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Abstract
The motivation of the present study is to investigate the impact of memory in the framework of ecology employing a

Caputo-type fractional-order derivative by means of a fractional-order ecological model that incorporates delay and prey

refuge treatment effects. The model’s solutions are shown to exist, to be unique, and to be bounded. The behaviour of

various equilibrium points with the memory effect is then examined, and certain necessary requirements are deduced to

guarantee the global asymptotic stability of co-existing equilibrium points. Additionally, we looked into the possibility of

Hopf bifurcation in relation to the delay parameter, which serves as the suggested system’s bifurcation parameter. This

paper’s main contribution is the explanation of the fractional order model’s derivation in terms of the memory impact on

population growth, and the application of the Caputo derivative with equal dimensionality to models that include memory.

This fractional-order system with unknown dynamics is subject to control chaos, which is addressed by using Bazykin’s

prey-predator model. The suggested model is new in that it highlights the importance of the memory effect, which

encompasses prey refuge, latency, and predator death rate based on density. We run numerical simulations with various

memory parameter, latency, and prey refuge values. Based on the numerical data, it seems that the system is behaving more

like a chaotic system with an increasing memory effect, or stable behaviour from a time of chaos.
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1 Introduction

Mathematical modelling has been instrumental for decades

in reproducing and comprehending complicated events, as

well as in forecasting future consequences, in many sci-

entific disciplines. Mathematical models are employed in

physics to forecast particle interactions and characterize

particle behaviour. The study of thermodynamics, energy

conversion, and heat transmission has all been covered

through modelling in mechanical and thermal science

(Ezzat and El-Bary 2016). Mathematical models are used

in biology to analyse population and ecosystem behaviour,

as well as the development and spread of diseases

(Berryman 1992; Malthus 1798; Verhulst 1838). The

importance of mathematical modelling grows as more and

more newly discovered diseases emerge that pose a hazard

to human health and have the potential to seriously disrupt

human livelihoods.

The investigation of prey refuge within the context of

predator–prey dynamics has gained significant attention in

the fields of applied mathematics and ecology. In natural

ecosystems, when prey populations perceive the presence

of predators, they tend to exhibit proactive behaviour by

seeking refuge. This adaptive response serves the purpose

of evading predators and ultimately enhancing the survival

prospects of the prey species. This phenomenon is com-

monly referred to as the shelter effect in scientific literature

(Sih 1987; Kar 2005). Due to the prevalence of refuges in

prey populations, including them in the system makes for a

more accurate model. While refuges play an essential role

in biological pest management, an increase in refuge size

may cause population explosions due to an increase in prey

density (biomass). Numerous scholarly investigations have
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been conducted on predator–prey systems featuring the

presence of prey refuge. These refuges can take several

forms, including constant refuge as explored in previous

studies (Din 2016; Maji 2022), or linear refuge as exam-

ined in other research (Qi and Meng 2021; Chakraborty

et al. 2021). These investigations have been conducted

within the framework of the respective systems under

study.

Fractional-order differential equations have recently

gained prominence as a modelling tool for studying

dynamical systems (Diethelm 2010; Hilfer 2000; Kilbas

et al. 2006; Miller and Ross 1993; Petras 2011; Podlubny

1999; Sabatier et al. 2007; Stamova and Stamov 2016; Das

2007; Wei et al. 2010). The fractional order derivative is

defined in multiple ways. The definitions most frequently

employed are those proposed by Caputo, Grunwald–Let-

nikov, and Riemann–Liouville. The Caputo definition is

extended, and the initial conditions in Caputo fractional

differential equations are given in the identical form as in

differential equations of integer order. Fractional-order

biological models have been the subject of increasing

amounts of research lately (Ahmed et al. 2007; Li et al.

2016; Vargas-De-Leon 2015). It is possible to represent a

higher-order system using a lower-order model in frac-

tional-order system modelling. When it comes to theories

of control, the fractional order system is usually more

effective than the integer order system (Premakumari et al.

2022; Sindhu et al. 2021; Iyiola et al. 2021; Akinyemi and

Iyiola 2020). The fundamental reason is that non-integer

order differential equations have intimate relationships

with fractals and are naturally tied to memory systems,

which are present in most biological systems. Stability

investigations of fractional-order predator–prey systems

are still in their early stages because of the lack of adequate

theories to analyse the dynamics of these systems (Li et al.

2015). Recently, linearization and Lyapunov procedures

have shown to be effective strategies. In order to determine

whether or not a given equilibrium point in a system of

non-integer order differential equations is stable, several

researchers have recently turned to the Lyapunov direct

technique.

