼1

-if ðgiÞ; ð26Þ

where fgigM1

i¼1 are the roots of the shifted Legendre poly-

nomial of degree M1 on the interval (0, 1) and f-igM1

i¼1 are

the weights associated with the quadrature formula (26).

Moreover, the error of the quadrature, If � Qf , denoted

Ef ðG-LÞ, can be bounded by

jEf ðG-LÞj� 2M

ð2M1 � 1Þ! ; ð27Þ

where M ¼ sup
0� t� 1

jf 2M1ð ÞðtÞj.

Theorem 4.2 Let M2;P[ 1 be two fixed integers and f be

a Riemann integrable function over the interval [0, 1].

Assume that h ¼ 1
P and QM2

ðf ; ððj� 1Þh; jhÞÞ represents the
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closed M2-point Newton–Cotes rule approximation to the

integral

Z jh

ðj�1Þh
f ðtÞ dt, defined by

QM2
ðf ; ððj� 1Þh; jhÞÞ ¼

XM2

i¼1

w
ðjÞ
i f ðhðjÞi Þ; j ¼ 1; � � � ;P;

where hðjÞi :¼ 1
P

i�1
M2�1

þ j� 1

 �

and w
ðjÞ
i are the quadrature

nodes and weights, respectively. Then, the P-panel repe-

ated quadrature rule (QM2
) to the integral

Z 1

0

f ðtÞ dt can be

obtained as follows

Z 1

0

f ðtÞ dt ¼
XP
j¼1

QM2
ðf ; ððj� 1Þh; jhÞÞ þ EM2;P; ð28Þ

where EM2;P denotes the quadrature error. Moreover, the

error tends to zero as the number of panels increases, i.e.,

lim
P ! 1

EM2;P ¼ 0: ð29Þ

We are now ready to present the theory regarding the

error analysis for our proposed method. In the upcoming

theorem, we will seek a bound on the error utilizing the

maximum function norm, as defined by

kf ðtÞk ¼ max
0� t� 1

jf ðtÞj: ð30Þ

Theorem 4.3 With the same assumptions and notation as

in Theorems 2.3 and 2.4, let y(t) and yNðtÞ denote,

respectively, the exact and poly-sinc solutions of (1)-(2).

Assume the additional regularity K1ðs; tÞyðsÞ 2 C2M1 ½0; 1�,
for fixed t 2 ½0; 1�, and Lipschitz continuity of g and K2 in

Eq. (17) with constants Lg and LK2
, respectively. Moreover,

assuming that upper bounds kKik�Ri for i ¼ 1; 2, and

kWk�G; for some Ri;G 2 R, we can establish a constant

T independent of N such that

kENðyðtÞÞk

� M

ð2M1 � 1Þ!þ
Sc

ðq� 1

2
Þ2Nþ2

ð2N þ 1Þ.2N

þ
 

3T

e2N
þ Sc

ðq� 1

2
Þ2Nþ2

! ffiffiffiffi
N

p

22N
exp

 
�p2

ffiffiffiffi
N

p

2m

!

þ EM2;P;

where,

ENðyðtÞÞ ¼ K1ðyðtÞÞ � K2ðyNðtÞÞ;
K1ðyðtÞÞ ¼ Dc

0;tyðtÞ � gðt; yðtÞÞ � n K2ðt; tÞyðtÞWðtÞ

� t

2

Z 1

�1

K1ð
t

2
ðgþ 1Þ; tÞyð t

2
ðgþ 1ÞÞdg

� t

Z 1

0

K2ðth; t; yðthÞÞWðthÞdh;

ð31Þ

K2ðyðtÞÞ ¼ Dc
0;tyðtÞ � gðt; yðtÞÞ � n K2ðt; tÞyðtÞWðtÞ

� t

2

XM1

i¼1

-iK1ð
t

2
ðgi þ 1Þ; tÞyð t

2
ðgi þ 1ÞÞ

� t
XP
j¼1

XM2

k¼1

w
ðjÞ
k K2ðthðjÞk ; t; yðthðjÞk ÞÞWðthðjÞk Þ;

ð32Þ

where fgigM1

i¼1, f-igM1

i¼1, fhðjÞk gM2

k¼1 and fwðjÞ
k gM2

k¼1, j ¼ 1:::P,

are defined in Eqs. (19) and (21).

