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Abstract

Discrete-time dynamical system exhibits richer dynamical behaviors such as chaos rather than continuous-time dynamical
systems. In order to describe chaos in two dimensional fractional order Lesli-Gower predator—prey systems, we need to
transition from fractional continuous-time dynamical systems to the discrete-time version. One of the practical ways to
achieve this transition is to use piecewise constant arguments in the model. After the discretization procedure based on the
use of piecewise constant arguments in the interval ¢ € [nh, (n + 1)h), we obtain a new two dimensional system of
difference equations. Necessary and sufficient conditions for the stability of the equilibrium points are given by using
Schur—Cohn criterions. It is also investigated the existence of possible bifurcation types about the positive equilibrium
point of the discrete system. Theoretical analysis shows that the system undergoes Neimark—Sacker and flip bifurcations
with respect to parameter ¢. In addition, OGY feedback control method is implemented in order to control chaos in discrete
model. Bifurcations in a coupled network of the discrete predator—prey system are also examined. Numerical simulations
show that when the coupling strength parameter arrives the critical value, chaotic behavior is formed in the complex
dynamical networks. All of the theoretical results dealing with the stability, bifurcation and transition chaos in the coupled
network are stimulated by numerical simulations.
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1 Introduction

Predator—prey interactions are one of the most fundamental
areas in the population dynamics. The first and simplest
mathematical model for this interaction was suggested by
Lotka (1925) and Volterra (1926) independently in 1925
and 1926. Lotka-Volterra predator—prey models, which
have successful applications in many fields such as biology
(Hernandez-Bermejo and Fairén 1997), chemistry (San-
chez-Pérez et al. 2020) and physics (Ma and Qian 2015),
are still a hot topic that attracts the attention of researchers.
Since the Lotka-Volterra predator—prey model neglects
some biological facts, some modifications have been made
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by the researchers to improve realism. Leslie and Gower
(1960) proposed a predator—prey model, so-called Leslie-
Gower predator—prey model, where the carrying capacity
of the predator’s environment is a proportional to the
number of prey. The new predator—prey system takes the
following form:

% = mx(t)(1 — x(1)) — x(0)y(1),
qy(1) W
y(1) (p 0 )

dy
0=
where x(#) and y(f) represent the density of the prey and
predator populations and the parameters r and p are growth
rate of prey and predator population, respectively, also
q denotes food quantity that prey provides and converted to
predator birth. There are many studies in the literature
dealing with the model (1) and its various modified ver-
sions can be found in Zhu et al. (2022), Gao and Yang
(2022), Arancibia-Ibarra et al. (2022), Singh and Malik
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(2021), Vinoth et al. (2022), Khan et al. (2022), Li et al.
(2020), Isik and Kangalgil (2022).

Recently, researchers have preferred to use fractional
order differential equations instead of the ordinary coun-
terpart in their mathematical model since these equations
can reflect the whole period of the biological and physical
process (Khan et al. 2021; Kumar et al. 2020a, b; Ghanbari
and Kumar 2020; Kumar et al. 2021; Veeresha et al. 2020;
Khajehnasiri et al. 2020; Rahmani Fazli et al. 2015; Kha-
jehnasiri and Safavi 2021). There are a lot of definitions of
fractional derivatives such as Caputo, Riemann Liouville,
Atangana- Beleanu (ABC), Caputo—Fabrizio and Con-
formable. The fractional order version of the model (1)
with Caputo sense is also studied in the literature as follows
(Khoshsiar Ghaziani et al. 2016; Selvam and Jacob 2020;
Rahmi et al. 2021; Li et al. 2018; Singh et al. 2019; Vahidi
et al. 2021; Panigoro et al. 2021; Ghanbari 2021; Sekerci
2020; Kaviya and Muthukumar 2021):

DAx(t) = rx(1) (1 — x(1)) — x(1)y(0),
DYy(1) = (1) (p qy(’)), @

()

where D* represents fractional operator with Caputo sense.
The ABC and Caputo-Fabrizio version of the model (2) are
analyzed in the study (Panigoro et al. 2021) and (Sekerci
2020) respectively. On the other hand, in the study (Selvam
and Jacob 2020; Singh et al. 2019) and (Vahidi et al. 2021)
authors added piecewise constant arguments to Leslie-
Gower predator—prey model and obtain the discrete version
of the model (2).

Analysis of the dynamic characteristic of models such as
stability, bifurcation, and chaos are tools that help us to
understanding biological processes. Center manifold theory
is one of the most important tools used to determine the
stability of the discrete dynamical system as a result of
bifurcation types such as flip and Neimark—Sacker bifur-
cations (Guckenheimer and Holmes 1983; Kangalgil 2019;
Kangalgil and Isik 2020; Kaya et al. 2020). The chaotic
structure can occurs as a result of these bifurcations and
shows the complexity of the model.

Networks are a form of modeling that creates a topo-
logical structure by connecting construction whose ele-
ments interact with each other. Its history dates back to the
Konigsberg 7 bridges problem in the 18th century and
continue to exist as a branch of the graph theory until
today. Although there are many different networks
according to the shape of the connections, the most fre-
quently used networks are globally coupled network, star
network, nearest-neighbor coupled network, Erdos—Renyi
network and scale free network. Networks are complex
structures consisting of nodes and edges, and each node is
represented by a nonlinear dynamical system in a complex
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network. Complex networks are one of the most interesting
tools used to understand the origin and complexity of the
dynamical system. The most important parameter that
determines the dynamic behavior of complex networks is
the coupling strength parameter. Increasing the hetero-
geneity of the network leads to a weakening of the coupling
strength parameter, and as a result, the system may tend to
exhibit chaotic behaviors. In the literature (Nepomuceno
and Perc 2019; Li et al. 2004; Huang et al. 2019; Ahmed
and Matouk 2020; Zhang et al. 2006; Wang et al. 2017),
there are many works dealing with the stability and bifur-
cation analysis of the complex network. Nepomuceno and
Perc (2019) investigated complex dynamics the Erdos
Renyi network of the coupled logistic map. In this study,
the authors demonstrated the transition from non-chaotic
state to chaotic state on the dynamics of the network when
the coupling strength parameter reaches a certain threshold
value.

