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Abstract
In this study, we investigate the nonlinear potential Korteweg–de Vries equation (pKdVe) by making use of the Lie group

analysis. We start by constructing Lie symmetries and thereafter utilize them to execute symmetry reductions of pKdVe.

We then obtain solutions of the pKdVe by using the direct integration method. The obtained solutions are demonstrated in

respect of Jacobi elliptic functions. Some of the obtained solutions are illustrated graphically. Moreover, we obtain four

conserved vectors of the pKdVe by making use of the multiplier method and five conserved vectors by using the theorem

owing to Ibragimov. Finally, we simulate collisions between kinks for the pKdVe.

Keywords Potential KdV equation � Lie symmetries � Analytic solutions � Conserved vectors � Multiplier method �
Numerical simulation

1 Introduction

Most natural phenomena of the real world are modelled by

nonlinear partial differential equations (NPDEs) (Márquez

et al. 2023; Younas et al. 2023; Khalique and Lephoko

2023; Afrin 2023; Yin et al. 2023). To have a better

understanding of these phenomena, one needs to determine

the solutions of the NPDEs, in particular the exact solu-

tions. Determining exact closed form solutions of NPDEs

is a strenuous exercise as it is not easy to write down exact

solutions of NPDEs. In spite of this fact, many researchers

have come up with various techniques to determine exact

particular solutions of NPDEs. A few of these techniques

are homotopy perturbation technique (Shqair 2019), the

sine–cosine method (Wazwaz 2005), Bäcklund transfor-

mation (Gu 1990), variation of parameters approach (Feng

2003), extended simplest equation technique (Kudryashov

and Loguinova 2008), Hirota’s technique (Hirota 2004),

Lie group analysis (Lie 1891), Darboux transformation

(Matveev and Salle 1991), F-expansion technique (Zhou

et al. 2003), bifurcation technique (Zhang and Khalique

2018), Kudryashov’s technique (Kudryashov 2005), sine-

Gordon expanded equation approach (Chen and Yan 2005),

multi-exponential function technique (Ma and Zhu 2012)

homogeneous balance approach (Wang 1996), the

ðG0=GÞ�expansion method (Wang et al. 2005), as well as

the inverse scattering transform (Ablowitz and Clarkson

1991), to mention but a few.

Among the above specified techniques, Lie group

analysis is the most effective and power technique to

determine exact solutions of the NPDEs. It was founded by

the Norwegian mathematician, Marius Sophus Lie, who

discovered the discipline of continuous groups of trans-

formations and utilized it in the field of geometry and

differential equations (DEs). Researchers have applied

Lie’s theory to problems in various scientific fields
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successfully. See for example (Ovsiannikov 1982; Olver

1993; Ibragimov 1999).

Conservation laws play a very salient role in engineering

and physics from both a practical and theoretical stand-

point. They describe quantities that are conserved over a

certain period of time in a system. Conservation laws have

many uses such as in the extensive study of uniqueness,

existence and stability of solutions of DEs and in the

evolution and manipulation of numerical methods (Noether

1918; Leveque 1992; Sarlet 2010; Yasar and Özer 2011;

Gandarias and Bruzón 2017; Ibragimov 2007).

The Korteweg–de Vries (KdV) equation, that was first

introduced by Boussinesq in 1877, and rediscovered by

Diederik Korteweg and Gustav de Vries in 1895, is a

NPDE of third-order which reads

uxxx þ ut þ 6uux ¼ 0: ð1Þ

Here u ¼ uðt; xÞ represents the lengthening of the wave in

the vicinity of x and at time t. The number 6 appearing in

the equation is just traditional but of no great importance

(Korteweg and de Vries 1895). The Kadomtsev–Petvi-

ashvili (KP) equation (Kadomtsev and Petviashvili 1970)

auyy þ ðuxxx þ ut þ 6uuxÞx ¼ 0 ð2Þ

is a NPDE in one temporal and two spatial coordinates that

narrates the development of non-linear, long waves of short

amplitude accompanied by moderate relying on transverse

coordinate. The 3D generalized KP equation

uxxxy þ utx þ uty � uzz þ 3ðuxuyÞx ¼ 0 ð3Þ

was studied in Ma et al. (2011), using Wronskian and

Grammian techniques. In Wazwaz (2012), Hirota’s tech-

nique was invoked on Eq. (3) and multiple soliton along

with multiple singular soliton solutions were constructed.

