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Abstract
Discrete-time dynamical system exhibits richer dynamical behaviors such as chaos rather than continuous-time dynamical

systems. In order to describe chaos in two dimensional fractional order Lesli–Gower predator–prey systems, we need to

transition from fractional continuous-time dynamical systems to the discrete-time version. One of the practical ways to

achieve this transition is to use piecewise constant arguments in the model. After the discretization procedure based on the

use of piecewise constant arguments in the interval t 2 ½nh; ðnþ 1ÞhÞ, we obtain a new two dimensional system of

difference equations. Necessary and sufficient conditions for the stability of the equilibrium points are given by using

Schur–Cohn criterions. It is also investigated the existence of possible bifurcation types about the positive equilibrium

point of the discrete system. Theoretical analysis shows that the system undergoes Neimark–Sacker and flip bifurcations

with respect to parameter q. In addition, OGY feedback control method is implemented in order to control chaos in discrete

model. Bifurcations in a coupled network of the discrete predator–prey system are also examined. Numerical simulations

show that when the coupling strength parameter arrives the critical value, chaotic behavior is formed in the complex

dynamical networks. All of the theoretical results dealing with the stability, bifurcation and transition chaos in the coupled

network are stimulated by numerical simulations.
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1 Introduction

Predator–prey interactions are one of the most fundamental

areas in the population dynamics. The first and simplest

mathematical model for this interaction was suggested by

Lotka (1925) and Volterra (1926) independently in 1925

and 1926. Lotka-Volterra predator–prey models, which

have successful applications in many fields such as biology

(Hernández-Bermejo and Fairén 1997), chemistry (Sán-

chez-Pérez et al. 2020) and physics (Ma and Qian 2015),

are still a hot topic that attracts the attention of researchers.

Since the Lotka-Volterra predator–prey model neglects

some biological facts, some modifications have been made

by the researchers to improve realism. Leslie and Gower

(1960) proposed a predator–prey model, so-called Leslie-

Gower predator–prey model, where the carrying capacity

of the predator’s environment is a proportional to the

number of prey. The new predator–prey system takes the

following form:

dx

dt
¼ rxðtÞð1 � xðtÞÞ � xðtÞyðtÞ;

dy

dt
¼ yðtÞ p� qyðtÞ

xðtÞ

� �
;

8>><
>>:

ð1Þ

where x(t) and y(t) represent the density of the prey and

predator populations and the parameters r and p are growth

rate of prey and predator population, respectively, also

q denotes food quantity that prey provides and converted to

predator birth. There are many studies in the literature

dealing with the model (1) and its various modified ver-

sions can be found in Zhu et al. (2022), Gao and Yang

(2022), Arancibia-Ibarra et al. (2022), Singh and Malik
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(2021), Vinoth et al. (2022), Khan et al. (2022), Li et al.

(2020), Isık and Kangalgil (2022).

Recently, researchers have preferred to use fractional

order differential equations instead of the ordinary coun-

terpart in their mathematical model since these equations

can reflect the whole period of the biological and physical

process (Khan et al. 2021; Kumar et al. 2020a, b; Ghanbari

and Kumar 2020; Kumar et al. 2021; Veeresha et al. 2020;

Khajehnasiri et al. 2020; Rahmani Fazli et al. 2015; Kha-

jehnasiri and Safavi 2021). There are a lot of definitions of

fractional derivatives such as Caputo, Riemann Liouville,

Atangana- Beleanu (ABC), Caputo–Fabrizio and Con-

formable. The fractional order version of the model (1)

with Caputo sense is also studied in the literature as follows

(Khoshsiar Ghaziani et al. 2016; Selvam and Jacob 2020;

Rahmi et al. 2021; Li et al. 2018; Singh et al. 2019; Vahidi

et al. 2021; Panigoro et al. 2021; Ghanbari 2021; Sekerci

2020; Kaviya and Muthukumar 2021):

DaxðtÞ ¼ rxðtÞð1 � xðtÞÞ � xðtÞyðtÞ;

DayðtÞ ¼ yðtÞ p� qyðtÞ
xðtÞ

� �
;

8<
: ð2Þ

where Da represents fractional operator with Caputo sense.

The ABC and Caputo-Fabrizio version of the model (2) are

analyzed in the study (Panigoro et al. 2021) and (Sekerci

2020) respectively. On the other hand, in the study (Selvam

and Jacob 2020; Singh et al. 2019) and (Vahidi et al. 2021)

authors added piecewise constant arguments to Leslie-

Gower predator–prey model and obtain the discrete version

of the model (2).

Analysis of the dynamic characteristic of models such as

stability, bifurcation, and chaos are tools that help us to

understanding biological processes. Center manifold theory

is one of the most important tools used to determine the

stability of the discrete dynamical system as a result of

bifurcation types such as flip and Neimark–Sacker bifur-

cations (Guckenheimer and Holmes 1983; Kangalgil 2019;

Kangalgil and Isık 2020; Kaya et al. 2020). The chaotic

structure can occurs as a result of these bifurcations and

shows the complexity of the model.

Networks are a form of modeling that creates a topo-

logical structure by connecting construction whose ele-

ments interact with each other. Its history dates back to the

Konigsberg 7 bridges problem in the 18th century and

continue to exist as a branch of the graph theory until

today. Although there are many different networks

according to the shape of the connections, the most fre-

quently used networks are globally coupled network, star

network, nearest-neighbor coupled network, Erdos–Renyi

network and scale free network. Networks are complex

structures consisting of nodes and edges, and each node is

represented by a nonlinear dynamical system in a complex

network. Complex networks are one of the most interesting

tools used to understand the origin and complexity of the

dynamical system. The most important parameter that

determines the dynamic behavior of complex networks is

the coupling strength parameter. Increasing the hetero-

geneity of the network leads to a weakening of the coupling

strength parameter, and as a result, the system may tend to

exhibit chaotic behaviors. In the literature (Nepomuceno

and Perc 2019; Li et al. 2004; Huang et al. 2019; Ahmed

and Matouk 2020; Zhang et al. 2006; Wang et al. 2017),

there are many works dealing with the stability and bifur-

cation analysis of the complex network. Nepomuceno and

Perc (2019) investigated complex dynamics the Erdos

Renyi network of the coupled logistic map. In this study,

the authors demonstrated the transition from non-chaotic

state to chaotic state on the dynamics of the network when

the coupling strength parameter reaches a certain threshold

value.