In ecology, it is very important to predict the behavior of
populations through mathematical models. If the popula-
tion is modeled through a continuous-time dynamical
system, the behavior of the model is predictable. However,
in discrete-time dynamical systems, the population exhibits
unpredictable dynamical behavior such as chaotic oscilla-
tions under certain initial conditions. Experimental data
have shown that many natural populations exhibit chaotic
behavior (May 1976). Mathematically, we know that at
least three-dimensional nonlinear differential equations are
needed for continuous-time dynamical systems to see
chaotic behavior. Therefore, the continuous-time dynami-
cal system (2) is insufficient to describe the chaos that
occurs in the predator—prey interactions. In order to obtain
more realistic model, we will apply a discretization pro-
cedure to the model (2) and obtain a new discrete
dynamical system. Hence discrete dynamical system
includes the fractional order parameter as a new parameter.
Although the existence and properties of chaos on complex
continuous-time networks have been examined, there are
not enough studies on its properties on fractional-order
discrete-time complex networks. Analysis of dynamical
behaviors such as chaos of the discrete-time prey-predator
model on the complex networks will contribute to the
literature.

The goal of the present study is to explore dynamical
behavior of the discretized version of fractional order form
of Leslie-Gower mathematical model (2) on both one sin-
gle node and the coupled dynamical network. Basic defi-
nitions regarding fractional order derivative will be given
in Sect. 2. In Sect. 3, a discretization method based on the
using piecewise constant arguments is applied to the model
(2) and we obtain system of difference equations. Stability
analysis of the equilibrium points of the discrete system,
Neimark Sacker and flip bifurcation analysis are given in
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Sect. 4. Section 5 deals with the chaos control of the dis-
crete model. In Sect. 6, the dynamic structure of the star
network with N = 10 and N = 100 nodes are analyzed for
the discrete time dynamical system. All theoretical results
are supported by numerical simulations in Sect. 7. Finally,
Sect. 8 supplies the conclusion.

2 Preliminaries of Fractional Calculus
In this section, let us briefly remember at some of the
definitions in the field of fractional calculus.

Definition 1 (Kumar et al. 2020a) The Riemann—Liouville
fractional derivative is given as follows:

1 dn t f(f)
am dt, n—1 ,
arDif (1) = F(nfq)dr".l (Z,n;(:))(qf"*n T, n—1<g<n
dm ’ -
(3)

Definition 2 (Kumar et al. 2020a) The definition of
Caputo fractional derivative is given as follows:

! A T, n— n
M= ) e e 1< )
«

(q—
& (1)
dm ’

o Dif(0) =

where n is the first integer which is not less than g. The
symbol I'(.) is a gamma function characterize as:

C(x) = /0 OOQ"_Ie‘QdQ, (Re(x) > 0). (5)

3 Discretization Process

In this section, we will discretize the model (2) based on
use of piecewise constant arguments. Firstly, we consider
the model (2) with piecewise constant arguments as
follows.

t t t t

Dx(1) = ra(([ ) (1 = x((1h) — x(LImy (),
; av((;h) (©)
Dry(t) =y | p——5— |
x([ﬁ]h)

Let ¢ € [0,h), then f € (0,1). So we get

D*x(t) = rxo(1 — x¢) — x0Y0,

mﬂozﬂ(p—ﬂg, @)

X0
and the solution (6) is given by

x1(t) = xo + I*(rxo(1 — x0) — XoY0),

yl()—yo+l“<y0(p_‘iy00>>, (8)

that is
to(
x1 (1) =Xo+m(rxo(1 — X0) — X0Y0), o)
” qy
w0 = (o= 5))

Let t € [1,2h), then { € (1,2). So we get
D*x(t) = rx1 (1 — x1) — x1y1,

mﬂo—ﬁ<p—wj, (10)

x1
and the solution (6) is given by
x2(2) = x1(h) + 1*(rxi (1 = x1) — x1y1),

yz(f)=y1(h)+1“(y1(p_‘i_yll>>7 (11)
that is
(1) = xi (h) + % (rx1 (R)(1 = x1(h)) — x1 (B)y1 (),
0 =001 (0 (- 5 )

(12)

Repeating the process we can easily deduce that the solu-
tion of (6) is given by

(t — nh)”

() = 3 0) + 1g< W1 x(ah)
—x(nh)y(nh
— h (nh
yn+1( ) _yn(nh t . ( ’2))))
(13)
Let t — (n+ 1)h, then we have
Xne1((n+ 1)h) = x,(nh) + % (rx(nh)(1 — x(nh))
—x(nh)y(nh)),
_ h* qy(nh)
Yut1((n+ 1)h) = yu(nh) + Tt 1) <Y(ﬂh) (P =) ))7
(14)

that is
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o

Xpi1 = X, + ] (rn (1 — x) — Xuyn),

I +1
h qYn
= (- %)

4 Stability and Bifurcation Analysis

(15)

4.1 Stability Analysis

The equilibrium points of system (15) are

E2=<pqr P ) (16)
+qr’p+aqr

The equilibrium point E; = (1,0) is

E, =(1,0) and

Theorem 1

a) saddle point if 0<r< %

b) source if r > w,

¢) non-hyperbolic if r =

20 (o+1)
[Z

Proof The Jacobian matrix corresponding to the linearized
system of the model (15) at the equilibrium point E; =
(1,0) can be calculated as follows.

hr 5
I'le+1 IM'e+1

ey | TErD TTEED
0o gt

I'(e+1)

Moreover, the eigenvalues of this matrix are 4, =1+

1"(}5-{[—'1) and L, =1— % It can be easily seen that
|24] > 1. In addition, if 0<r < 22 then |7, < 1. On the
contrary, if r > %‘j’l), then |4;| > 1. This completes the
proof. [
Theorem 2 Suppose that
2T 1

> M, (17)

h(x
and

4(T(a+1))°
If

p*(—rh®* + T (e + 1)) -
q
riprh* — (p +r)I'(a + 1
(pri =+ 1) T+ 1) )

p(ph*(rhk* — 2T (0 + 1)) + 4(T (o 4 1))%)
© r(ph* = 2T (e + 1)) (rh* — 2T (a + 1))

then E; is local asymptotically stable.
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Proof The calculations give the following Jacobian matrix
at the equilibrium point E;

|- h*gr? _ h*qr

JE) = (p+qr)T(a+1) (p+qr)T(o+1)

( 2) - hocp2 | hp ?

gl (z+1) I'(e+1)
which gives the characteristic equation
72 +p12+po =0, (20)
where
of P qr’
=-2+h + ; 21

P1 (F(oc—l—l) (p—|—qr)F(oc—|—1)) 1)
and

_ Wpr(p+ar) = K% + par + g)T(a+ 1) + (p+ gr) (T + 1)
(P +gr) (Do 1))?