Of late, a new generalized 3D KP equation, which reads

uxxxy þ utx þ uty þ utz � uzz þ 3ðuxuyÞx ¼ 0 ð4Þ

was established in Wazwaz and El-Tantawy (2016), by

adding utz in Eq. (3). It can be observed that this new

equation (4) transforms to the classical KP Eq. (2) if we

take y ¼ x. However, when x ¼ y ¼ z, we note that (4)

changes to the potential KdV (pKdV) equation that reads

3ut � ux þ 3u2
x þ uxxx ¼ 0; ð5Þ

which we shall study in this work.

2 Exact Solutions of the pKdV Eq. (5)

We work out Lie symmetries and perform symmetry

reductions of the pKdV Eq. (5). On top of that, we con-

struct travelling wave solution of (5) through integration.

2.1 Symmetries of (5)

We use Lie’s theory to determine Lie symmetries of (5).

The generator

Y ¼ stðt; x; uÞ o
ot

þ nxðt; x; uÞ o

ox
þ guðt; x; uÞ o

ou
ð6Þ

is a symmetry of (5) provided

Y ½3�DjD¼0 ¼ 0; ð7Þ

where D � 3ut � ux þ 3u2
x þ uxxx, Y

½3� is the third extension

of Y defined by

Y ½3� ¼ Y þ f1

o

out
þ f2

o

oux
þ f222

o

ouxxx
ð8Þ

and f1; f2 and f222 are given as

f1 ¼ DtðguÞ � uxDtðnxÞ � utDtðstÞ;
f2 ¼ DxðguÞ � uxDxðnxÞ � utDxðstÞ;
f12 ¼ Dxðf1Þ � uttDxðstÞ � utxDxðnxÞ;
f222 ¼ Dxðf22Þ � utxxDxðstÞ � uxxxDxðnxÞ

with Dt, Dx being the total derivatives formulated as

Dt ¼
o

ot
þ ut

o

ou
þ utx

o

oux
þ utt

o

out
þ � � � ;

Dx ¼
o

ox
þ ux

o

ou
þ uxx

o

oux
þ utx

o

out
þ � � � ;

respectively. Expanding Eq. (7) and splitting on different

derivatives with respect to u, we acquire eight PDEs

su ¼ 0; sx ¼ 0; xiu ¼ 0; nxx ¼ 0; gu þ nx ¼ 0;

st � 3nx ¼ 0; 3gt � gx þ gxxx ¼ 0; 6gx � 3nt � 2nx ¼ 0;

whose solution can be easily obtained and is given by

s ¼ C1t þ C2;

n ¼ 1

3
C1xþ C3t þ C4;

g ¼ � 1

3
C1uþ

1

2
C3xþ

1

9
C1xþ

1

6
C3t þ

1

27
C1t þ C5:

Thus, we conclude that the pKdV Eq. (5) admits a five-

dimensional Lie algebra L5 generated by

Y1 ¼ o

ot
; Y2 ¼ o

ox
; Y3 ¼ o

ou
; Y4 ¼ 6t

o

ox
þ ðt þ 3xÞ o

ou
;

Y5 ¼ 27t
o

ot
þ 9x

o

ox
þ ðt þ 3x� 9uÞ o

ou
:
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2.2 Symmetry Reductions and Solutions

We now carry out symmetry reductions and find invariant

solutions for the pKdV Eq. (5). We start off by con-

structing travelling wave solutions by invoking the trans-

lational symmetries Y1 ¼ o=ot and Y2 ¼ o=ox. Let

Y ¼ Y1 þ hY2 with h a constant. The symmetry Y has two

invariants

n ¼ x� ht P ¼ u; ð9Þ

and consequently we have the invariant solution u ¼ PðnÞ.
Substituting this invariant solution into (5) yields