In ecology, it is very important to predict the behavior of

populations through mathematical models. If the popula-

tion is modeled through a continuous-time dynamical

system, the behavior of the model is predictable. However,

in discrete-time dynamical systems, the population exhibits

unpredictable dynamical behavior such as chaotic oscilla-

tions under certain initial conditions. Experimental data

have shown that many natural populations exhibit chaotic

behavior (May 1976). Mathematically, we know that at

least three-dimensional nonlinear differential equations are

needed for continuous-time dynamical systems to see

chaotic behavior. Therefore, the continuous-time dynami-

cal system (2) is insufficient to describe the chaos that

occurs in the predator–prey interactions. In order to obtain

more realistic model, we will apply a discretization pro-

cedure to the model (2) and obtain a new discrete

dynamical system. Hence discrete dynamical system

includes the fractional order parameter as a new parameter.

Although the existence and properties of chaos on complex

continuous-time networks have been examined, there are

not enough studies on its properties on fractional-order

discrete-time complex networks. Analysis of dynamical

behaviors such as chaos of the discrete-time prey-predator

model on the complex networks will contribute to the

literature.

The goal of the present study is to explore dynamical

behavior of the discretized version of fractional order form

of Leslie-Gower mathematical model (2) on both one sin-

gle node and the coupled dynamical network. Basic defi-

nitions regarding fractional order derivative will be given

in Sect. 2. In Sect. 3, a discretization method based on the

using piecewise constant arguments is applied to the model

(2) and we obtain system of difference equations. Stability

analysis of the equilibrium points of the discrete system,

Neimark Sacker and flip bifurcation analysis are given in

Iranian Journal of Science

123



Sect. 4. Section 5 deals with the chaos control of the dis-

crete model. In Sect. 6, the dynamic structure of the star

network with N ¼ 10 and N ¼ 100 nodes are analyzed for

the discrete time dynamical system. All theoretical results

are supported by numerical simulations in Sect. 7. Finally,

Sect. 8 supplies the conclusion.

2 Preliminaries of Fractional Calculus

In this section, let us briefly remember at some of the

definitions in the field of fractional calculus.

Definition 1 (Kumar et al. 2020a) The Riemann–Liouville

fractional derivative is given as follows:

RL
a Dq

t f ðtÞ ¼

1

Cðn� qÞ
dn

dtn

Z t

a

f ðsÞ
ðt � sÞðq�nþ1Þ ds; n� 1\q\n;

dnf ðtÞ
dtn

; q ¼ n:

8>><
>>:

ð3Þ

Definition 2 (Kumar et al. 2020a) The definition of

Caputo fractional derivative is given as follows:

C
a D

q
t f ðtÞ ¼

1

Cðn� qÞ

Z t

0

f ðnÞðsÞ
ðt � sÞðq�nþ1Þ ds; n� 1\q\n;

dnf ðtÞ
dtn

; q ¼ n;

8>>><
>>>:

ð4Þ

where n is the first integer which is not less than q. The

symbol Cð:Þ is a gamma function characterize as:

CðxÞ ¼
Z 1

0

Xx�1e�X dX; ðReðxÞ[ 0Þ: ð5Þ

3 Discretization Process

In this section, we will discretize the model (2) based on

use of piecewise constant arguments. Firstly, we consider

the model (2) with piecewise constant arguments as

follows.

DaxðtÞ ¼ rxð½ t
h
�hÞð1 � xð½ t

h
�hÞÞ � xð½ t

h
�hÞyð½ t

h
�hÞ;

DayðtÞ ¼ yð½ t
h
�hÞ p�

qyð½ t
h
�hÞ

xð½ t
h
�hÞ

0
B@

1
CA:

8>>>>><
>>>>>:

ð6Þ

Let t 2 ½0; hÞ, then t
h 2 ð0; 1Þ. So we get

DaxðtÞ ¼ rx0ð1 � x0Þ � x0y0;

DayðtÞ ¼ y0 p� qy0

x0

� �
;

8<
: ð7Þ

and the solution (6) is given by

x1ðtÞ ¼ x0 þ Iaðrx0ð1 � x0Þ � x0y0Þ;

y1ðtÞ ¼ y0 þ Ia y0 p� qy0

x0

� �� �
;

8<
: ð8Þ

that is

x1ðtÞ ¼ x0 þ
ta

Cðaþ 1Þ ðrx0ð1 � x0Þ � x0y0Þ;

y1ðtÞ ¼ y0 þ
ta

Cðaþ 1Þ y0 p� qy0

x0

� �� �
:

8>><
>>:

ð9Þ

Let t 2 ½h; 2hÞ, then t
h 2 ð1; 2Þ. So we get

DaxðtÞ ¼ rx1ð1 � x1Þ � x1y1;

DayðtÞ ¼ y1 p� qy1

x1

� �
;

8<
: ð10Þ

and the solution (6) is given by

x2ðtÞ ¼ x1ðhÞ þ Iaðrx1ð1 � x1Þ � x1y1Þ;

y2ðtÞ ¼ y1ðhÞ þ Ia y1 p� qy1

x1

� �� �
;