Proof Using triangle inequality over kENðyðtÞÞk, we have

kENðyðtÞÞk� kK1ðyðtÞÞ � K2ðyðtÞÞk
þ kK2ðyðtÞÞ � K2ðyNðtÞÞk:

ð33Þ

Subtracting the right-hand sides of (31) and (32), taking

absolute values, and using triangle inequality again, we get

jK1ðyðtÞÞ � K2ðyðtÞÞj

� 1

2

���
Z 1

�1

K1ð t
2
ðgþ 1Þ; tÞyð t

2
ðgþ 1ÞÞdg

�
XM1

i¼1

-iK1ð t
2
ðgi þ 1Þ; tÞyð t

2
ðgi þ 1ÞÞ

���

þ 1

2

���
Z 1

0

K2ðth; t; yðthÞÞWðthÞdh

�
XP
j¼1

XM2

k¼1

w
ðjÞ
k K2ðthðjÞk ; t; yðthðjÞk ÞÞWðthðjÞk Þ

���

ð34Þ

According to Theorems 4.1 and 4.2 and also using relation

(34), we obtain

kK1ðyðtÞÞ � K2ðyðtÞÞk�
M

ð2M1 � 1Þ!þ EM2;P: ð35Þ

Similarly, from (32), we have
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jK2ðyðtÞÞ � K2ðyNðtÞÞj
� jDc

0;tyðtÞ � Dc
0;tyNðsÞj þ jgðt; yðtÞÞ � gðt; yNðtÞÞj

þ njK2ðt; tÞjjWðtÞjjyðtÞ � yNðtÞj

þ 1

2
jtj
XM1

i¼1

-i

���K1ð
t

2
ðgi þ 1Þ; tÞ

���
���yð t

2
ðgi þ 1ÞÞ

� yNð
t

2
ðgi þ 1ÞÞ

���
þ jtj

XP
j¼1

XM2

k¼1

w
ðjÞ
k

���K2ðthðjÞk ; t; yðthðjÞk ÞÞ � K2ðthðjÞk ; t; yNðthðjÞk ÞÞ
���
���WðthðjÞk Þ

���
The available assumptions of the theorem, combined with

the utilization of Theorems 2.3 and 2.4, yield the following

upper bound

kK2ðyðtÞÞ � K2ðyNðtÞÞk

� Sc

ðq� 1

2
Þ2Nþ2

(
ð2N þ 1Þ.2N þ

ffiffiffiffi
N

p

22N
exp

 
�p2

ffiffiffiffi
N

p

2m

!)

þAðLg þ nR2GÞ
( ffiffiffiffi

N
p

ð2eÞ2N
expð�p2

ffiffiffiffi
N

p

2m
Þ
)

þA
R1

2

( ffiffiffiffi
N

p

ð2eÞ2N
expð�p2

ffiffiffiffi
N

p

2m
Þ
)XM1

i¼1

-i

þAGLK2

( ffiffiffiffi
N

p

ð2eÞ2N
expð�p2

ffiffiffiffi
N

p

2m
Þ
)XP

j¼1

XM2

k¼1

w
ðjÞ
k

� Sc

ðq� 1

2
Þ2Nþ2

ð2N þ 1Þ.2N

þ
 

3T

e2N
þ Sc

ðq� 1

2
Þ2Nþ2

! ffiffiffiffi
N

p

22N
exp

 
�p2

ffiffiffiffi
N

p

2m

!
;

ð36Þ

where

T ¼ max
n
AðLg þ nR2GÞ;A

R1

2
;AGLK2

o
:

Thus, by employing Equations (33), (35) and (36), we can

achieve the desired result. h

The above Theorem implies that as M1;N;P ! 1, then

kENðyðtÞÞk ! 0. In fact, under appropriate smoothness

assumptions on the given functions g, K1, K2 and espe-

cially the solution function y, the desirable solution of

Eqs. (1) and (2), is obtainable for moderate values of M1,

M2, P and low/moderate resolution N. However, the

numerical results in the following section demonstrate the

effectiveness of our method in estimating the solution, even

when y is non-smooth.