P000 þ 3ðP0Þ2 � ð3hþ 1ÞP0 ¼ 0: ð10Þ

Letting Z ¼ P0, Eq. (10) becomes

Z00 þ 3Z2 � aZ ¼ 0; a ¼ 3hþ 1: ð11Þ

Multiplying the above equation by the integrating factor Z0

and integrating yields

Z02 þ 2Z3 � aZ2 þ 2C1 ¼ 0 ð12Þ

with C1 a constant. Now if Z3 � a
2
Z2 þ C1 ¼ 0 has three

roots q1 [ q2 [ q3, then we can rewrite (12) as

Z02 ¼ �2ðZ � q3ÞðZ � q2ÞðZ � q1Þ; ð13Þ

whose solution is well familiar (Kudryashov 2004; Grad-

shteyn and Ryzhik 2007) and is given by

ZðnÞ ¼ q2 þ ðq1 � q2Þcn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1 � q3

2

r

n

�

�

�

�

K2

� �

;

K2 ¼ q1 � q2

q1 � q3

;

ð14Þ

with cnðnjK2Þ being the Jacobi elliptic cosine function and

q1; q2; q3 are q1q2 þ q2q3 þ q3q1 ¼ 0, q1q2q3 ¼ �C1 and

q1 þ q2 þ q3 ¼ a=2. Recall that if K2 ! 1, cnð njK2Þ !
sech ðnÞ and if K2 ! 0, cnðnjK2Þ ! cos ðnÞ (Gradshteyn

and Ryzhik 2007). Since Z ¼ P0, we integrate (14) to get

PðnÞ. Now going back to variables t and x, the solution of

pKdV Eq. (5) is

uðt; xÞ ¼ fq2 � ð1 � K2Þq1gn
K2

þ q1 � q2ð Þdn A njK2ð ÞE am A njK2ð ÞjK2ð Þ
AM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dn A njK2ð Þ2
p ;

ð15Þ

with n ¼ x� ht, dnðnjK2Þ being the delta amplitude

function, EðnjK2Þ being the elliptic integral of the second

kind, amðnjK2Þ being the amplitude function and A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq1 � q3Þ=2
p

(Gradshteyn and Ryzhik 2007). In Fig. 1 we

exhibit the profile of solution (15) when h ¼ 1, q1 ¼ 3,

q2 ¼ 2, q3 ¼ 1 with �1� t� 1 and �1� x� 1.

Figure 1 illustrates the periodic nature of the obtained

solution (15) achieved by making a suitable chioce of the

parameters included in the solution. The wave profile fur-

ther establishes the elliptic solution with solitonic structure

peculiar to solutions with sinusodial wave form.

Solitary wave solutions of (12) arise when Z3 � a
2
Z2 þ

C1 ¼ 0 has two equal roots. Assume q1 ¼ q2, we have two

cases of (12), namely

Z02 ¼ �2Z2 Z � a

2

� �

and Z02 ¼ �2 Z þ a

6

� �

Z � a

3

� �2

;

ð16Þ

which gives
Z

dZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Z2 Z � a
2

� 	

q ¼ �n;
Z

dZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 Z � a
3

� 	2
Z þ a

6

� 	

q ¼ �n:

Evaluating the above integrals, we obtain

Z1 ¼ � 2aC5 expðn
ffiffiffi

a
p

Þ
1 � C5 expðn

ffiffiffi

a
p

Þf g2

and

Z2 ¼ a
1

3
� 1 þ C2

5

2 cos2 n
ffiffiffi

a
p

=2ð Þ 1 � C5 tan n
ffiffiffi

a
p

=2ð Þf g2

" #

:

Using Z ¼ P0 in the above equations and integrating we

obtain two solitary wave solutions of Eq. (5):

u1 ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

C5 expðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

Þ � 1
ð17Þ

and

u2 ¼ ð3hþ 1Þ

1

3
nþ

C2
5 þ 1

� 	

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

n=2
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

C5 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

n=2
� 	

� cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

n=2
� 	
 �

" #

;

ð18Þ

where n ¼ x� ht, 3hþ 1[ 0 and C5 is an arbitrary con-

stant. In Fig. 2 we give the wave profile of (18) in form of

3D and 2D plots with dissimilar constant values h ¼ 1,

C5 ¼ 20 with �10� t; x� 10.