Po
(22)

To determine the stability conditions of the equilibrium
point E,, we can apply Jury conditions that are: a)
14+p1+po>0,b)1—p +pyo>0andc) 1 —py>0.
From the condition (a), we always hold
h*pr

l+pi+p=——"—
P1TPo (F(oc+1))2

> 0. (23)

From (b) we have,

X (h“pr . 2(p2+pqr+qr2)l"(1+l))

L—pi+po=4+ L (24)

P1 T Po (F(OC N 1))2
Considering the inequalities

2r 1

0<p< 7((2; ) , (25)
and
0o PP =20 (04 1) + 4T (o4 1))

1 r(ph* — 2T (a + 1))(rh* — 2T (a + 1))

(26)

with the fact (17), then we have 1 — p; 4+ py > 0. From (¢),
one can holds

W (—hpr + Zpartar o1,

1 — po — ptar (27)
P (T + 1)
In addition, If
I'(a+1
. % (28)
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0<p< #{;21), (29)
and
p?(—rh* + T(a+ 1)) (30)

= o = (p+ L@+ 1))

then we have 1 — pg > 0. Consequently, considering the
inequality (18), (25), (26), (28), (29) and (30) with toge-
ther, we obtain the desired algebraic conditions. O

4.2 Bifurcation Analysis

Theorem 3 (Wen 2005; Xin et al. 2010; Khan et al. 2022)
Considering the following n-dimensional system with
bifurcation parameter q € R:

Xt :fq(Xn)- (31)

Suppose that characteristic polynomial of J|, about X of
system (31) is

P(A) ="+ p 2" p 2 4 (32)

Now considering the determinants A3 (q) =1, AT(q),
\ldots,A,jf (¢), which can be defined as

1 Pt P2 ... Pj-1
0 I p1 ... pi=
Af(g)=[0 0 1 ... pps
o o0 o0 ... 1 (33)
Pn—j+1  Pn—j+2 Pn—1 Pn
Pn—j+2  Pn—j+3 Pn 0
+
D1 D .. 0 0
Dn 0 ... 0 0

where j = 1,...n. Furthermore, Neimark—Sacker bifurca-
tion occurs at critical value g = ¢ if following parametric
condition hold:

NS1) Eigenvalue assignment: Py (1) >0,
(=1)"Pg,(=1) >0, A, (q0) =0. A, (q0) >0,
Af(qo) >0 where j=n—-3,n—35,...1 (or 2),
when n is even (or odd, respectively).

NS2) Transversality condition: %}Arf_, (g0) # 0.

NS3) Nonresonance condition: M #1-—

A, _3(q0) s cos(2m) __
(O.S)Pq(l)ﬁ or resonance condition <7 =
_ A, 5(q0) _

L= (0.5)P,(1) % where [ = 3,4,....

Theorem 4 Suppose that

< ‘“r(j‘hiztl))z , (34)
and

cos(2m) hW**pr

BERGRETT o

It

__ P+ T+ 1)
D= o — (p+ N (e + 1))’

then Neimark—Sacker bifurcation emerges at the equilib-

rium point E; = (pj]rrqr,pi’qr) in the discrete dynamical

(36)

system (15).

Proof By considering Theorem 3 for n = 2, we have

Pq(l) =1 +p1+p2> 0, (37)
(—=1)’Py(=1) =1 = p1 +p2 > 0, (38)
A (q) =1 —pr =0, (39)
Al (q) =1 +p >0, (40)
4 A 4y 0 41
d—q( 1(@)lg=g, —d—q( = P2)lgg, # 0, (41)
and
cos2m) 1 _ (0.5)P,(1) = 1 - %
(42)
_l=pi—p
-—0

From (39), the critical Neimark—Sacker bifurcation point
can be easily computed as in (36). Considering the
inequalities (37) and (38) with the fact (34) one gets

hz"‘pr

P,()=14p+pp=—""7"—"5 >0, 43

(1) T (43)
and

(—1)P, (1) =1—p +pr=4 P

- —)=1l-—pPirTp2=4— :

" (C(x+1))?
(44)

From (40), we have

Af(@)=1+p,=2>0. (45)

In addition, transversality condition (41) and non-reso-
nance condition (42) give
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d W (Wpr— (p+r)(a+1))°
dq (AT (@) g=g, = STt ) £0
(40)
and
cos(2m) h**pr
;7! S (C(e+ 1) 47)
respectively. O

Theorem 5 (Wen et al. 2008; Khan et al. 2022) Consider
the system (31) with q € R is a bifurcation parameter. In
addition, characteristic polynomial of J|, about X of sys-
tem (31) is (32). Now considering the determinants
Ay (q) = 1,A7(q), ..., A (q), which are defined in (33) for
j=1,...,n. Furthermore, flip bifurcation occurs at critical
value q = qq if following parametric condition hold.

FB1) Eigenvalue assignment: P, (1) >0, P, (—1) =0,
Ay 1(90) >0, Ay ((q0) >0, AF(go) >0 where
j=n—-3,n—15,...1 (or 2), when n is even (or
odd, respectively).

n n-t1 1
L (=D p #0

FB2) Transversality condition: SNy
where p; are the derivative with respect to ¢ at
q = 4o.
Theorem 6 Suppose that
AT (a+ 1)) (48)
= rh?*
and
_hH(h?p = 2T (o + 1)) (h*r — 2T (2 + 1)) Lo (49)
2pT (o + 1) (h2%pr — 3(T(o + 1)) '
If
R¥pr — 20°pT (o + 1) + 4(T(a + 1))?
o= PUP Pl D +4T+ D)) g0

r(h*p — 2T (o + 1)) (h*r — 2T (0 + 1)) '

then flip bifurcation emerges about the equilibrium point

Ey = (4., ;%) in the discrete dynamical system (15).

Proof By using Theorem 5 with n = 2, we have

P,(1)=1+pi+p, >0, (51)
Py(=1) =1 —p1+p> =0, (52)
Ay (q) =1 —p>>0, (53)
Af(q) =1 +p2 >0, (54)

and

22, Q) Springer

Py — P
P =P 4 55
3 # (55)

From (52), the critical value of flip bifurcation point can be
obtained as in (50). Considering the inequalities (51),(53)
and (54) with the fact (48) one gets

h%pr
7(“(””1))2 >0, (56)
hz‘“pr
2(T (o + 1))

Py(1)=14pi+pr=

Al (qo) =1 —pr=2—

and
h2°‘pr

AT(‘]O) =1+p Zm

> 0. (58)

From (55), one gets
P/l *P/z
3-2p
h=*(h*p — 2T (o 4+ 1))2(h“r —2I'(o + 1))2 (59)
2pT (004 1) (h2*pr — 3(TC(a + 1))%)

£ 0.