5 Numerical Experiments

In this section, we present several examples from the lit-

erature to demonstrate the precision and effectiveness of

our algorithm in handling SFIDEs. It is crucial to note that

achieving satisfactory results with the proposed method

relies on determining the parameter m experimentally for

the mesh size h. We also employ the method outlined in

Higham (2001) to simulate the Brownian motion W(t) . To

accomplish this, we implement a discretization scheme for

W(t). We choose the step size D1 ¼ 1=J for J 2 Zþ and

define 1j ¼ jD1 and Wj ¼ Wð1jÞ where j ¼ 1; :::;J . Based

on Definition 2.1, Wð0Þ ¼ 0 and

Wj�1 ¼ Wj þ dWj; j ¼ 1; :::;J , where each dWj is an

independent random variable with a normal distribution in

the form
ffiffiffiffiffiffi
D1

p
N ð0; 1Þ. By performing linear spline inter-

polation at the given points ð1j;Wð1jÞÞ, j ¼ 1; :::;J , we

obtain an estimate of the function Wð1Þ. MATLAB pro-

gram in reference (Higham 2001) can be utilized to gen-

erate Brownian motion.

To assess the numerical performance of our method in

various numerical examples throughout this paper, we

calculate the absolute error function jyðtÞ � yNðtÞj, where

y(t) denotes the solution (1) with J ¼ 500. Given that an

exact solution to Eqs. (1) and (2) is generally unavailable,

we employ a numerical approximation with a sufficiently

small value of D1 ¼ 1=J , as suggested by Taheri et al.

(2017).

In cases where an exact solution is known, we report the

maximum absolute error as follows

EkeNk ¼ 1

q

Xq
l¼1

max
1� i� 2N þ 1

jyExactðti; lÞyNðti; lÞj: ð37Þ

Here, yExactðtÞ and yNðtÞ represent the exact and approxi-

mate solutions obtained through the proposed method,

respectively. Additionally, the residual error (RE(t)) can be

analyzed as shown below

EkREðtÞk

¼ 1

q

Xq
l¼1

�����Dc
0;tyNðt; lÞ � gðt; yNðt; lÞÞ

� n K2ðt; tÞyNðt; lÞWðtÞ

�
Z t

0

K1ðs; tÞyNðs; lÞds

þ n
Z t

0

K2ðs; t; yNðs; lÞÞWðsÞds
�����;

ð38Þ

where q denotes the total number of simulations, and E

signifies the mathematical expectation. For deterministic

cases, the error described in Equation (37) can be expressed

in the following way
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keNk ¼ max
1� i� 2Nþ1

jyExactðtiÞyNðtiÞj: ð39Þ

Also, upon substituting the approximate solution into the

original equation over the interval [0, 1], the residual error

function RE(t) can be obtained as

REðtÞ ¼ Dc
0;tyNðtÞ � gðt; yNðtÞÞ �

Z t

0

K1ðs; tÞyNðsÞds

� n
Z t

0

K2ðs; tÞyNðsÞdWðsÞ:

ð40Þ

In this study, we examine the behavior of the function yNðtÞ
by setting M2 ¼ 5 and P ¼ 10. The computations are per-

formed on a personal computer featuring an

Intel(R) Core(TM) i5-4200 CPU and 4.00 GB of RAM,

utilizing Maple software version 2018, with a precision of

16 Digits.

Example 5.1 We investigate the SFIDE (Taheri et al.

2017) described by

Dc
0;tyðtÞ ¼

Cð2Þt1�c

Cð2 � cÞ �
t3

3
þ
Z t

0

syðsÞds

þ
Z t

0

yðsÞdWðsÞ; t 2 ½0; 1�;

subject to the initial condition yð0Þ ¼ 0, where the exact

solution is currently unknown.