2.2.1 Special Case

If we take the integration constant C1 ¼ 0 in the Eq. (12),

we obtain

dZ

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� 2Z
p ¼ �dn;

which gives
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2
ffiffiffiffiffiffiffi

�a
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Z � a

3hþ 1

r

 !

¼ �nþ K1 ð19Þ

with K1 a constant. Solving Eq. (19) for Z gives

Z ¼ 1

2
a sec2 1

2

ffiffiffiffiffiffiffi

�a
p

ðK1 � nÞ
� �

;

and consequently, we obtain

PðnÞ ¼ �
ffiffiffiffiffiffiffi

�a
p

tan
1

2

ffiffiffiffiffiffiffi

�a
p

ðK1 � nÞ
� �

þ K2;

where a\0 and K2 is a constant of integration. Hence the

travelling wave (invariant) solution under symmetry Y is

uðt; xÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð3hþ 1Þ
p

tan

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð3hþ 1Þ
p

ðK1 � ðx� htÞÞ
� �

þ K2;

provided 3hþ 1\0. However, for the case 3hþ 1[ 0, we

can integrate Eq. (12) with C1 ¼ 0 to obtain

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p arctanh

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1 � 2Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p



¼ �nþ K1;

where K1 is the constant of integration. This eventually

leads to the travelling wave (invariant) solution under

symmetry Y as

uðt; xÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

tanh

�

K1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3hþ 1
p

ðx� htÞ
2



þ K2:

ð20Þ

We give the wave profile of (20) as revealed in Fig. 3 with

dissimilar constant values h ¼ 0:1, K1 ¼ 10, K2 ¼ 20

where �10� t; x� 10.

We now utilize the five Lie symmetries of (5) and

perform symmetry reductions and compute group invariant

solutions.

Symmetry 1. The time translational symmetry Y1 ¼
o=ot gives the invariants I1 ¼ x; I2 ¼ u. Thus, u ¼ f ðxÞ is

the invariant solution, where arbitrary function f depends

on x. We note that this is a special case of (9) when h ¼ 0.

Thus, the invariant solutions are obtained by taking h ¼ 0

in the above derived solutions.

Symmetry 2. Consider the space translational operator

Y2 ¼ o=ox. This operator yields the invariants

I1 ¼ t; I2 ¼ u. Thus, u ¼ /ðtÞ and substituting into (5)

produces /0ðtÞ ¼ 0, which yields /ðtÞ ¼ C1; where C1 is a

constant. Hence, solution under the symmetry Y2 is

uðt; xÞ ¼ C1.

Fig. 1 Wave dynamics of periodic solution (15)

Fig. 2 Wave dynamics of trigonometric solution (18)
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Symmetry 3. The symmetry Y3 ¼ o=ou does not yield

any invariant solution.

Symmetry 4. Consider Y4. Invariants associated with Y4

are I1 ¼ t and I2 ¼ u� ð1=6Þx� x2=ð4tÞ. Hence

u ¼ 1

6
xþ x2

4t
þ hðtÞ; ð21Þ

is the invariant solution, where arbitrary function h depends

on t. Taking the above value of u and substituting it in (5)

yields h0ðtÞ ¼ 1=36, whose solution is hðtÞ ¼ ð1=36Þt þ C,

with C being a constant. Hence, the similarity solution

under Y4 is

uðt; xÞ ¼ 1

36
ðt þ 6xÞ þ x2

4t
þ C:

Symmetry 5. Lastly, consider Y5. This provides us with

two invariants

J1 ¼ x
ffiffi

t3
p ; J2 ¼ t1=3 u� t

36
� x

6

� �

:

Thus,

u t; xð Þ ¼ 1

36
ðt þ 6xÞ þ t�1=3h nð Þ; n ¼ x

ffiffi

t3
p ;

where arbitrary function h depends on n. The substitution

of u into Eq. (5) produces h000 þ 3 h02 � nh0 � h ¼ 0, which

on integration gives h002 � h00 þ 2 h03 � nh02 � 2 h

h0 þ nhþ C1 ¼ 0. Thus, the invariant solution under Y5 is

u t; xð Þ ¼ 1

36
ðt þ 6xÞ þ t�1=3h nð Þ

where hðnÞ solves

h002 � h00 þ 2h03 � nh02 � 2hh0 þ nhþ C1 ¼ 0; n ¼ x
ffiffi

t3
p :

3 Conservation Laws of (5)

Computation of conserved vectors for the pKdV Eq. (5) is

done by using the method of multipliers and the theorem

due to Ibragimov.