5 Chaos Control

Although it is a real reality that populations exhibit
unpredictable behavior in mathematical models, this is an
undesirable result for scientists working in this field. In
order to prevent the emergence of these unpredictable be-
haviors, that is chaos, mathematicians have resorted to
some mathematical methods called chaos control strate-
gies. In the literature, there are many chaos control meth-
ods such as OGY method, nonfeedback control and
Pyragas method (Ott et al. 1990; Din 2017; Ramesh and
Narayanan 1999; Pyragas 1992). To control the chaos in
the system (15), we study feedback control strategy (OGY).
Firstly, we reconsider (15) as the following form:
o

Xn+1 = Xn + ) (r-xn(l _-xn) _xnyn) :f(-xmqu)a

I'(e+1

_ h* an\\ _
Yn+1 *yn+l—(u+l) (yn<p xﬂ)) *g(xname)a
(60)

where ¢ is taken as controlling parameter. In addition, g is
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restricted to the line in some small interval g € (go —
n,q0 +n) with n >0, and ¢go is the nominal value
belonging to chaotic region. Now, we can apply the sta-
bilizing feedback control method in order to move the
trajectory towards the desired orbit. Let E, = (x*,y*) =

a  pr _— . .
(p s +qr) be unstable equilibrium point of the discrete

system in chaotic region formed by the emergence of flip
bifurcation, then the system (60) can be approximated in
the neighborhood of the unstable equilibrium point (x*,y*)
by the following linear map:

C =[B : JB]
h20¢p2r2
(p + gor)*(T(2 + 1))?
hp*r(h*p —T(o+ 1))
q0(p + qor)(I'(e + 1))?
(63)

0

h*p*r
qo(p + qor)T (o + 1)

is 2 that is system (60) is controllable with respect to
parameter q.

Let
Xp+1 — x* N P Xp — X _ Xn — x*
|:yn+l —y*] =0 0) [yn - } TBla—al (6 g gy - _K[yn —y*} (64
where where K = [p, p,], then the system (61) can be re-written as
J(x*,y*, q0) follows:
[Of (", y", of (x",y", X1 — X* Xy — X
y( ay ) ay 90) [ +1 *]%[J_BK][ ] (65)
— x y Ynt1 =Y Yn =Y
a x*7 *7 a ‘x*’ *)
s 61 d0) %l ai o) Now, the corresponding controlled system of (15) is given
- b
7 h*qor* _ h*qor Y
_ (p—l—qw)l"(oz—i— 1) (p—l—C[OF)r(OC—‘r 1) Xt :xn-‘rm(rx,,(l—x,,)—x,,y,,)7
p? Wp ’ e (g0 — £1 (3 =) = pa (3w =3 )
m —m Yati :yﬁ-m(yn(l?— . ))-
(66)
and
The Jacobian matrix J — BK of the controlled system (66)
can be obtained as follows:
_ h*qor? _ h*qor
I BK - (p+qor)T(o+1) (p+qor)T(a+1)
hp? Wp’rp, __ hp*rp,
qol (2 +1) * go(p + qor)T (e + 1) Flo+1)  go(p+ gor)T(x+1)

af(X*ay*WIO)

0
B = a *aq* = h“pzr
%8+ ,)",40) é; .40) qo(p + qor)I(o+ 1)

Furthermore, the rank of the following matrix

The equilibrium point (x*,y*) of the system (66) is locally
asymptotically stable if and only if both eigenvalues of the
characteristic equation P(Z) of the jacobian matrix J — BK
lie inside the open unit disk where
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, h*(qo(p2 + pqor + qor*) — p*rp,)
P(A) =22+ -2+
) ( qo(p + qor)T' (o + 1) )

n qo(p + qor)*(T(o + 1))” — h*(p + qor)T (ot + 1)(qo(p2 + pgor + qor?) — p*rp,)

qo(p + qor)*(D(a+ 1))

1 pgor((p + qor)” +pr(py = rp))
qo(p + qor)* (T (o + 1))

Let 4; and A, be the eigenvalues of the characteristic
Eq. (67), then we get

_ 1(P* + pqor + qor?)
(P +qor)l(x+1)
hp*rp,
+ )
qo(p + qor)T(o + 1)

/11-1-22:2

and

(p* + pgor + qor*))T (o + 1)
P+ qor
(T(x+1))°
N h21p2r2p1
(p + qor)*(T(2 + 1))
N Wp?r(=h*qor* + (p + qor)T(2+ 1))py
qo(p + qor)*(T(a+ 1))

h*(h*pr —

)

Mig =1+

(68)

In order to obtain the lines of marginal stability, we take
A1 = =£1 and /14, = 1. These restrictions make sure that

the equilibrium point is locally asymptotically stable.
Assuming that 4,4, = 1, then (68) implies that:
W (Wpr(p + qor) — (p* + pgor + qor*)T(x+ 1))
(P + qor) (T (2 + 1))?
N h29:p2r2p]
(P + qor)* (T + 1))*
_p’r(hqor — (p+ qor)T (2 + 1))py
qo(p + qor) (T (2 + 1))?

From the equation 4; = 1, then (67) and (68) yield

L,

L, pre + qor) h*p*r’p,
C o T(a+1) (p+qor)T(a+1)
hp*r’p,

C(p+gonT(a+1)

Finally, taking 4; = —1 and using the Eqgs. (67) and (68)
we hold

Ls .
(P +qor)(I'(ec+ 1))
I Wp*rp,
qo(p + qor)I'(o+ 1)
- hZ(szerl
(p+ qor)*(T (o + 1))
R p*r(h*qor® — (p + qor)T (2 4 1))p,

q0(p + qor)’ (D(a+ 1))

Wpr(p + qor) — 2h*(p* + pqor + qor*) T (o + 1) + 4(p + gor) (T (2 + 1))

22, Q) Springer



Iranian Journal of Science

Then, stable eigenvalues lie within the triangular region in
p1p, plane bounded by the straight lines L;,L,,Ls for
particular parametric values.