In order to obtain a numerical solution, we have

implemented the poly-sinc collocation technique outlined

in Sect. 3. Using M1 ¼ 4, in Table 1, we have reported a

comparison of the absolute error of our method with the

spectral collocation method as described in Taheri et al.

(2017), for J ¼ 150 and c ¼ 0:5. Through empirical

analysis, we found that the values of m corresponding to

n ¼ 4 and n ¼ 10 are 2.15 and 1.85, respectively. In our

analysis, n and N represent the number of collocation

points for our method and the method in Taheri et al.

(2017), respectively. These results are based on the anal-

ysis of 200 sample paths. In Table 2, we have displayed the

residual error for J ¼ 150; n ¼ 10, and various values of t

and c over 15 sample paths. In addition, Fig. 1 illustrates

approximate solutions to (1), (2) for n ¼ 10 and different

values of c in the left panel, while the right panel shows the

residual error curve corresponding to c ¼ 0:25. This fig-

ure highlights that small variations in the fractional order of

the derivative lead to slight deviations in the solution

curves. In this example, the use of a residual evaluation

strategy confirms the efficacy of the proposed method.

Example 5.2 Consider the following SFIDE (Mirzaee and

Samadyar 2019),

Dc
0;tyðtÞ ¼

7

12
t4 � 5

6
t3 þ 2t2�c

Cð3 � cÞ þ
t1�c

Cð2 � cÞ

þ
Z t

0

ðt þ sÞyðsÞdsþ
Z t

0

syðsÞdWðsÞ; t 2 ½0; 1�;

supplemented with the initial condition yð0Þ ¼ 0. The exact

solution to this problem is unknown.

Our numerical findings are based on the values M1 ¼ 4

and J ¼ 150. In Table 3, we have presented the results

obtained through 200 sample paths for three different

values of c(¼ 0:25; 0:5; 0:75) with n ¼ 2; 4, under the

condition m ¼ 2:15. In addition, we have reported the

residual error of our method with n ¼ 10 and the afore-

mentioned values of c in Table 4. The data in Table 4 is

based on the choice of m ¼ 1:55 and over 15 sample paths.

Table 1 A comparison of absolute errors between the spectral col-

location method (Taheri et al. 2017) and our proposed approach for

Example 5.1

t Present method Method of Taheri et al. (2017)

n ¼ 4 n ¼ 10 N ¼ 5 N ¼ 10

0.0 0.0000 0.0000 0.0000 0.0000

0.1 0.0044 0.0001 – –

0.2 0.0028 0.0000 0.0010 0.0002

0.3 0.0009 0.0000 – –

0.4 0.0041 0.0022 0.0062 0.0045

0.5 0.0051 0.0007 – –

0.6 0.0036 0.0017 0.0022 0.0019

0.7 0.0004 0.0173 – –

0.8 0.0021 0.0295 0.0044 0.0088

0.9 0.0010 0.0170 – –

1.0 0.0084 0.0043 0.0082 0.0069

CPU time(s) 5.074 5.553 – –

Table 2 The residual errors of Example 5.1 for n ¼ 10 at various

values of t and c

t c ¼ 0:15 c ¼ 0:25 c ¼ 0:5 c ¼ 0:75 c ¼ 0:95

m 1.50 1.55 1.55 1.55 1.55

0.0 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 0.0011 0.0000 0.0005 0.0053 0.0073

0.2 0.0000 0.0000 0.0000 0.0000 0.0000

0.3 0.0031 0.0128 0.0004 0.0295 0.0143

0.4 0.0024 0.0135 0.0300 0.0386 0.0307

0.5 0.0003 0.0000 0.0000 0.0000 0.0004

0.6 0.0831 0.0472 0.0092 0.0651 0.0685

0.7 0.0194 0.0116 0.0297 0.0046 0.0277

0.8 0.0079 0.0000 0.0013 0.0002 0.0005

0.9 0.0241 0.0109 0.0521 0.0231 0.0001
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Table 3 demonstrates that an increase in c corresponds to a

decrease in y. Moreover, Table 4 shows that our method is

reliable, as evidenced by the residual error data.