8<
: ð11Þ

that is

x2ðtÞ ¼ x1ðhÞ þ
ðt � hÞa

Cðaþ 1Þ ðrx1ðhÞð1 � x1ðhÞÞ � x1ðhÞy1ðhÞÞ;

y2ðtÞ ¼ y1ðhÞ þ
ðt � hÞa

Cðaþ 1Þ y1ðhÞ p� qy1ðhÞ
x1ðhÞ

� �� �
:

8>>><
>>>:

ð12Þ

Repeating the process we can easily deduce that the solu-

tion of (6) is given by

xnþ1ðtÞ ¼ xnðnhÞ þ
ðt � nhÞa

Cðaþ 1Þ ðrxðnhÞð1 � xðnhÞÞ

�xðnhÞyðnhÞÞ;

ynþ1ðtÞ ¼ ynðnhÞ þ
ðt � nhÞa

Cðaþ 1Þ yðnhÞ p� qyðnhÞ
xðnhÞ

� �� �
:

8>>>>><
>>>>>:

ð13Þ

Let t ! ðnþ 1Þh, then we have

xnþ1ððnþ 1ÞhÞ ¼ xnðnhÞ þ
ha

Cðaþ 1Þ ðrxðnhÞð1 � xðnhÞÞ

�xðnhÞyðnhÞÞ;

ynþ1ððnþ 1ÞhÞ ¼ ynðnhÞ þ
ha

Cðaþ 1Þ yðnhÞ p� qyðnhÞ
xðnhÞ

� �� �
;

8>>>>><
>>>>>:

ð14Þ

that is
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xnþ1 ¼ xn þ
ha

Cðaþ 1Þ ðrxnð1 � xnÞ � xnynÞ;

ynþ1 ¼ yn þ
ha

Cðaþ 1Þ yn p� qyn
xn

� �� �
:

8>><
>>:

ð15Þ

4 Stability and Bifurcation Analysis

4.1 Stability Analysis

The equilibrium points of system (15) are

E1 ¼ ð1; 0Þ and E2 ¼ qr

pþ qr
;

pr

pþ qr

� �
: ð16Þ

Theorem 1 The equilibrium point E1 ¼ ð1; 0Þ is

a) saddle point if 0\r\ 2Cðaþ1Þ
ha ,

b) source if r[ 2Cðaþ1Þ
ha ,

c) non-hyperbolic if r ¼ 2Cðaþ1Þ
ha .

Proof The Jacobian matrix corresponding to the linearized

system of the model (15) at the equilibrium point E1 ¼
ð1; 0Þ can be calculated as follows.

JðE1Þ ¼
1 � har

Cðaþ 1Þ � ha

Cðaþ 1Þ

0 1 þ hap

Cðaþ 1Þ

0
BB@

1
CCA:

Moreover, the eigenvalues of this matrix are k1 ¼ 1 þ
hap

Cðaþ1Þ and k2 ¼ 1 � har
Cðaþ1Þ. It can be easily seen that

jk1j[ 1. In addition, if 0\r\ 2Cðaþ1Þ
ha , then jk1j\1. On the

contrary, if r[ 2Cðaþ1Þ
ha , then jk2j[ 1. This completes the

proof. h

Theorem 2 Suppose that

r[
2Cðaþ 1Þ

ha
; ð17Þ

and

0\p\
4ðCðaþ 1ÞÞ2

rh2a
: ð18Þ

If

p2ð�rha þ Cðaþ 1ÞÞ
rðprha � ðpþ rÞCðaþ 1ÞÞ\q

\� pðphaðrha � 2Cðaþ 1ÞÞ þ 4ðCðaþ 1ÞÞ2Þ
rðpha � 2Cðaþ 1ÞÞðrha � 2Cðaþ 1ÞÞ ;

ð19Þ

then E2 is local asymptotically stable.

Proof The calculations give the following Jacobian matrix

at the equilibrium point E2

JðE2Þ ¼
1 � haqr2

ðpþ qrÞCðaþ 1Þ � haqr

ðpþ qrÞCðaþ 1Þ
hap2

qCðaþ 1Þ 1 � hap

Cðaþ 1Þ

0
BBB@

1
CCCA;

which gives the characteristic equation

k2 þ p1kþ p0 ¼ 0; ð20Þ

where

p1 ¼ �2 þ ha
p

Cðaþ 1Þ þ
qr2

ðpþ qrÞCðaþ 1Þ

� �
; ð21Þ

and

p0 ¼ h2aprðpþ qrÞ � haðp2 þ pqr þ qr2ÞCðaþ 1Þ þ ðpþ qrÞðCðaþ 1ÞÞ2

ðpþ qrÞðCðaþ 1ÞÞ2
:

ð22Þ

To determine the stability conditions of the equilibrium

point E2, we can apply Jury conditions that are: a)

1 þ p1 þ p0 [ 0, b) 1 � p1 þ p0 [ 0 and c) 1 � p0 [ 0.

From the condition (a), we always hold

1 þ p1 þ p0 ¼ h2apr

ðCðaþ 1ÞÞ2
[ 0: ð23Þ

From (b) we have,

1 � p1 þ p0 ¼ 4 þ
haðhapr � 2ðp2þpqrþqr2ÞCðaþ1Þ

pþqr Þ
ðCðaþ 1ÞÞ2

: ð24Þ

Considering the inequalities

0\p\
2Cðaþ 1Þ

ha
; ð25Þ

and

0\q\� pðphaðrha � 2Cðaþ 1ÞÞ þ 4ðCðaþ 1ÞÞ2Þ
rðpha � 2Cðaþ 1ÞÞðrha � 2Cðaþ 1ÞÞ

ð26Þ

with the fact (17), then we have 1 � p1 þ p0 [ 0. From (c),

one can holds

1 � p0 ¼
hað�hapr þ ðp2þpqrþqr2ÞCðaþ1Þ

pþqr Þ
ðCðaþ 1ÞÞ2

: ð27Þ

In addition, If

r[
Cðaþ 1Þ

ha
; ð28Þ
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0\p\
rCðaþ 1Þ

rha � Cðaþ 1Þ ; ð29Þ

and

q[
p2ð�rha þ Cðaþ 1ÞÞ

rðprha � ðpþ rÞCðaþ 1ÞÞ ;
ð30Þ

then we have 1 � p0 [ 0. Consequently, considering the

inequality (18), (25), (26), (28), (29) and (30) with toge-

ther, we obtain the desired algebraic conditions. h

4.2 Bifurcation Analysis

Theorem 3 (Wen 2005; Xin et al. 2010; Khan et al. 2022)