This FODE solution’s existence and uniqueness may be

confirmed by applying the currently available fractional

calculus techniques. This makes it possible to determine

the asymptotic stability, both local and global, of various

steady-states using currently available methodologies. A

steady-state’s change in stability condition can be assessed

using the obtained stability condition, but it is still difficult

to determine the precise local and global bifurcation by

using FODE. Although the conditions for Hopf-bifurcation

for models based on FODE have recently been shown in

(Deshpande et al. 2017; Abdelouahab et al. 2012; Gonza-

lez-Oliver and Tang 2018), the stability of the limit cycle

that results from Hopf-bifurcation has not yet been deter-

mined. Using an expanded numerical simulation approach

to FODE (Diethelm and Ford 2002), we can explore this

problem and get some basic understanding. To provide

more insights into this matter, we will now investigate a

prey-predator interaction model based on FODEs that has

reaction kinetics that follow the Bazykin formalism

(McGehee et al. 2008). Bazykin’s prey-predator

scheme expands on the Rosenzweig–MacArthur system by

include a density-dependent mortality pace within the

predators. With respect to the framework’s parameter

quantities, this traditional system exhibits an extensive

range of dynamic behaviour.

In this study, we focus primarily on exploring the ways

in which different parameters in the mathematical model

used to simulate population expansion affect the proposed

model’s complex dynamic behaviours. According to the

existing literature, the impact of memory length, including

latency and prey refuge, has not been explored in any

previous investigation. The dynamics of the model are

significantly altered by these parameters, allowing us to

learn more about the dynamics of the memory. This is the

first study of its kind, and it shows how novel and impor-

tant the memory effect is in the Bazykin’s prey-predator

model with delay that we propose, which also accounts for

prey refuge and a density-dependent mortality pace for

predators.

The following outline constitutes the framework of this

paper: In Sect. 2, we discuss some introductory concerns

and the mathematical formulation of the scheme. Exis-

tence, uniqueness, and boundedness of the model are pro-

ven in Sect. 3. All feasible equilibrium points are analysed

for their stability in Sect. 4. Additionally, we discussed the

bifurcation criterion and global stability of the scheme. In

Sect. 5, numerical simulations are executed to back up the

theoretical findings of the framework. In the final section,

we draw some final conclusions.

2 Model Formulation

Prey-predator interactions in the traditional Rosenzweig–

MacArthur model (Kot 2001) are described by the coupled

nonlinear ordinary differential equations

du

dt0
¼ qu� au2 � k1uv

k2 þ bu
;

dv

dt0
¼ ck1uv

k2 þ bu
� k3v; ð1Þ

under the non-negative initial conditions u 0ð Þ; v 0ð Þ� 0.
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Bazykin (1974; Bazykin et al. 1998) makes modifica-

tions to model (1) to address intraspecific competition

among the predators. In the presence of low population

densities of both prey and predators, the incorporation of

intraspecific rivalry within the predators may effectively

mitigate the occurrence of excessive amplitude oscilla-

tions. After accounting for the prey refuge, delay, and

density-dependent mortality rate in the rise of predators,

the Bazykin’s model is obtained as follows.

du

dt0
¼ qu� au2 � k1 1 � wð Þuv t0 � sð Þ

k2 þ b 1 � wð Þu ;

dv

dt0
¼ ck1 1 � wð Þuv t0 � sð Þ

k2 þ b 1 � wð Þu � k3v� k4v
2: ð2Þ

where w is the prey refuge 0�w\1 and k4 is the level of

intraspecific rivalry within the predator population. This

scheme is of interest to us since it displays a variety of

oscillatory dynamics under different parametric

circumstances.

Before moving on, we briefly discuss the nondimen-

sionalized version of the model (2) obtained using the same

modification of variables as in (McGehee et al. 2008).

When we include the transformation t0 ¼ t
k3

, u ¼ k2x and

v ¼ ek2y in (2), we obtain the non dimensionalized equa-

tions, which are

dx

dt
¼ r0x 1 � x

K0

� �
� K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx ;

dy

dt
¼ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � y� Kf y

2; ð3Þ

where r0 ¼ q
k3
; K0 ¼ q

ak2
; Kf ¼ ek2k4

k3
; K1 ¼ ek1

k3
. We use t as

dimensionless time without any loss of generality. We now

generalize model (3) to any order with respect to the

Caputo fractional derivative, then

Dax ¼ r0x 1 � x

K0

� �
� K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx ;

Day ¼ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � y� Kf y

2: ð4Þ

As a matter of notational convenience, we write the

Caputo derivative as Da rather than C
t0
Da

t with t0 ¼ 0. The

above model assumes x 0ð Þ, y tð Þ ¼ u tð Þ[ 0 t 2 �s; 0½ �ð Þ
with u tð Þ is a continuous function. All the parameters

description of model (4) are provided in Table 1. Our focus

will be on understanding how the time latency affects the

model’s dynamics (4).