3.1 Conserved Vectors via the Multiplier
Approach

We search for 2nd-order multipliers M, which means that

M depends on the variables t, x, u and their first and sec-

ond derivatives. The equation that will determine M is

Olver (1993)

d
du

M 3ut � ux þ 3u2
x þ uxxx

� 	� �

¼ 0; ð22Þ

where d=du denotes the Euler operator and

d
du

¼ o

ou
� Dt

o

out
� Dx

o

oux
� D3

x

o

ouxxx
þ � � � :

Expanding (22) and separating on appropriate derivatives

of u produces eleven PDEs for the multiplier M:

Mx ¼ 0; Mu ¼ 0; Muxxuxx ¼ 0; Muttutt ¼ 0;

Mutxuxx ¼ 0; Mutxutx ¼ 0; Muttuxx ¼ 0; Muttutx ¼ 0;

3Mux � 2utxMutt ¼ 0; 3Mut þ 2uxxMutt ¼ 0;

Mt � 2u2
xxMuxx � 2uxxutxMutx � 2uttuxxMutt þ 2uxxM ¼ 0:

Solving the above equations for M, we get

M ¼ ðC2 � 2C1tÞuxx �
2

3
C4utuxx

þ C4utt þ
2

3
C4uxutx þ C3utx þ C1:

ð23Þ

This means that we get four multipliers

Fig. 3 Wave dynamics of hyperbolic solution (20)
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M1 ¼ uxx; M2 ¼ utx; M3 ¼ tuxx �
1

2
;

M4 ¼ utuxx � uxutx �
3

2
utt:

A multiplier M of (5) has the characteristic that

Mð3ut � ux þ 3u2
x þ uxxxÞ ¼ DtT

t þ DxT
x; ð24Þ

with Tt being density, and Tx flux. Hence, using (24) we

acquire four conserved vectors given as

Case 1. Considering first M1 ¼ uxx, the associated con-

served vector is ðTt
1; T

x
1Þ whose components are

Tt
1 ¼ � 3

2
u2
x ;

Tx
1 ¼ u3

x þ 3uxut þ
1

2
u2
xx �

1

2
u2
x :

Case 2. The multiplier M2 ¼ utx yields the conserved

vector ðTt
2; T

x
2Þ with components

Tt
2 ¼ u3

x �
1

2
u2
x �

1

2
u2
xx;

Tx
2 ¼ 3

2
u2
t þ utxuxx:

Case 3. For the multiplier M3 ¼ tuxx � 1=2, the corre-

sponding conserved vector is

Tt
3 ¼ 3

2
tuuxx �

3

2
u;

Tx
3 ¼ 1

2
2u3

x � 3uutx þ 3uxut � u2
x þ u2

xx

� 	

t

� 3

2
uux þ

1

2
u� 1

2
uxx:

Case 4. For the fourth multiplier M4 ¼ utuxx � ux
utx � ð3=2Þutt, we get

Tt
4 ¼ 1

2
uxu

2
xx � u4

x þ
1

2
u3
x �

9

2
utu

2
x þ

3

2
utux �

9

4
u2
t

þ 3

2
utxuxx;

Tx
4 ¼ 3u2

t ux �
3

4
u2
t þ utu

3
x �

1

2
utu

2
x þ

1

2
utu

2
xx � uxutxuxx

� 3

2
uttuxx �

3

4
u2
tx:

3.2 Conserved Vectors of (5) via Ibragimov’s
Method

We compute conserved vectors for pKdV Eq. (5) by

invoking the conservation theorem owing to Ibragimov

(2007).