Considering the following n-dimensional system with

bifurcation parameter q 2 R:

Xnþ1 ¼ fqðXnÞ: ð31Þ

Suppose that characteristic polynomial of JjX about X of

system (31) is

PðkÞ ¼ kn þ p1k
n�1 þ p2k

n�2 þ . . .þ pn: ð32Þ

Now considering the determinants D�
0 ðqÞ ¼ 1, D�

1 ðqÞ,
\ldots,D�

n ðqÞ, which can be defined as

D�
j ðqÞ ¼

1 p1 p2 . . . pj�1

0 1 p1 . . . pj�2

0 0 1 . . . pj�3

. . . . . . . . . . . . . . .

0 0 0 . . . 1

�����������

�����������

�

pn�jþ1 pn�jþ2 . . . pn�1 pn

pn�jþ2 pn�jþ3 . . . pn 0

. . . . . . . . . . . . . . .

pn�1 pn . . . 0 0

pn 0 . . . 0 0

�����������

�����������

ð33Þ

where j ¼ 1; . . .n. Furthermore, Neimark–Sacker bifurca-

tion occurs at critical value q ¼ q0 if following parametric

condition hold:

NS1) Eigenvalue assignment: Pq0
ð1Þ[ 0,

ð�1ÞnPq0
ð�1Þ[ 0, D�

n�1ðq0Þ ¼ 0, Dþ
n�1ðq0Þ[ 0,

D�
j ðq0Þ[ 0 where j ¼ n� 3; n� 5; . . .1 (or 2),

when n is even (or odd, respectively).

NS2) Transversality condition: d
dqD

�
n�1ðq0Þ 6¼ 0.

NS3) Nonresonance condition:
cosð2pÞ

l 6¼ 1 �

ð0:5ÞPqð1Þ D
�
n�3ðq0Þ

Dþ
n�2ðq0Þ

or resonance condition
cosð2pÞ

l ¼

1 � ð0:5ÞPqð1Þ D
�
n�3ðq0Þ

Dþ
n�2ðq0Þ

where l ¼ 3; 4; . . .

Theorem 4 Suppose that

p\
4ðCðaþ 1ÞÞ2

rh2a
; ð34Þ

and

cosð2pÞ
l

6¼ 1 � h2apr

2ðCðaþ 1ÞÞ2
: ð35Þ

If

q0 ¼ p2ð�rha þ Cðaþ 1ÞÞ
rðprha � ðpþ rÞCðaþ 1ÞÞ ;

ð36Þ

then Neimark–Sacker bifurcation emerges at the equilib-

rium point E2 ¼ ð qr
pþqr ;

pr
pþqrÞ in the discrete dynamical

system (15).

Proof By considering Theorem 3 for n ¼ 2, we have

Pqð1Þ ¼1 þ p1 þ p2 [ 0; ð37Þ

ð�1Þ2Pqð�1Þ ¼1 � p1 þ p2 [ 0; ð38Þ

D�
1 ðqÞ ¼1 � p2 ¼ 0; ð39Þ

Dþ
1 ðqÞ ¼1 þ p2 [ 0; ð40Þ

d

dq
ðD�

1 ðqÞÞjq¼q0
¼ d

dq
ð1 � p2Þjq¼q0

6¼ 0; ð41Þ

and

cosð2pÞ
l

6¼ 1 � ð0:5ÞPqð1Þ ¼ 1 � 1 þ p1 þ p2

2

¼ 1 � p1 � p2

2
:

ð42Þ

From (39), the critical Neimark–Sacker bifurcation point

can be easily computed as in (36). Considering the

inequalities (37) and (38) with the fact (34) one gets

Pq0
ð1Þ ¼ 1 þ p1 þ p2 ¼ h2apr

ðCðaþ 1ÞÞ2
[ 0; ð43Þ

and

ð�1Þ2Pq0
ð�1Þ ¼ 1 � p1 þ p2 ¼ 4 � h2apr

ðCðaþ 1ÞÞ2
[ 0:

ð44Þ

From (40), we have

Dþ
1 ðqÞ ¼ 1 þ p2 ¼ 2[ 0: ð45Þ

In addition, transversality condition (41) and non-reso-

nance condition (42) give

Iranian Journal of Science

123



d

dq
ðD�

1 ðqÞÞjq¼q0
¼ haðhapr � ðpþ rÞCðaþ 1ÞÞ2

pðCðaþ 1ÞÞ3
6¼ 0

ð46Þ

and

cosð2pÞ
l

6¼ 1 � h2apr

2ðCðaþ 1ÞÞ2
: ð47Þ

respectively. h

Theorem 5 (Wen et al. 2008; Khan et al. 2022) Consider

the system (31) with q 2 R is a bifurcation parameter. In

addition, characteristic polynomial of JjX about X of sys-

tem (31) is (32). Now considering the determinants

D�
0 ðqÞ ¼ 1, D�

1 ðqÞ; . . .;D
�
n ðqÞ, which are defined in (33) for

j ¼ 1; . . .; n. Furthermore, flip bifurcation occurs at critical

value q ¼ q0 if following parametric condition hold:

FB1) Eigenvalue assignment: Pq0
ð1Þ[ 0, Pq0

ð�1Þ ¼ 0,

D�
n�1ðq0Þ[ 0, D�

n�1ðq0Þ[ 0, D�
j ðq0Þ[ 0 where

j ¼ n� 3; n� 5; . . .1 (or 2), when n is even (or

odd, respectively).