In order to establish the major conclusions of this sub-

section, which concern the stability and bifurcation of

model (4), we begin by establishing several lemmas

relating fractional derivatives.

2.1 Preliminaries

Definition 1 (Podlubny 1993). For every function

f 2 Cn ½t0;1Þ;Rð Þ, we have the following definition for its

Caputo fractional derivative of order a:

C
t0
Da

t f tð Þ ¼ 1

C n� að Þ

Z t

t0

f nð Þ fð Þ
t � fð Þa�nþ1

df;

where n is a positive integer such that n� 1\a� n: Fur-

thermore, when 0\a� 1; we have

C
t0
Da

t f tð Þ ¼ 1

C 1 � að Þ

Z t

t0

f 0 fð Þ
t � fð Þadf:

Definition 2 (Podlubny 1993). Let a[ 0; n� 1\a� n 2
N: Consider f kð Þ tð Þ; k ¼ 0; 1; :::; n� 1, are continuous

Table 1 A description of the

system’s parameters’ biological

importance, (1–4)

Parameter Meaning

u Prey population density at time t0

v Predator population density at time t0

q Intrinsic growth rate of prey population

a Intraspecific competition coefficient of the prey

k1 The number of attacks by predators on prey

k2 Half saturation constant

b Saturating functional response distortion value

c Conversion rate of the prey

k3 Predator population mortality rate

1 � wð Þx; 0�w\1 The quantity of prey accessible to the predator

k4 Intraspecific competition in the predator population

a; 0� a\1 Order of fractional-order differential equations of the system
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functions on ½t0; 1Þ, f nð Þ tð Þ exists with exponential order

and C
t0
Da

t f tð Þ is piecewise continuous on ½t0; 1Þ. Then.

L C
t0
Da

t f tð Þ
n o

¼ saF sð Þ �
Xn�1

k¼0

sa�k�1f kð Þ t0ð Þ;

where F sð Þ ¼ L f tð Þf g.

Lemma 1 (Matignon 1996). We consider the autonomous

nonlinear fractional order system:

dae~ tð Þ
dta

¼ f~ e~ tð Þð Þ; e~ 0ð Þ ¼ e~0; 0\a\1:

The equilibrium points of the above system are solutions

to the equation f~ e~ tð Þð Þ ¼ 0: An equilibrium point e~� is

locally asymptotically stable if all characteristic roots kj
� �

of the Jacobian matrix J ¼ of~

oe~ evaluated at equilibrium e~�

satisfy arg kj
� ��� ��[ ap

2
.

If use the notation s að Þ ¼ ap
2
� min

1� j� n
arg kj

� �� �
then the

trivial solution of the system is locally asymptotically

stable if s að Þ\0 and unstable if s að Þ[ 0:

3 Existence, Uniqueness and Boundedness

We investigate whether or not there is a unique solution to

the initial value problem (4).

Dax ¼ r0x 1 � x

K0

� �
� K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx ;

Day ¼ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � y� Kf y

2; t 2 t0; t0 þ H½ �;

ð5Þ
x tð Þ; y tð Þð Þ ¼ d tð Þ :¼ d1 tð Þ; d2 tð Þð Þ; t 2 t0 � s; t0½ �;

where 0\a� 1; t0 � 0; s[ 0; H[ 0; and the initial

value function d tð Þ 2 C t0 � s; t0½ �; R2
� �

:

Let’s write

V tð Þ ¼ x tð Þ; y tð Þð Þ; X V tð Þð Þ ¼ X1 V tð Þð Þ; X2 V tð Þð Þð Þ;

in which

X1 V tð Þð Þ ¼ r0x 1 � x

K0

� �
� K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx ;

X2 V tð Þð Þ ¼ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � y� Kf y

2: ð6Þ

For V ¼ x; yð Þ 2 R2; consider the norm Vk k ¼ xj j þ yj j:
Let g ¼ C t0 � s; t0 þ H½ �; R2

� �
and let Vk kg¼

maxt2 t0�s; t0þH½ � V tð Þk k be the norm for

V tð Þ ¼ x tð Þ; y tð Þð Þ 2 g.

Consider

P ¼
	
V 2 g : V tð Þ ¼ d tð Þ for t 2 t0 � s; t0½ �;

and max
t2 t0; t0þH½ �

V tð Þ � d t0ð Þk k�Q



Q[ 0ð Þ:

It is obvious that Vk kg �M :¼
max maxt2 t0�s; t0½ �k

�
d tð Þk; d t0ð Þk k þ Qg for every

V tð Þ 2 P.