6 Dynamical Analysis of the Model (15)
on Star Network

Taking into account a dynamical network consisting of N
linearly and diffusively coupled nodes, with each node
describe a two-dimensional dynamical system defined by
discrete system (15). Let’s consider the model (15) as the

following form:

h*

yk+1) =

This dynamical network is defined by

xi(k+1) = f(xi(k), yi(k)) *CZ af (x;(k), y;(k)),

yilk +1) = g(xi(k),yi(k)) — ¢ ; a;jg(x;(k), y;(k)),
(70)

where i and j are the sequence number of the nodes in the

a) b) c)
3 2 2
att{a.'.-s.\-.g-;.onam‘\'-‘\::t,}:lmh
1.5 S PR ST LTt 1.5 %
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Fig. 1 Periodic orbits, stable and unstable equilibrium points with
regard to parameter ¢: ¢ = 0.1 a, ¢ = 0.141691 b, ¢ =0.2 ¢, g = 0.6
d, ¢g=0381488%9¢e, gq=09f, g=1g g=1.1h, g=121i, where

o0=0.95p=0.6,r =238, h = 1; x(n) and y(n) represent by blue and
red curves respectively

@ Springer



Iranian Journal of Science

04 ¥8

0.2f

0 . . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

q

Fig. 2 Multiple bifurcation in the system (15) with regard to
parameter g, where & = 0.95, p =0.6, r =2.8, h =1
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Fig. 3 Neimark—Sacker bifurcation in the system (15) with regard to
parameter g, where « = 0.95, p =0.6, r =2.8, h =1

0.12 0.14 0.16 0.18
q

coupled dynamical network, ¢ describes the coupling
strength of the network. The coupling matrix A € RM™" can
be expressed by

dy apn a3z ... aw
aip dyp axp ... an

A= | a axn diz ... a |. (71)
aly aw axn ... dyy

If there is a connection between node i and j, then a;; = 1;
otherwise, a; =0(i #j). Let a; =—d;, i=1,2,..,N,
where d; is the degree of node i and can be defined by the
following equation:

@ Springer

Fig. 4 Flip bifurcation in the system (15) with regard to parameter ¢,
where « =095, p =0.6, r =28, h =1

P1

Fig. 5 Triangular stability region by L;,L, and L3 where a = 0.95,
p=06r=28h=1,49g=14

Fig. 6 Star network with N = 10
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N N
dii = — E aj; = — E aji.

=Lt j=1j#i

Now, system (70) can be rewritten as the following matrix
form:

{ X = (I — A (X(k), Y(k

),
Veor = (1 — cA)g(X(k), Y(K)) 72

where X = (x1(k),x2(k), ..., xn(k)), Y, =
(v1(k),y2(k),...,yn(k)) and I € R™" is identity matrix.

7 Numerical Simulations

In this section, we use some numerical simulations to test
the accuracy of the theoretical results. Let o = 0.95,
p=0.6, r=28 and h=1. From the Theorem 2, we
obtain the local asymptotically stable condition as
p<1.37167, r>1.95976 and 0.141691 <g<0.814889.
Figures 1 and 2 demonstrate that the equilibrium point of
the discrete system is stable for some value of parameter q
where it is in the range 0.141691 < g < 0.814889, otherwise
it is unstable. Figure la, ¢, d show stable equilibrium
points; Fig. 1b and e demonstrate Neimark—Sacker and flip
bifurcations respectively; Fig. 1f and g indicate periodic
solutions; Fig. 1h and represent the chaotic behaviors.
Figure 2 also shows multiple bifurcations such as Nei-
mark—Sacker and flip bifurcation as the parameter
g changes.

For the Neimark—Sacker bifurcation analysis, the
parameter ¢ is determined as a bifurcation parameter. From
the condition of Theorem 4, we can select the model
parameter as a = 0.95, p = 0.6, r = 2.8 and h = 1 with the

0.8

0.7+

0.5

0.4r

Fig. 7 Flip bifurcation in the star network with regard to parameter c,
where N =10 2 =095, p =0.6, r =2.8, h =1 and g = 0.95

Fig. 8 Star network with N = 100

0.8
0.75}F
0.7¢
0.65F
0.6f

0.55}F
0.5
0.45}F
0.4

0.35

Fig. 9 Flip bifurcation in the star network with regard to parameter c,
where N =100 =0.95,p=0.6, r =2.8, h =1 and ¢ = 0.95

0.8
0.75
0.7

Fig. 10 Neimark—Sacker bifurcation in the star network with regard
to parameter ¢, where N = 100 o« = 0.95,p = 0.6, r =2.8, h =1 and
q=0.1
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fact that p<1.37167. From the Eq. (36), we have the
critical Neimark—Sacker bifurcation point as
qo = 0.141691. Now, the characteristic equation becomes
7% —0.250303/. 4 1 = 0 that gives the complex eigenval-
ues 412 = 0.125151 £ 0.992138i. This eigenvalues satisfy
the eigenvalue assignment condition |4; ;| = 1. In addition,
from the Eq. (47) we have [ = £4.34727. Now all the
conditions of Neimark—Sacker bifurcation are satisfied and
this bifurcation is formed around the positive equilibrium
point E; = (0.398034,1.68551) (Fig. 3).

As we consider the conditions of the flip bifurcation in
Theorem 6 with the parameters o« = 1, p = 0.95, r = 2.8
and & = 1, we obtain the critical flip bifurcation point as
qo = 0.814889 from the Eq. (50). Now, the characteristic
equation becomes 4>+ 0.874849) —0.125151 =0 that
gives the eigenvalues 4; = —1 and A, =0.129151. In

addition, from the Eq. (59) we have g’%; =0.92473 £ 0.
Now all conditions of flip bifurcation are satisfied and flip
bifurcation takes place around the positive equilibrium
point E; = (0.791789,0.582991) in the discrete dynamical
system (15) (Fig. 4). Figure 3 and Fig. 4 are enlargement
of Fig. 2 in two parts. (Fig. 5) gives the triangular stability
region bounded by L;, L, and L3 for the controlled system
(66). Staying within this triangular region, which permit us
to control chaos, allows us to avoid unpredictable behavior.

The purpose here is to also investigate the complex
dynamics of Leslie-Gower predator—prey system (15) into
the coupled dynamical network. For this purpose we use
the star network with N =10 and N = 100 nodes. All
simulations have used the same initial condition for all
nodes, which are slightly different from the equilibrium
point. Figure 6 shows the star network with N = 10 nodes.
For this network with N = 10 nodes, the coupling matrix A
can be computed from the Eq. (71) as follows:

-9 1 1 1 1 1 1 1 1 1
1 -1 0 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0 0
1 0 0 -1 0 0 0 0 0 0
Ao 1 0 0 0 -1 0 0 0 0 0
1 0 0 0 0 -1 0 0 0 0
1 0 0 0 0 0 -1 0 0 0
1 0 0 0 0 0 0 -1 0 0
1 0 0 0 0 0 0 -1 0
1 0 0 0 0 0 0 0 0 -1

Now, let us consider the nodes in the networks with the
highest degree that is x;. Figure 7 depicts that when the
coupling parameter c arrives the critical value where it is in
the interval c¢ €[l x 1073,2 x 1073], flip bifurcation
emerges at the positive fixed point. We also investigate the
dynamic structure of the complex network again by
increasing the number of nodes where N = 100 (Fig. 8).

52, €\ Springer

Figure 9 demonstrates that the critical flip bifurcation point
with respect to parameter ¢ is the interval
c€lx1074,2 x 1074].