FB2) Transversality condition:
Rn
i¼1ð�1Þn�1p

0
i

Rn
i¼1ð�1Þn�iðn�iþ1Þpi�1

6¼ 0

where p
0
i are the derivative with respect to q at

q ¼ q0.

Theorem 6 Suppose that

p\
4ðCðaþ 1ÞÞ2

rh2a
ð48Þ

and

� h�aðhap� 2Cðaþ 1ÞÞ2ðhar � 2Cðaþ 1ÞÞ2

2pCðaþ 1Þðh2apr � 3ðCðaþ 1ÞÞ2Þ
6¼ 0: ð49Þ

If

q0 ¼ � pðh2apr � 2hapCðaþ 1Þ þ 4ðCðaþ 1ÞÞ2Þ
rðhap� 2Cðaþ 1ÞÞðhar � 2Cðaþ 1ÞÞ ; ð50Þ

then flip bifurcation emerges about the equilibrium point

E2 ¼ ð qr
pþqr ;

pr
pþqrÞ in the discrete dynamical system (15).

Proof By using Theorem 5 with n ¼ 2, we have

Pqð1Þ ¼1 þ p1 þ p2 [ 0; ð51Þ

Pqð�1Þ ¼1 � p1 þ p2 ¼ 0; ð52Þ

D�
1 ðqÞ ¼1 � p2 [ 0; ð53Þ

Dþ
1 ðqÞ ¼1 þ p2 [ 0; ð54Þ

and

p
0
1 � p

0
2

3 � 2p1

6¼ 0: ð55Þ

From (52), the critical value of flip bifurcation point can be

obtained as in (50). Considering the inequalities (51),(53)

and (54) with the fact (48) one gets

Pq0
ð1Þ ¼1 þ p1 þ p2 ¼ h2apr

ðCðaþ 1ÞÞ2
[ 0; ð56Þ

D�
1 ðq0Þ ¼1 � p2 ¼ 2 � h2apr

2ðCðaþ 1ÞÞ2
[ 0; ð57Þ

and

Dþ
1 ðq0Þ ¼ 1 þ p2 ¼ h2apr

2ðCðaþ 1ÞÞ2
[ 0: ð58Þ

From (55), one gets

p
0

1 � p
0

2

3 � 2p1

¼ � h�aðhap� 2Cðaþ 1ÞÞ2ðhar � 2Cðaþ 1ÞÞ2

2pCðaþ 1Þðh2apr � 3ðCðaþ 1ÞÞ2Þ
6¼ 0:

ð59Þ

h

5 Chaos Control

Although it is a real reality that populations exhibit

unpredictable behavior in mathematical models, this is an

undesirable result for scientists working in this field. In

order to prevent the emergence of these unpredictable be-

haviors, that is chaos, mathematicians have resorted to

some mathematical methods called chaos control strate-

gies. In the literature, there are many chaos control meth-

ods such as OGY method, nonfeedback control and

Pyragas method (Ott et al. 1990; Din 2017; Ramesh and

Narayanan 1999; Pyragas 1992). To control the chaos in

the system (15), we study feedback control strategy (OGY).

Firstly, we reconsider (15) as the following form:

xnþ1 ¼ xn þ
ha

Cðaþ 1Þ ðrxnð1 � xnÞ � xnynÞ ¼ f ðxn; yn; qÞ;

ynþ1 ¼ yn þ
ha

Cðaþ 1Þ yn p� qyn
xn

� �� �
¼ gðxn; yn; qÞ;

8>><
>>:

ð60Þ

where q is taken as controlling parameter. In addition, q0 is
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restricted to the line in some small interval q 2 ðq0 �
g; q0 þ gÞ with g[ 0, and q0 is the nominal value

belonging to chaotic region. Now, we can apply the sta-

bilizing feedback control method in order to move the

trajectory towards the desired orbit. Let E2 ¼ ðx�; y�Þ ¼
ð qr
pþqr ;

pr
pþqrÞ be unstable equilibrium point of the discrete

system in chaotic region formed by the emergence of flip

bifurcation, then the system (60) can be approximated in

the neighborhood of the unstable equilibrium point ðx�; y�Þ
by the following linear map:

xnþ1 � x�

ynþ1 � y�

� �
� Jðx�; y�; q0Þ

xn � x�

yn � y�

� �
þ B½q� q0� ð61Þ

where

Jðx�; y�; q0Þ

¼

of ðx�; y�; q0Þ
ox

of ðx�; y�; q0Þ
oy

ogðx�; y�; q0Þ
ox

ogðx�; y�; q0Þ
oy

2
664

3
775

¼
1 � haq0r

2

ðpþ q0rÞCðaþ 1Þ � haq0r

ðpþ q0rÞCðaþ 1Þ
hap2

q0Cðaþ 1Þ 1 � hap

Cðaþ 1Þ

2
6664

3
7775;

and

B ¼

of ðx�; y�; q0Þ
oq

ogðx�; y�; q0Þ
oq

2
664

3
775 ¼

0

� hap2r

q0ðpþ q0rÞCðaþ 1Þ

2
4

3
5:

ð62Þ

Furthermore, the rank of the following matrix

C ¼½B : JB�

¼
0

h2ap2r2

ðpþ q0rÞ2ðCðaþ 1ÞÞ2

� hap2r

q0ðpþ q0rÞCðaþ 1Þ
hap2rðhap� Cðaþ 1ÞÞ
q0ðpþ q0rÞðCðaþ 1ÞÞ2

2
6664

3
7775

ð63Þ

is 2 that is system (60) is controllable with respect to

parameter q.