Example 5.3 Consider the SFIDE (1) with the following

data (Singh and Mehra 2023)

gðt; yðtÞÞ ¼ 2t2�c

Cð3 � cÞ �
t6

5
; K1ðs; tÞ ¼ ts2; K2ðs; tÞ ¼ s3;

along with the initial condition yð0Þ ¼ 0.

For n ¼ 0 and for each 0\c� 1, the exact solution is t2.

Using the method described in Sect. 3, this problem is

solved with the parameters n ¼ 2, M1 ¼ 2, c ¼ 0:75, J ¼

150 and m ¼ lnð2Þ. As shown in Example 6.2 of Singh and

Mehra (2023), our approach demonstrates superior accu-

racy and faster convergence rates for deterministic prob-

lems compared to the numerical scheme presented there.

The estimation for y(t) can be represented as follows:

yðtÞ � y1ðtÞ ¼ y1
�L1ðtÞ þ y2

�L2ðtÞ þ y3
�L3ðtÞ: ð41Þ

To obtain fyig3
i¼1, we need to use the methodology

described in Sect. 3 to compute f �Lig3
i¼1. Given the initial

condition yð0Þ ¼ 0 and the properties of the Caputo frac-

tional derivative operator, we can obtain the following

equation

Fig. 1 Approximate solutions for various values of c (Left) and the residual error at c ¼ 0:25 (Right) in Example 5.1

Table 3 The results of Example

5.2 for various values of t, c,
and n ¼ 2; 4

t n ¼ 2 n ¼ 4

c ¼ 0:25 c ¼ 0:5 c ¼ 0:75 c ¼ 0:25 c ¼ 0:5 c ¼ 0:75

0.0 1.70e�16 -1.69e�16 -9.68e�16 -4.25e�16 1.04e�14 -3.11e�14

0.1 0.0184 0.0387 0.0471 0.1066 0.1062 0.1056

0.2 0.0989 0.1247 0.1334 0.2399 0.2380 0.2361

0.3 0.2415 0.2579 0.2590 0.3973 0.3926 0.3889

0.4 0.4462 0.4382 0.4239 0.5819 0.5708 0.5636

0.5 0.7131 0.6658 0.6280 0.8030 0.7774 0.7629

0.6 1.0420 0.9405 0.8714 1.0757 1.0211 0.9919

0.7 1.4331 1.2625 1.1540 1.4209 1.3143 1.2588

0.8 1.8862 1.6316 1.4759 1.8656 1.6735 1.5741

0.9 2.4015 2.0479 1.8371 2.4426 2.1189 1.9512

1.0 2.9787 2.5114 2.2374 3.1905 2.6744 2.4063

CPU time(s) 3.410 3.683
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6y1 � 8y2 þ 3y3 ¼ 0: ð42Þ

Furthermore, by collocating Eq. (22) at the points

t ¼ 0:1; 0:5, we can derive two additional equations:

� 11:24198358654720y1 þ 18:76138775150043y2

� 7:519437498286546y3 � 0:09926542902028446 ¼ 0;

� 6:140202916620419y1 þ 6:677569848433729y2

� 0:7390586868632010 � 0:5582002651470500y3 ¼ 0:

ð43Þ

By solving Eqs. (42) and (43), one finds

y1 ¼ 0:1111111111111268; y2 ¼ 0:2500000000000481;

y3 ¼ 0:4444444444445414:

ð44Þ

Using Eq. (41), we can derive the value of y(t) using the

following approximation

yðtÞ � ð�5:0 
 10�14Þ t þ 1:000000000000293 t2:

Finally, Fig. 2 demonstrates solutions for different values

of n with n ¼ 10. As such, it is anticipated that as n
increases, the behavior of the solution will become less

predictable and display a more random pattern.