The complex network with N = 100 nodes also exhibits
Neimark—Sacker bifurcation about the positive equilibrium
point with respect to parameter ¢ where it is the interval
c €[7.7 x1073,8.2 x 1073] (Fig. 10).

8 Conclusion

In this study, we examine dynamical behavior of the
fractional order Leslie-Gower predator—prey model with
piecewise constant arguments. The discretization method
formed on the use piecewise constant arguments applies to
predator—prey model and we obtain two dimensional dis-
crete dynamical system (15). Some algebraic conditions to
ensure the stability of the equilibrium points of the model
are obtained by using Schur—Cohn criterion and these
conditions are given in Theorem 1 and Theorem 2. Theo-
rem 2 shows that the parameter g (food quantity) plays a
key role on the dynamical behavior of the system (15). If
the parameter g falls inside the range of inequality (19),
then the positive equilibrium point of the system is local
asymptotically stable. Figure 1 shows the both stable and
unstable equilibrium points of the model depending on the
change of the parameter q.

In Sect. 4, we investigate the existence of possible
bifurcation types in the model and show that the model
undergoes both Neimark—Sacker and flip bifurcations.
Theorem 4 and Theorem 6 give us to necessary conditions
of the existence these bifurcations respectively. The critical
value of both Neimark—Sacker and flip bifurcations with
respect to parameter g are given in Eq. (36) and (50)
respectively. Figures 3 and 4 show that if the parameter
q reaches these critical bifurcation point, then Neimark—
Sacker and flip bifurcations occur around the positive
equilibrium point.

In Sect. 4, we also deal with the discrete system (15)
that represents a single node on the star network. System
(70) can be used to represent a star network consisting of N
nodes where interaction of each point is described by
Leslie-Gower predator—prey model (15). Firstly, we
investigate the dynamics of the star network with N = 10
nodes represented in Fig. 6. The most important parameter
that determines the dynamics of such a complex network is
the coupling strength parameter c¢. Figure 7 implies that if
the parameter c falls in the interval
¢ € [1 x 1073,2 x 1073, flip bifurcation occurs around the
positive equilibrium point. Secondly, we compose more
complex network by increasing the numbers of nodes
where N = 100 (Fig. 8). In such a network, flip bifurcation
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takes the form at a smaller value of ¢ where it is in the
range ¢ € [1 x 1074,2 x 1074]. So, we can notice that as
the number of node increases, bifurcation and chaotic
dynamics appear at a lower coupling strength parameter
¢ (Fig. 9). Figure 10 also demonstrates that complex net-
work exhibits Neimark—Sacker bifurcation around the
positive equilibrium point with respect to changing
parameter c.

As can be seen in the theoretical and numerical simu-
lations mentioned above, discrete-time dynamical system
(15) exhibits rich dynamical behaviors such as multiple
bifurcation and chaos which are not present in the contin-
uous-time dynamical system (2). This illustrates the main
reason why we focus on system (15) rather than system (2).
On the other hand, the fact that the discrete dynamical
system exhibits both flip and Neimark Sacker bifurcations
according to changing parameter g (food quantity) that
makes it even more interesting. Figure 2 clearly shows this
rarely encountered situation. Although populations are in a
steady state at the value of ¢ = 0.2 where population sizes
should not change as time goes on, decreasing or increasing
the amount of food without foreseeing causes unpre-
dictable behavior in the populations. A decrease in the
amount of food quantity to 0.141691 causes a Neimark—
Sacker bifurcation, and an increase to 0.814889 leads to
flip bifurcation. After showing the existence of chaos,
which are often encountered in population models, we
present a strategy that can control this chaos. Figure 5
gives us the triangular region where we can control the
chaos. Moreover, we show that the discrete-time dynamical
system also exhibits the rich dynamical behaviors men-
tioned above on the complex networks.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Declarations

Conflict of interest The authors declare that they have no Conflict of
interest.

References

Lotka AJ (1925) Elements of physical biology.
116(2917):461-461. https://doi.org/10.1038/116461b0

Volterra V (1926) Fluctuations in the abundance of a species
considered mathematically. Nature 118(2972):558-560. https://
doi.org/10.1038/118558a0

Hernandez-Bermejo B, Fairén V (1997) Lotka-volterra representation
of general nonlinear systems. Math Biosci 140(1):1-32. https://
doi.org/10.1016/s0025-5564(96)00131-9

Séanchez-Pérez JF, Conesa M, Alhama I, Canovas M (2020) Study of
lotka-volterra biological or chemical oscillator problem using the

Nature

normalization technique: prediction of time and concentrations.
Mathematics 8(8):1324. https://doi.org/10.3390/math8081324

Ma Y-A, Qian H (2015) A thermodynamic theory of ecology:
Helmholtz theorem for lotka-volterra equation, extended con-
servation law, and stochastic predator-prey dynamics. Proc
Royal Soc A: Math, Phys Eng Sci 471(2183):20150456. https://
doi.org/10.1098/rspa.2015.0456

Leslie PH, Gower JC (1960) The properties of a stochastic model for
the predator-prey type of interaction between two species.
Biometrika 47(3/4):219. https://doi.org/10.2307/2333294

Zhu Z, Chen Y, Li Z, Chen F (2022) Stability and bifurcation in a
leslie-gower predator-prey model with allee effect. Int J Bifurc
Chaos. https://doi.org/10.1142/s0218127422500407

Gao Y, Yang F (2022) Persistence and extinction of a modified leslie-
gower holling-type ii two-predator one-prey model with lévy
jumps. J Biol Dyn 16(1):117-143. https://doi.org/10.1080/
17513758.2022.2050313

Arancibia-Ibarra C, Flores JD, Heijster P (2022) Stability analysis of a
modified leslie-gower predation model with weak allee effect in
the prey. Front Appl Math Stat. https://doi.org/10.3389/fams.
2021.731038

Singh A, Malik P (2021) Bifurcations in a modified leslie-gower
predator-prey discrete model with michaelis-menten prey har-
vesting. J Appl Math Comput 67(1-2):143—174. https://doi.org/
10.1007/s12190-020-01491-9

Vinoth S, Sivasamy R, Sathiyanathan K, Unyong B, Vadivel R,
Gunasekaran N (2022) A novel discrete-time leslie-gower model
with the impact of allee effect in predator population. Complex-
ity 2022:1-21. https://doi.org/10.1155/2022/6931354

Khan MS, Abbas M, Bonyah E, Qi H (2022) Michaelis-menten-type
prey harvesting in discrete modified leslie-gower predator-prey
model. J Funct Spaces 2022:1-23. https://doi.org/10.1155/2022/
9575638