The adjoint equation of (5) is

E� � d
du

v uxxx þ 3ut � ux þ 3u2
x

� 	� �

¼ 0; ð25Þ

where v is a new variable. From (25) we get

E� � vx � 3vt � 6uxxv� 6uxvx � vxxx ¼ 0: ð26Þ

Equations (5) and (26) have a Lagrangian

L ¼ 3vu2
x � vux þ 3vut � vxuxx: ð27Þ

We now use symmetries admitted by pKdV Eq. (5) to

determine conserved vectors associated with each sym-

metry. For this purpose the formulae (Ibragimov 2007)

Ci ¼ niLþWa oL

ouai
� Dk

oL

ouaik

� �

þ DkðWaÞ oL
ouaik

ð28Þ

is applied, where Wa is the Lie characteristic function

formulated as Wa ¼ ga � njuaj . Thus, invoking (28), we

achieve the conserved vectors ðCt
i ;C

x
i Þ for its five sym-

metries as

Ct
1 ¼ 3u2

xv� uxv� uxxvx;

Cx
1 ¼ utv� 6utuxv� utvxx þ vtuxx þ vxutx;

Ct
2 ¼ �3uxv;

Cx
2 ¼ �3u2

xvþ 3utv� uxvxx þ uxxvx;

Ct
3 ¼ 3v;

Cx
3 ¼ 6uxv� vþ vxx;

Ct
4 ¼ 3tvþ 9xv� 18tuxv;

Cx
4 ¼ 6tuxvþ 18xuxvþ 18tutv� tv� 3xv� 6tuxvxx

þ 6tuxxvx � 18tu2
xvþ tvxx � 3vx þ 3xvxx;

Ct
5 ¼ 81tu2

xv� 27tuxv� 27xuxv� 27uvþ 3tvþ 9xv� 27tuxxvx;

Cx
5 ¼ 6tuxv� 27xu2

xvþ 18xuxv� 54uxuv

� 162tutuxv� 9vxxu

þ 27tutvþ 27xutvþ 9uv� tv� 3xv

� 27tutvxx þ 27tvtuxx

þ 27tvxutx þ tvxx þ 18uxvx

� 9xuxvxx þ 9xuxxvx � 3vx þ 3xvxx:

Remark. We observe that the two methods used here to

compute conserved vectors provide us with different con-

served vectors.

4 Numerical Simulation of Kink Collisions

Integrable systems are systems of differential equations

(DEs) whose behaviour is determined by its initial condi-

tions and which can be integrated from those initial con-

ditions. The existence of many conserved vectors and the

ability to construct many explicit solutions are recognized

features of integrable systems. For PDEs, integrability has

the characteristics of having infinitely many conservation
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laws, the existence of a Lax pair, and elastic collisions

between solitons and/or kinks. Elastic collisions are colli-

sions in which there is no net loss of kinetic energy in the

system.

The aim of this section is to investigate integrability of

the pKdV Eq. (5) numerically. To do this, we simulate

collisions of kinks for the pKdV Eq. (5). For integrable

equations, we expect these simulations to produce elastic

collisions. While this does not conclusively establish

integrability, it does provide a strong suggestion that the

equation may be integrable.

For the numerical scheme we consider a large but finite

spatial domain x 2 � L
2
; L

2


 �

with interval length L ¼ 200,

and introduce a grid on this domain with N ¼ 2000 points.

In addition, we apply the Neumann boundary conditions

ou

ox

�

� L

2
; t
�

¼ 0;
ou

ox

�L

2
; t
�

¼ 0;

and

Fig. 4 Plots of two kinks moving at a t ¼ 0, b t ¼ 30, c t ¼ 50, d t ¼ 60, e t ¼ 80 and f t ¼ 100

Fig. 5 Plots of derivatives of kinks moving at a t ¼ 0, b t ¼ 30, c t ¼ 50, d t ¼ 60, e t ¼ 80 and f t ¼ 100
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o2u

ox2

�

� L

2
; t
�

¼ 0;
o2u

ox2

� L

2
; t
�

¼ 0:

A finite difference approximation is then applied to all

partial derivatives with respect to x. The resulting system

of ODEs is then integrated numerically by making use of

fourth-order Runge–Kutta method with a timestep of Dt ¼
10�4 that is sufficiently small to secure the stability of the

numerical scheme.