Example 5.4 We assume the SFIDE given by Singh and

Mehra (2021)

Dc
0;tyðtÞ ¼ � t5et

5
þ 6t3�c

Cð4 � cÞ

þ
Z t

0

etsyðsÞdsþ n
Z t

0

etsyðsÞdWðsÞ; t 2 ½0; 1�;

ð45Þ

with the initial condition yð0Þ ¼ 0:

As far as the authors know, no exact solution to this

problem is currently available. However, it has been con-

firmed that in the deterministic case, the cubic function

yðtÞ ¼ t3 satisfies equation (45) and its initial condition for

all 0� c� 1. Similar to the previous example, by choosing

c ¼ 0:75, n ¼ 4, M1 ¼ 2 and for m ¼ 2:15, we can obtain a

good approximation to the exact solution t3. In Fig. 3 we

Table 4 Residual errors in Example 5.2 for different values of t and c,

with n ¼ 10

t c ¼ 0:25 c ¼ 0:5 c ¼ 0:75

0.0 0 0 0

0.1 0.0025 0.0023 0.0066

0.2 0.0000 0.0000 0.0000

0.3 0.0140 0.0061 0.0109

0.4 0.0415 0.0166 0.0262

0.5 0.0004 0.0002 0.0000

0.6 0.0868 0.0090 0.0551

0.7 0.0271 0.0066 0.1086

0.8 0.0038 0.0000 0.0007

0.9 0.0292 0.0249 0.0152

Fig. 2 Graphical representation of the solutions with n ¼ 10 for

various values of n in Example 5.3

Fig. 3 The graph of the absolute error of Example 5.4, in the

deterministic case, for N ¼ 2, M1 ¼ 2 and c ¼ 0:75
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have shown the curve of the absolute error function

jyNðtÞ � yExactðtÞj. Also, by choosing n ¼ 1 and J ¼ 150,

we have compared absolute errors obtained from our

method and the spectral collocation technique (Taheri et al.

2017) in Table 5.

Example 5.5 We consider the following SFIDE (Taheri

et al. 2017; Kamrani 2015)

D
1=2
0;t yðtÞ þ yðtÞ ¼ t2 þ 2

t1:5

Cð2:5Þ þ
Z t

0

sdWðsÞ; t 2 ½0; 1�;

along with the initial condition yð0Þ ¼ 0.

The present method is employed to find a solution for

the aforementioned stochastic fractional integro-differen-

tial equation. In Table 6, we compare the numerical

solutions obtained using our suggested method with those

obtained through the Galerkin scheme (Kamrani 2015) and

the spectral collocation method (Taheri et al. 2017), for

specific values of t and n. We use M1 ¼ 4 and empirically

find that for n ¼ 4 and n ¼ 10, the corresponding values of

m are 3.24 and 3.05, respectively. The data shows that our

approach offers similar or even greater accuracy compared

to previous methods.

Example 5.6 Consider the SFIDE given in (1–2), with the

following data (Maleknejad et al. 2012):

gðt; yðtÞÞ ¼ 1
12

, �y0 ¼ 0, the kernel functions are defined

as K1ðs; tÞ ¼ cosðsÞ and K2ðs; tÞ ¼ sinðsÞ, and the exact

solution is given by

yðtÞ ¼ 1

12
exp



� t

4
þ sinðtÞ þ sinð2tÞ

8
þ
Z t

0

sinðsÞdWðsÞ
�
:

Table 7 presents a comparison between our method and

the method of Maleknejad et al. (2012) in terms of the

mean of error and the standard deviation of error with

varying numbers of simulations. Here, we set M1 ¼ 4 and

J ¼ 150. Additionally, we have included the upper and

lower bounds of the 95% confidence interval in Table 7. In

this example, our method utilizes five basis functions for an

approximate solution, while the method in Maleknejad

et al. (2012) uses eight basis functions. Therefore, the

present method strikes a favorable balance between accu-

racy and computational cost.