Let

½q� q0� ¼ �K
xn � x�

yn � y�

� �
; ð64Þ

where K ¼ ½q1q2�, then the system (61) can be re-written as

follows:

xnþ1 � x�

ynþ1 � y�

� �
� ½J � BK�

xn � x�

yn � y�

� �
: ð65Þ

Now, the corresponding controlled system of (15) is given

by

xnþ1 ¼ xn þ
ha

Cðaþ 1Þ ðrxnð1 � xnÞ � xnynÞ;

ynþ1 ¼ yn þ
ha

Cðaþ 1Þ ðynðp�
ðq0 � q1ðxn � x�Þ � q2ðyn � y�ÞÞyn

xn
ÞÞ:

8>><
>>:

ð66Þ

The Jacobian matrix J � BK of the controlled system (66)

can be obtained as follows:

The equilibrium point ðx�; y�Þ of the system (66) is locally

asymptotically stable if and only if both eigenvalues of the

characteristic equation PðkÞ of the jacobian matrix J � BK

lie inside the open unit disk where

J � BK ¼
1 � haq0r

2

ðpþ q0rÞCðaþ 1Þ � haq0r

ðpþ q0rÞCðaþ 1Þ
hap2

q0Cðaþ 1Þ þ
hap2rq1

q0ðpþ q0rÞCðaþ 1Þ 1 � hap

Cðaþ 1Þ þ
hap2rq2

q0ðpþ q0rÞCðaþ 1Þ

2
6664

3
7775:
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PðkÞ ¼ k2 þ kð�2 þ haðq0ðp2 þ pq0r þ q0r
2Þ � p2rq2Þ

q0ðpþ q0rÞCðaþ 1Þ Þ

þ q0ðpþ q0rÞ2ðCðaþ 1ÞÞ2 � haðpþ q0rÞCðaþ 1Þðq0ðp2 þ pq0r þ q0r
2Þ � p2rq2Þ

q0ðpþ q0rÞ2ðCðaþ 1ÞÞ2

þ h2apq0rððpþ q0rÞ2 þ prðq1 � rq2ÞÞ
q0ðpþ q0rÞ2ðCðaþ 1ÞÞ2

:

Let k1 and k2 be the eigenvalues of the characteristic

Eq. (67), then we get

k1 þ k2 ¼ 2 � haðp2 þ pq0r þ q0r
2Þ

ðpþ q0rÞCðaþ 1Þ

þ hap2rq2

q0ðpþ q0rÞCðaþ 1Þ ;
ð67Þ

and

k1k2 ¼1 þ
haðhapr � ðp2 þ pq0r þ q0r

2ÞÞCðaþ 1Þ
pþ q0r

Þ

ðCðaþ 1ÞÞ2

þ h2ap2r2q1

ðpþ q0rÞ2ðCðaþ 1ÞÞ2

þ hap2rð�haq0r
2 þ ðpþ q0rÞCðaþ 1ÞÞq2

q0ðpþ q0rÞ2ðCðaþ 1ÞÞ2
:

ð68Þ

In order to obtain the lines of marginal stability, we take

k1 ¼ �1 and k1k2 ¼ 1. These restrictions make sure that

the equilibrium point is locally asymptotically stable.

Assuming that k1k2 ¼ 1, then (68) implies that:

L1 :
haðhaprðpþ q0rÞ � ðp2 þ pq0r þ q0r

2ÞCðaþ 1ÞÞ
ðpþ q0rÞðCðaþ 1ÞÞ2

þ h2ap2r2q1

ðpþ q0rÞ2ðCðaþ 1ÞÞ2

� hap2rðhaq0r
2 � ðpþ q0rÞCðaþ 1ÞÞq2

q0ðpþ q0rÞ2ðCðaþ 1ÞÞ2
¼ 0:

From the equation k1 ¼ 1, then (67) and (68) yield

L2 :
haprðpþ q0rÞ
Cðaþ 1Þ þ hap2r2q1

ðpþ q0rÞCðaþ 1Þ

� hap2r3q2

ðpþ q0rÞCðaþ 1Þ ¼ 0:

Finally, taking k1 ¼ �1 and using the Eqs. (67) and (68)

we hold

L3 :
h2aprðpþ q0rÞ � 2haðp2 þ pq0r þ q0r

2ÞCðaþ 1Þ þ 4ðpþ q0rÞðCðaþ 1ÞÞ2

ðpþ q0rÞðCðaþ 1ÞÞ2

þ hap2rq2

q0ðpþ q0rÞCðaþ 1Þ

¼ � h2ap2r2q1

ðpþ q0rÞ2ðCðaþ 1ÞÞ2

þ hap2rðhaq0r
2 � ðpþ q0rÞCðaþ 1ÞÞq2

q0ðpþ q0rÞ2ðCðaþ 1ÞÞ2
:
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Then, stable eigenvalues lie within the triangular region in

q1q2 plane bounded by the straight lines L1; L2;L3 for

particular parametric values.

6 Dynamical Analysis of the Model (15)
on Star Network

Taking into account a dynamical network consisting of N

linearly and diffusively coupled nodes, with each node

describe a two-dimensional dynamical system defined by

discrete system (15). Let’s consider the model (15) as the

following form:

xðk þ 1Þ ¼ xðkÞ þ ðrxðkÞð1 � xðkÞÞ

�xðkÞyðkÞÞ ha

Cðaþ 1Þ ¼ f ðxðkÞ; yðkÞÞ;

yðk þ 1Þ ¼ yðkÞ þ yðkÞðp� qyðkÞ
xðkÞ Þ

ha

Cðaþ 1Þ ¼ gðxðkÞ; yðkÞÞ:

8>>>>><
>>>>>:

ð69Þ

This dynamical network is defined by

xiðk þ 1Þ ¼ f ðxiðkÞ; yiðkÞÞ � c
PN
j¼1

aijf ðxjðkÞ; yjðkÞÞ;

yiðk þ 1Þ ¼ gðxiðkÞ; yiðkÞÞ � c
PN
j¼1

aijgðxjðkÞ; yjðkÞÞ;

8>>><
>>>:

ð70Þ

where i and j are the sequence number of the nodes in the

Fig. 1 Periodic orbits, stable and unstable equilibrium points with

regard to parameter q: q ¼ 0:1 a, q ¼ 0:141691 b, q ¼ 0:2 c, q ¼ 0:6
d, q ¼ 0:814889 e, q ¼ 0:9 f, q ¼ 1 g, q ¼ 1:1 h, q ¼ 1:2 i, where

a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1; x(n) and y(n) represent by blue and

red curves respectively
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coupled dynamical network, c describes the coupling

strength of the network. The coupling matrix A 2 RNxN can

be expressed by

A ¼

d11 a12 a13 . . . a1N

a12 d22 a23 . . . a2N

a13 a23 d33 . . . a3N

..

. ..
. ..

. . .
.

. . .

a1N a2N a3N . . . dNN

0
BBBBBBB@

1
CCCCCCCA
: ð71Þ

If there is a connection between node i and j, then aij ¼ 1;

otherwise, aij ¼ 0ði 6¼ jÞ. Let aii ¼ �di, i ¼ 1; 2; . . .;N,

where di is the degree of node i and can be defined by the

following equation:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

q

x(
n)

Fig. 2 Multiple bifurcation in the system (15) with regard to

parameter q, where a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1

Fig. 3 Neimark–Sacker bifurcation in the system (15) with regard to

parameter q, where a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1

0.6 0.8 1 1.2 1.4 1.6
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

q

x(
n)

Fig. 4 Flip bifurcation in the system (15) with regard to parameter q,

where a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1

Fig. 5 Triangular stability region by L1,L2 and L3 where a ¼ 0:95,

p ¼ 0:6, r ¼ 2:8, h ¼ 1, q ¼ 1:4

Fig. 6 Star network with N ¼ 10
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dii ¼ �
XN

j¼1;j 6¼i

aij ¼ �
XN

j¼1;j 6¼i

aji:

Now, system (70) can be rewritten as the following matrix

form:

Xkþ1 ¼ ðI � cAÞf ðXðkÞ; YðkÞÞ;
Ykþ1 ¼ ðI � cAÞgðXðkÞ; YðkÞÞ;

�
ð72Þ

where Xk ¼ ðx1ðkÞ; x2ðkÞ; . . .; xNðkÞÞ, Yk ¼
ðy1ðkÞ; y2ðkÞ; . . .; yNðkÞÞ and I 2 RNxn is identity matrix.

7 Numerical Simulations

In this section, we use some numerical simulations to test

the accuracy of the theoretical results. Let a ¼ 0:95,

p ¼ 0:6, r ¼ 2:8 and h ¼ 1. From the Theorem 2, we

obtain the local asymptotically stable condition as

p\1:37167, r[ 1:95976 and 0:141691\q\0:814889.

Figures 1 and 2 demonstrate that the equilibrium point of

the discrete system is stable for some value of parameter q

where it is in the range 0:141691\q\0:814889, otherwise

it is unstable. Figure 1a, c, d show stable equilibrium

points; Fig. 1b and e demonstrate Neimark–Sacker and flip

bifurcations respectively; Fig. 1f and g indicate periodic

solutions; Fig. 1h and represent the chaotic behaviors.

Figure 2 also shows multiple bifurcations such as Nei-

mark–Sacker and flip bifurcation as the parameter

q changes.

For the Neimark–Sacker bifurcation analysis, the

parameter q is determined as a bifurcation parameter. From

the condition of Theorem 4, we can select the model

parameter as a ¼ 0:95, p ¼ 0:6, r ¼ 2:8 and h ¼ 1 with the

Fig. 7 Flip bifurcation in the star network with regard to parameter c,

where N ¼ 10 a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1 and q ¼ 0:95

Fig. 8 Star network with N ¼ 100

1 2 3 4 5 6 7

x 10
−4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

c

x 1

Fig. 9 Flip bifurcation in the star network with regard to parameter c,

where N ¼ 10 a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1 and q ¼ 0:95

7 7.5 8 8.5 9 9.5

x 10
−3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

c

x 1

Fig. 10 Neimark–Sacker bifurcation in the star network with regard

to parameter c, where N ¼ 100 a ¼ 0:95, p ¼ 0:6, r ¼ 2:8, h ¼ 1 and

q ¼ 0:1
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fact that p\1:37167. From the Eq. (36), we have the

critical Neimark–Sacker bifurcation point as

q0 ¼ 0:141691. Now, the characteristic equation becomes

k2 � 0:250303kþ 1 ¼ 0 that gives the complex eigenval-

ues k1;2 ¼ 0:125151 � 0:992138i. This eigenvalues satisfy

the eigenvalue assignment condition jk1;2j ¼ 1. In addition,

from the Eq. (47) we have l ¼ �4:34727. Now all the

conditions of Neimark–Sacker bifurcation are satisfied and

this bifurcation is formed around the positive equilibrium

point E2 ¼ ð0:398034; 1:68551Þ (Fig. 3).

As we consider the conditions of the flip bifurcation in

Theorem 6 with the parameters a ¼ 1, p ¼ 0:95, r ¼ 2:8

and h ¼ 1, we obtain the critical flip bifurcation point as

q0 ¼ 0:814889 from the Eq. (50). Now, the characteristic

equation becomes k2 þ 0:874849k� 0:125151 ¼ 0 that

gives the eigenvalues k1 ¼ �1 and k2 ¼ 0:129151. In

addition, from the Eq. (59) we have
p
0
1
�p

0
2

3�2p1
¼ 0:92473 6¼ 0.