Li Y, Zhang F, Zhuo X (2020) Flip bifurcation of a discrete predator-
prey model with modified leslie-gower and holling-type iii
schemes. Math Biosci Eng 17(3):2003-2015. https://doi.org/10.
3934/mbe.2020106

Isik S, Kangalgil F (2022) On the analysis of stability, bifurcation,
and chaos control of discrete-time predator-prey model with
allee effect on predator. Hacettepe J Math Stat 51(2):404-420.
https://doi.org/10.15672/hujms.728889

Khan MA, Ullah S, Kumar S (2021) A robust study on 2019-ncov
outbreaks through non-singular derivative. Eur Phys J Plus.
https://doi.org/10.1140/epjp/s13360-021-01159-8

Kumar S, Kumar A, Samet B, Dutta H (2020) A study on fractional
host-parasitoid population dynamical model to describe insect
species. Numer Methods Partial Differ Equ 37(2):1673-1692.
https://doi.org/10.1002/num.22603

Kumar S, Chauhan RP, Momani S, Hadid S (2020) Numerical
investigations on covid-19 model through singular and non-
singular fractional operators. Numer Methods Partial Differ Equ.
https://doi.org/10.1002/num.22707

Ghanbari B, Kumar S (2020) A study on fractional predator-prey-
pathogen model with mittag-leffler kernel-based operators.
Numer Methods Partial Differ Equ. https://doi.org/10.1002/
num.22689

Kumar S, Kumar R, Momani S, Hadid S (2021) A study on fractional
covid-19 disease model by using hermite wavelets. Math
Methods Appl Sci 46(7):7671-7687. https://doi.org/10.1002/
mma.7065

Veeresha P, Prakasha DG, Kumar S (2020) A fractional model for
propagation of classical optical solitons by using nonsingular
derivative. Math Methods Appl Sci. https://doi.org/10.1002/
mma.6335

o — @ Springer


https://doi.org/10.1038/116461b0
https://doi.org/10.1038/118558a0
https://doi.org/10.1038/118558a0
https://doi.org/10.1016/s0025-5564(96)00131-9
https://doi.org/10.1016/s0025-5564(96)00131-9
https://doi.org/10.3390/math8081324
https://doi.org/10.1098/rspa.2015.0456
https://doi.org/10.1098/rspa.2015.0456
https://doi.org/10.2307/2333294
https://doi.org/10.1142/s0218127422500407
https://doi.org/10.1080/17513758.2022.2050313
https://doi.org/10.1080/17513758.2022.2050313
https://doi.org/10.3389/fams.2021.731038
https://doi.org/10.3389/fams.2021.731038
https://doi.org/10.1007/s12190-020-01491-9
https://doi.org/10.1007/s12190-020-01491-9
https://doi.org/10.1155/2022/6931354
https://doi.org/10.1155/2022/9575638
https://doi.org/10.1155/2022/9575638
https://doi.org/10.3934/mbe.2020106
https://doi.org/10.3934/mbe.2020106
https://doi.org/10.15672/hujms.728889
https://doi.org/10.1140/epjp/s13360-021-01159-8
https://doi.org/10.1002/num.22603
https://doi.org/10.1002/num.22707
https://doi.org/10.1002/num.22689
https://doi.org/10.1002/num.22689
https://doi.org/10.1002/mma.7065
https://doi.org/10.1002/mma.7065
https://doi.org/10.1002/mma.6335
https://doi.org/10.1002/mma.6335

Iranian Journal of Science

Khajehnasiri AA, Kermani MA, Ezzati R (2020) Chaos in a
fractional-order financial system. Int J Math Opera Res
17(3):318. https://doi.org/10.1504/ijmor.2020.110028

Rahmani Fazli H, Hassani F, Ebadian A, Khajehnasiri AA (2015)
National economies in state-space of fractional-order financial
system. Afr Mat 27(3-4):529-540. https://doi.org/10.1007/
s13370-015-0361-4

Khajehnasiri AA, Safavi M (2021) Solving fractional black-scholes
equation by using boubaker functions. Math Methods Appl Sci
44(11):8505-8515. https://doi.org/10.1002/mma.7270

Khoshsiar Ghaziani R, Alidousti J, Eshkaftaki AB (2016) Stability
and dynamics of a fractional order leslie-gower prey-predator
model. Appl Math Model 40(3):2075-2086. https://doi.org/10.
1016/j.apm.2015.09.014

Selvam AGM, Jacob SB (2020) Complex behavior in fractional -
order leslie - gower prey - predator model with harvesting. AIP
Conf. Proc. International conference on mathematical sciences
and applications (ICMSA-2019) https://doi.org/10.1063/5.
0014507

Rahmi E, Darti I, Suryanto A, Trisilowati H, Panigoro HS (2021)
Stability analysis of a fractional-order leslie-gower model with
allee effect in predator. J Phys: Conf Series 1821(1):012051.
https://doi.org/10.1088/1742-6596/1821/1/012051

Li H-L, Muhammadhaji A, Zhang L, Teng Z (2018) Stability analysis
of a fractional-order predator-prey model incorporating a
constant prey refuge and feedback control. Adv Differ Equ.
https://doi.org/10.1186/s13662-018-1776-7

Singh A, Elsadany AA, Elsonbaty A (2019) Complex dynamics of a
discrete fractional-order leslie-gower predator-prey model. Math
Methods Appl Sci 42(11):3992-4007. https://doi.org/10.1002/
mma.5628

Vahidi A, Babolian E, Biranvand N (2021) Dynamical analysis
stability and discretization of fractional-order predator-prey
model with negative feedback on two species. Int J Nonlinear
Anal Appl. https://doi.org/10.22075/ijnaa.2020.19764.2099

Panigoro HS, Suryanto A, Kusumawinahyu WM, Darti 1 (2021)
Dynamics of an eco-epidemic predator-prey model involving
fractional derivatives with power-law and mittag-leffler kernel.
Symmetry 13(5):785. https://doi.org/10.3390/sym13050785

Ghanbari B (2021) A new model for investigating the transmission of
infectious diseases in a prey-predator system using a non-
singular fractional derivative. Math Methods Appl Sci
46(7):8106-8125. https://doi.org/10.1002/mma.7412

Sekerci Y (2020) Climate change effects on fractional order prey-
predator model. Chaos, Solitons; Fractals 134:109690. https://
doi.org/10.1016/j.chaos.2020.109690

Kaviya R, Muthukumar P (2021) Dynamical analysis and optimal
harvesting of conformable fractional prey-predator system with
predator immigration. Eur Phys J Plus. https://doi.org/10.1140/
epjp/s13360-021-01559-w

Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields. Springer-Verlag,
Berlin