Example 5.7 In this example, we consider the SFIDE with

the following data (Singh and Mehra 2021):

gðt; yðtÞÞ ¼ t2

2
þ Cð2Þ
Cð2 � cÞ, where the kernel functions are

defined as K1ðs; tÞ ¼ 1 and K2ðs; tÞ ¼ 0, and the initial

condition is yð0Þ ¼ 0, for 0� t� 1. Upon mathematical

Table 5 A comparison of absolute errors between the spectral col-

location method (Taheri et al. 2017) and our proposed approach for

Example 5.4 with c ¼ 0:75 and n ¼ 1

t Present method Method of Taheri et al. (2017)

n ¼ 4 n ¼ 10 N ¼ 5 N ¼ 10

0.0 0.0000 0.0000 0.0000 0.0000

0.1 0.0019 0.0009 – –

0.2 0.0017 0.0029 0.0034 0.0005

0.3 0.0008 0.0040 – –

0.4 0.0001 0.0139 0.0015 0.0002

0.5 0.0001 0.0212 – –

0.6 0.0000 0.0002 0.0047 0.0008

0.7 0.0003 0.0173 – –

0.8 0.0020 0.0070 0.0026 0.0036

0.9 0.0069 0.0022 – –

1.0 0.0172 0.0137 0.0066 0.0002

Table 6 A comparative analysis

of absolute errors using the

Galerkin method (Kamrani

2015), Spectral collocation

method (Taheri et al. 2017), and

our approach in Example 5.5

t Present method Method of Taheri et al. (2017) Galerkin Kamrani (2015)

n ¼ 4 n ¼ 8 N ¼ 4 N ¼ 8 N ¼ 4 N ¼ 8

0.01 0.0000 0.0000 0.0008 0.0003 0.0041 0.1200

0.08 0.0003 0.0000 0.0022 0.0005 0.0034 0.0025

0.16 0.0011 0.0000 0.0006 0.0018 0.0009 0.0038

0.30 0.0026 0.0019 0.0061 0.0037 0.0061 0.0086

0.43 0.0031 0.0027 0.0061 0.0048 0.0153 0.0077

0.55 0.0026 0.0012 0.0030 0.0024 0.0253 0.0031

0.63 0.0019 0.0039 0.0012 0.0000 0.0325 0.0016

0.78 0.0008 0.0013 0.0019 0.0007 0.0459 0.0139

0.84 0.0009 0.0012 0.0035 0.0027 0.0516 0.0199

0.94 0.0028 0.0000 0.0046 0.0035 0.0581 0.0315

1.00 0.0053 0.0037 0.0016 0.0009 0.0617 0.0402

CPU time(s) 3.665 3.923 – – – –
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verification, it is evident that for c ¼ 0, the exact solution is

2et � ð2 þ tÞ.

In Table 8, we compare the maximum absolute error of

our method to the wavelet collocation method described in

Singh and Mehra (2021) for different values of n ¼ 2N,

having set M1 ¼ 10; 11. Figure 4 displays the natural

logarithm of keNk versus n, and we observe that the graph

has a straight-line shape, indicating that our method

achieves exponential convergence under deterministic

conditions. These results demonstrate the superior accuracy

of our methodology, particularly in this deterministic

example.

6 An Application

In this section, we revisit the Black-Scholes-Merton (BSM)

model, commonly known as the Black-Scholes model. This

mathematical equation is a fundamental concept in modern

financial theory and helps calculate the theoretical value of

derivatives. It considers various investment instruments,

time, and other risk factors to determine the value of

options contracts. The model was originally developed in

1973 by economists Black and Scholes (1973), along with

Robert Merton, and is still widely recognized as one of the

most effective methods for pricing options contracts. The

model represents a specific instance of stochastic fractional

integro-differential equations and is formulated as follows.

Let y(t) denote the stock price at time t. We model y(t)

as satisfying the stochastic differential equation

dyðtÞ ¼ yðtÞðlðtÞdðtÞ þ rðtÞdWðtÞÞ: ð46Þ

In this equation, lðtÞ and rðtÞ are functions denoting the

expected return and volatility of the stock, respectively.

The term W(t) denotes a Wiener process, which is a

mathematical model used to describe the random

Table 7 Mean, standard deviation, and 95% mean confidence intervals for error exhibited for our method versus method (Maleknejad et al.