Now all conditions of flip bifurcation are satisfied and flip

bifurcation takes place around the positive equilibrium

point E2 ¼ ð0:791789; 0:582991Þ in the discrete dynamical

system (15) (Fig. 4). Figure 3 and Fig. 4 are enlargement

of Fig. 2 in two parts. (Fig. 5) gives the triangular stability

region bounded by L1, L2 and L3 for the controlled system

(66). Staying within this triangular region, which permit us

to control chaos, allows us to avoid unpredictable behavior.

The purpose here is to also investigate the complex

dynamics of Leslie-Gower predator–prey system (15) into

the coupled dynamical network. For this purpose we use

the star network with N ¼ 10 and N ¼ 100 nodes. All

simulations have used the same initial condition for all

nodes, which are slightly different from the equilibrium

point. Figure 6 shows the star network with N ¼ 10 nodes.

For this network with N ¼ 10 nodes, the coupling matrix A

can be computed from the Eq. (71) as follows:

A ¼

�9 1 1 1 1 1 1 1 1 1

1 � 1 0 0 0 0 0 0 0 0

1 0 � 1 0 0 0 0 0 0 0

1 0 0 � 1 0 0 0 0 0 0

1 0 0 0 � 1 0 0 0 0 0

1 0 0 0 0 � 1 0 0 0 0

1 0 0 0 0 0 � 1 0 0 0

1 0 0 0 0 0 0 � 1 0 0

1 0 0 0 0 0 0 0 � 1 0

1 0 0 0 0 0 0 0 0 � 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Now, let us consider the nodes in the networks with the

highest degree that is x1. Figure 7 depicts that when the

coupling parameter c arrives the critical value where it is in

the interval c 2 ½1 � 10�3; 2 � 10�3�, flip bifurcation

emerges at the positive fixed point. We also investigate the

dynamic structure of the complex network again by

increasing the number of nodes where N ¼ 100 (Fig. 8).

Figure 9 demonstrates that the critical flip bifurcation point

with respect to parameter c is the interval

c 2 ½1 � 10�4; 2 � 10�4�.
The complex network with N ¼ 100 nodes also exhibits

Neimark–Sacker bifurcation about the positive equilibrium

point with respect to parameter c where it is the interval

c 2 ½7:7 � 10�3; 8:2 � 10�3� (Fig. 10).

8 Conclusion

In this study, we examine dynamical behavior of the

fractional order Leslie-Gower predator–prey model with

piecewise constant arguments. The discretization method

formed on the use piecewise constant arguments applies to

predator–prey model and we obtain two dimensional dis-

crete dynamical system (15). Some algebraic conditions to

ensure the stability of the equilibrium points of the model

are obtained by using Schur–Cohn criterion and these

conditions are given in Theorem 1 and Theorem 2. Theo-

rem 2 shows that the parameter q (food quantity) plays a

key role on the dynamical behavior of the system (15). If

the parameter q falls inside the range of inequality (19),

then the positive equilibrium point of the system is local

asymptotically stable. Figure 1 shows the both stable and

unstable equilibrium points of the model depending on the

change of the parameter q.

In Sect. 4, we investigate the existence of possible

bifurcation types in the model and show that the model

undergoes both Neimark–Sacker and flip bifurcations.

Theorem 4 and Theorem 6 give us to necessary conditions

of the existence these bifurcations respectively. The critical

value of both Neimark–Sacker and flip bifurcations with

respect to parameter q are given in Eq. (36) and (50)

respectively. Figures 3 and 4 show that if the parameter

q reaches these critical bifurcation point, then Neimark–

Sacker and flip bifurcations occur around the positive

equilibrium point.

In Sect. 4, we also deal with the discrete system (15)

that represents a single node on the star network. System

(70) can be used to represent a star network consisting of N

nodes where interaction of each point is described by

Leslie-Gower predator–prey model (15). Firstly, we

investigate the dynamics of the star network with N ¼ 10

nodes represented in Fig. 6. The most important parameter

that determines the dynamics of such a complex network is

the coupling strength parameter c. Figure 7 implies that if

the parameter c falls in the interval

c 2 ½1 � 10�3; 2 � 10�3�, flip bifurcation occurs around the

positive equilibrium point. Secondly, we compose more

complex network by increasing the numbers of nodes

where N ¼ 100 (Fig. 8). In such a network, flip bifurcation
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takes the form at a smaller value of c where it is in the

range c 2 ½1 � 10�4; 2 � 10�4�. So, we can notice that as

the number of node increases, bifurcation and chaotic

dynamics appear at a lower coupling strength parameter

c (Fig. 9). Figure 10 also demonstrates that complex net-

work exhibits Neimark–Sacker bifurcation around the

positive equilibrium point with respect to changing

parameter c.

As can be seen in the theoretical and numerical simu-

lations mentioned above, discrete-time dynamical system

(15) exhibits rich dynamical behaviors such as multiple

bifurcation and chaos which are not present in the contin-

uous-time dynamical system (2). This illustrates the main

reason why we focus on system (15) rather than system (2).

On the other hand, the fact that the discrete dynamical

system exhibits both flip and Neimark Sacker bifurcations

according to changing parameter q (food quantity) that

makes it even more interesting. Figure 2 clearly shows this

rarely encountered situation. Although populations are in a

steady state at the value of q ¼ 0:2 where population sizes

should not change as time goes on, decreasing or increasing

the amount of food without foreseeing causes unpre-

dictable behavior in the populations. A decrease in the

amount of food quantity to 0.141691 causes a Neimark–

Sacker bifurcation, and an increase to 0.814889 leads to

flip bifurcation. After showing the existence of chaos,

which are often encountered in population models, we

present a strategy that can control this chaos. Figure 5

gives us the triangular region where we can control the

chaos. Moreover, we show that the discrete-time dynamical

system also exhibits the rich dynamical behaviors men-

tioned above on the complex networks.
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