Kangalgil F (2019) Neimark-sacker bifurcation and stability analysis
of a discrete-time prey-predator model with allee effect in prey.
Adv Differ Equ. https://doi.org/10.1186/s13662-019-2039-y

Kangalgil F, Isik S (2020) Controlling chaos and neimark-sacker
bifurcation in a discrete-time predator-prey system. Hacettepe J
Math Stat 49(5):1761-1776. https://doi.org/10.15672/hujms.
531024

@ Springer

Kaya G, Kartal S, Gurcan F (2020) Dynamical analysis of a discrete
conformable fractional order bacteria population model in a
microcosm. Physica A 547:123864. https://doi.org/10.1016/j.
physa.2019.123864

Nepomuceno EG, Perc M (2019) Computational chaos in complex
networks. J Complex Netw. https://doi.org/10.1093/comnet/
cnz015

Li X, Chen G, Ko K-T (2004) Transition to chaos in complex
dynamical networks. Physica A 338(3-4):367-378. https://doi.
org/10.1016/j.physa.2004.02.010

Huang T, Zhang H, Ma S, Pan G, Wang Z, Huang H (2019)
Bifurcations, complex behaviors, and dynamic transition in a
coupled network of discrete predator-prey system. Discret Dyn
Nat Soc 2019:1-22. https://doi.org/10.1155/2019/2583730

Ahmed E, Matouk AE (2020) Complex dynamics of some models of
antimicrobial resistance on complex networks. Math Methods
Appl Sci 44(2):1896-1912. https://doi.org/10.1002/mma.6889

Zhang H-F, Wu R-X, Fu X-C (2006) The emergence of chaos in
complex dynamical networks. Chaos, Solitons; Fractals
28(2):472-479. https://doi.org/10.1016/j.chaos.2005.07.001

Wang Z, Jiang G, Yu W, He W, Cao J, Xiao M (2017) Synchro-
nization of coupled heterogeneous complex networks. J Franklin
Inst  354(10):4102—4125.  https://doi.org/10.1016/j.jfranklin.
2017.03.006

May RM (1976) Simple mathematical models with very complicated
dynamics. Nature 261(5560):459-467. https://doi.org/10.1038/
261459a0

Wen G (2005) Criterion to identify hopf bifurcations in maps of
arbitrary dimension. Phys Rev E 72(2):026201. https://doi.org/
10.1103/physreve.72.026201

Xin B, Chen T, Ma J (2010) Neimark-sacker bifurcation in a discrete-
time financial system. Discret Dyn Nat Soc 2010:1-12. https://
doi.org/10.1155/2010/405639

Khan AQ, Qureshi SM, Alotaibi AM (2022) Bifurcation analysis of a
three species discrete-time predator-prey model. Alex Eng J
61(10):7853-7875. https://doi.org/10.1016/j.aej.2021.12.068

Wen G, Chen S, Jin Q (2008) A new criterion of period-doubling
bifurcation in maps and its application to an inertial impact
shaker. J Sound Vib 311(1-2):212-223. https://doi.org/10.1016/
j-Jsv.2007.09.003

Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett
64(11):1196-1199. https://doi.org/10.1103/physrevlett.64.1196

Din Q (2017) Bifurcation analysis and chaos control in discrete-time
glycolysis models. J] Math Chem 56(3):904-931. https://doi.org/
10.1007/s10910-017-0839-4

Ramesh M, Narayanan S (1999) Chaos control by nonfeedback
methods in the presence of noise. Chaos, Solitons; Fractals
10(9):1473-1489. https://doi.org/10.1016/s0960-
0779(98)00132-5

Pyragas K (1992) Continuous control of chaos by self-controlling
feedback. Phys Lett A 170(6):421-428. https://doi.org/10.1016/
0375-9601(92)90745-8

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.


https://doi.org/10.1504/ijmor.2020.110028
https://doi.org/10.1007/s13370-015-0361-4
https://doi.org/10.1007/s13370-015-0361-4
https://doi.org/10.1002/mma.7270
https://doi.org/10.1016/j.apm.2015.09.014
https://doi.org/10.1016/j.apm.2015.09.014
https://doi.org/10.1063/5.0014507
https://doi.org/10.1063/5.0014507
https://doi.org/10.1088/1742-6596/1821/1/012051
https://doi.org/10.1186/s13662-018-1776-7
https://doi.org/10.1002/mma.5628
https://doi.org/10.1002/mma.5628
https://doi.org/10.22075/ijnaa.2020.19764.2099
https://doi.org/10.3390/sym13050785
https://doi.org/10.1002/mma.7412
https://doi.org/10.1016/j.chaos.2020.109690
https://doi.org/10.1016/j.chaos.2020.109690
https://doi.org/10.1140/epjp/s13360-021-01559-w
https://doi.org/10.1140/epjp/s13360-021-01559-w
https://doi.org/10.1186/s13662-019-2039-y
https://doi.org/10.15672/hujms.531024
https://doi.org/10.15672/hujms.531024
https://doi.org/10.1016/j.physa.2019.123864
https://doi.org/10.1016/j.physa.2019.123864
https://doi.org/10.1093/comnet/cnz015
https://doi.org/10.1093/comnet/cnz015
https://doi.org/10.1016/j.physa.2004.02.010
https://doi.org/10.1016/j.physa.2004.02.010
https://doi.org/10.1155/2019/2583730
https://doi.org/10.1002/mma.6889
https://doi.org/10.1016/j.chaos.2005.07.001
https://doi.org/10.1016/j.jfranklin.2017.03.006
https://doi.org/10.1016/j.jfranklin.2017.03.006
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1103/physreve.72.026201
https://doi.org/10.1103/physreve.72.026201
https://doi.org/10.1155/2010/405639
https://doi.org/10.1155/2010/405639
https://doi.org/10.1016/j.aej.2021.12.068
https://doi.org/10.1016/j.jsv.2007.09.003
https://doi.org/10.1016/j.jsv.2007.09.003
https://doi.org/10.1103/physrevlett.64.1196
https://doi.org/10.1007/s10910-017-0839-4
https://doi.org/10.1007/s10910-017-0839-4
https://doi.org/10.1016/s0960-0779(98)00132-5
https://doi.org/10.1016/s0960-0779(98)00132-5
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1016/0375-9601(92)90745-8

	Multiple Bifurcations and Chaos Control in a Coupled Network of Discrete Fractional Order Predator--Prey System
	Abstract
	Introduction
	Preliminaries of Fractional Calculus
	Discretization Process
	Stability and Bifurcation Analysis
	Stability Analysis
	Bifurcation Analysis

	Chaos Control
	Dynamical Analysis of the Model (15) on Star Network
	Numerical Simulations
	Conclusion
	Funding
	References