In order to simulate the collision of the kinks, we start

off by taking the kink solution (20) into consideration

uðx; tÞ ¼ �
ffiffiffi

a
p

tanh

�

K1 �
ffiffiffi

a
p

ðx� ctÞ
2

�

; ð29Þ

where a ¼ 3cþ 1 and K2 ¼ 0. For our investigation, we

consider solutions of the form (29) with K1 ¼ �1 and using

only the upper? signs, resulting in initial conditions of the form

uðx; 0Þ ¼
ffiffiffi

a
p

tanh

�

� 1 þ
ffiffiffi

a
p

ðxÞ
2

�

: ð30Þ

We let the slow kink be f ðxÞ ¼ uðx; 0Þ when c ¼ 0:5 and

the fast kink be gðxÞ ¼ uðx; 0Þ when c ¼ 1. We add the

kinks together and shift the fast kink 30 units behind the

slow kink. The new initial condition becomes

hðxÞ ¼ f ðxÞ þ gðxþ 30Þ.
Figure 4 shows the results of two kinks before and after

the collision. The initial condition of the solutions are

presented in Fig. 4a. As time goes by, the kinks approach

each other. This is clear from Fig. 4b where the solution is

shown at t ¼ 30. Figure 4c and d show that the collision

takes place where the two kinks seem to merge to form one

large kink. After the collision, Fig. 4e and f show that the

kinks re-emerge without any indication of a loss of energy.

As is clear, a kink is a sharp twist or curve in a function

that is otherwise flat. The initial condition we constructed

for the pKdV Eq. (5) produces two kinks that move at a

constant velocity. If these kinks are differentiated with

respect to x, the resulting structures have the appearance of

solitons. This representation of the solution simplifies the

analysis of the kink speeds before and after the collision.

Figure 5 shows the results of the derivatives of the kinks

before and after the collision. In Fig. 5a, we show the

initial condition of the solution. As time evolves, these

structures approach each other. This is clear from Fig. 5b

where the solution is shown at t ¼ 30. Here the tall kink

starts to overtake the shorter one. Figure 5c and d show

that the collision takes place where the two soliton-like

structures are difficult to distinguish. However, comparing

Fig. 5d with 5e it is clear that there is no dip during the

collision. After the collision, Fig. 5e and f show that all the

energy is retained by the solitons. Hence, this implies the

collision is elastic.

To compare the speeds of the kinks before and after

the collision, we plot their partial derivatives with respect

to x in a moving frame. Figure 6a shows the results in a

frame moving with the speed of the slow kink of 0.5. The

green curve is stationary in this frame, we can see that on

the interval 45\t\54. After the collision, the green

curve remains vertical, indicating that the kink does not

lose or gain speed. Figure 6b shows the same result in the

moving frame of the fast kink with a speed of 1. The

curve is stationary in this frame, as seen on the interval

30\t\50. After the collision, the yellow curve remains

vertical, indicating that the kink does not lose or gain

speed. One may therefore conclude that the collision is

elastic.

Fig. 6 a Kink moving at the speed of 0.5. b Kink moving at the speed of 1
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5 Concluding Remarks

We investigated the nonlinear pKdV Eq. (5) by making use

of the Lie group analysis in this paper. We started by

computing Lie symmetries and used them to perform

symmetry reductions of the pKdV equation. We then

obtained solutions of (5) by using the direct integration

method. The obtained solutions were expressed in terms of

Jacobi elliptic functions. Thereafter, we obtained four

conservation laws by utilizing the multiplier method and

five conservation laws using the theorem due to Ibragimov.

Finally, we investigated the integrability of the pKdV

equation numerically. For this purpose, we simulated col-

lisions between kinks for the pKdV equation. To establish

the elastic or inelastic nature of the collisions, we used two

criteria that were judged by the visual presentation of the

results. The first was to see if there was any background

perturbation arising during the collision. The second was to

determine the speeds of the kinks after the collisions. The

results showed that the kink collisions produced no back-

ground perturbation during the collision. Moreover, both

kinks were shown to maintain their speeds after the colli-

sion. This suggested that the pKdV may be integrable.
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