2012)

q �XE SE 95% Confidence interval for mean of E

Present

method

Method of

Maleknejad

et al. (2012)

Present

method

Method of

Maleknejad

et al. (2012)

Lower

present

method

Upper

present

method

Lower method of

Maleknejad et al.

(2012)

Upper method of

Maleknejad

et al. (2012)

CPU

time(s)

30 0.00581794 0.00788410 0.00345348 0.00297687 0.00481993 0.00681595 0.00681884 0.00894936 0.465

50 0.00236083 0.00793958 0.00215177 0.00340213 0.00173900 0.00298266 0.00699656 0.00888261 0.792

75 0.00568736 0.00848855 0.00635024 0.00331070 0.00385222 0.00752250 0.00773927 0.00923784 1.964

100 0.00415484 0.00838714 0.00500041 0.00341973 0.00270979 0.00559989 0.00771687 0.00905740 1.793

125 0.00296436 0.00837599 0.00295781 0.00333239 0.00210960 0.00381912 0.00779179 0.00896018 2.467

200 0.00694715 0.00833360 0.00824089 0.00363129 0.00456565 0.00932865 0.00783033 0.00883687 4.149

250 0.00828326 – 0.00649089 – 0.00640749 0.0101590 – – 4.356

Table 8 A comparison of maximum absolute error from the method

of Singh and Mehra (2021) and our proposed approach for Example

5.7

n Present method Method of Singh and Mehra (2021)

6 1.97e�7 1.95e�2

12 4.25e�16 4.8e�3

24 2.62e�34 1.2e�3

48 8.70e�36 2.92e�4

Fig. 4 Graph of the logarithm of keNk for different values of

nð¼ 4 : 2 : 20Þ
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movements of a stock price. However, the Wiener process

has some limitations. It can have negative values, and it

cannot be directly used for modeling stock price move-

ments. To account for this, the term ryðtÞdWðtÞ is used in

the equation to represent the uncertainty or unpredictability

of the stock price movements. The volatility parameter r is

a positive value that indicates the extent of random fluc-

tuations in the stock price.

Upon integrating the equation (46), we get

yðtÞ ¼ y0 þ
Z t

0

lðsÞyðsÞdðsÞ þ
Z t

0

rðsÞyðsÞdBðsÞ;

where y0 represents the spot price at time 0. This integral

equation is an instance of a class of equations known as

Stochastic Financial Integral Differential Equations. The

exact solution to the problem is

yðtÞ ¼ y0exp

Z t

0



lðsÞ � 1

2
r2ðsÞ

�
dðsÞ þ

Z t

0

rðsÞdBðsÞ
�
:

Table 9 reports numerical results for M1 ¼ 4 and J ¼ 150,

assuming r ¼ 0:1, l ¼ 0:1, and y0 ¼ 1.

7 Conclusion

A numerical technique for solving stochastic fractional

integro-differential equations (SFIDEs) has been proposed

in this paper. The technique involves using the poly-sinc

collocation approach, which converts the SFIDE into a

linear/nonlinear system of algebraic equations of dimen-

sion 2N þ 1 that can be easily solved by employing an

appropriate iterative solver, such as Newton’s method. It is

worth mentioning that the deterministic and Itô integral

terms in (1), have been approximated using Gauss–

Legendre and P-panel, M-point Newton–Cotes quadra-

tures, respectively. The numerical results obtained in sec-

tion 5 reveal that the method attains a satisfactory solution

across a diverse range of parameters, particularly for small

values of N and with moderate computational efforts. In the

absence of an exact solution as a reference solution, we

have effectively either compared our results with previ-

ously available data or utilized a residual error approach. In

summary, it is important to note that the method is

straightforward to implement, exhibits rapid convergence,

especially under deterministic cases, and is well-suited for

addressing a wide variety of problems involving SFIDEs.

However, for problems with stochastic outputs, the com-

puted solution exhibits a smooth behavior with oscillatory

patterns. Nevertheless, within its domain, the error does not

experience significant growth. Lastly, our proposed

methodology could employ a generalized poly-sinc collo-

cation approach to address analogous problems in future

academic research.
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