Therefore, for any V tð Þ ¼ x tð Þ; y tð Þð Þ; V tð Þ ¼ x tð Þ;ð
y tð ÞÞ 2 P; t 2 t0; t0 þ H½ �, we have

where L :¼ max r0 1 þ 2M
K0

� �
; 1 þ 2MKf

� �
; 2MK1 1�wð Þ

1þb 1�wð ÞM

n o
:

Likewise, with respect to any V tð Þ 2 P; t 2 t0; t0 þ H½ �,
we have

X V tð Þð Þ � X V tð Þ
� �

 

 ¼ X1 V tð Þð Þ � X1 V tð Þ

� ��� ��þ X2 V tð Þð Þ � X2 V tð Þ
� ��� ��

¼ r0x 1 � x

K0

� �
� K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � r0x 1 � x

K0

� �
þ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx

����
����

þ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � y� Kf y

2 � K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx þ yþ Kf y

2

����
����;

� r0 þ
r0

K0

2M

� �
x� xj j þ 1 þ 2KfM

� �
y� yj j þ 2K1M 1 � wð Þ

1 þ b 1 � wð ÞMð Þ y t � sð Þ � y t � sð Þj j;

� L V tð Þ � V tð Þ


 

þ V t � sð Þ � V t � sð Þ



 

� �

ð7Þ
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X V tð Þð Þk k ¼ X1 V tð Þð Þj j þ X2 V tð Þð Þj j

¼ r0x 1 � x

K0

� �
� K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx

����
����

þ K1

1 � wð Þxy t � sð Þ
1 þ b 1 � wð Þx � y� Kf y

2

����
����;

� r0 þ
r0M

K0

þ 2MK1 1 � wð Þ
1 þ b 1 � wð ÞM

� �
xj j þ 1 þMKf

� �
yj j;

� L V tð Þk k:
ð8Þ

Then, by using the fractional integral operator on system

(5), we get the following equivalent second-kind Volterra

equation.

V tð Þ ¼ d t0ð Þ

þ 1

C að Þ

Z t

t0

t � fð Þa�1f X fð Þð Þdf; t 2 t0; t0 þ H½ �;

V tð Þ ¼ d tð Þ ¼ d1 tð Þ; d2 tð Þð Þ; t 2 t0 � s; t0½ �:

Set up the operator c : w ! w; so as to

cV tð Þ :
¼ d t0ð Þ

þ 1

C að Þ

Z t

t0

t � fð Þa�1X V fð Þð Þdf; t 2 t0; t0 þ H½ �;

ð9Þ
cV tð Þ :¼ d tð Þ ¼ d1 tð Þ; d2 tð Þð Þ; t 2 t0 � s; t0½ �:

Then, because c has only one fixed point in P, it follows

that (5) can only have one solution.

By (7) and (9), with respect to any V tð Þ ¼ x tð Þ; y tð Þð Þ;
V tð Þ ¼ x tð Þ; �ð verliney tð ÞÞ 2 P; t 2 t0; t0 þ H½ �; we have

cV tð Þ � cV tð Þ


 

� 1

C að Þ

Z t

t0

t � fð Þa�1 X V fð Þð Þ � X V fð Þ
� �

 

df;

� 1

C að Þ

Z t

t0

t � fð Þa�1 V fð Þ � V fð Þ


 

þ V f� sð Þ � V f� sð Þ



 

� �
df;

� 1

C að Þ

Z t

t0

t � fð Þa�1
max

f2 t0; t0þH½ �
V fð Þ � V fð Þ



 

þ max max
f2 t0�s; t0½ �

V fð Þ � V fð Þ


 

; max

f2 t0; t0þH½ �
V fð Þ � V fð Þ



 

	 
� �
df;

� 2L

C að Þ

Z t

t0

t � fð Þa�1
max

f2 t0; t0þH½ �
V fð Þ � V fð Þ



 

� �
df;

� 2LHa

C aþ 1ð Þ V � V


 



g
:

So, we have cV :ð Þ � cV :ð Þ


 



g
� 2LHa

C aþ1ð Þ V � V


 



g
; this

suggests that c is a contraction operator if H\ C aþ1ð Þ
2L

� �1=a
:

For any V tð Þ 2 P; t 2 t0; t0 þ H½ �; by (8) and (9), we

have

cV tð Þ � d t0ð Þk k� 1

C að Þ

Z t

t0

t � fð Þa�1 X V fð Þð Þk kdf;

� 1

C að Þ

Z t

t0

t � fð Þa�1 V fð Þk kdf;

� L

C að Þ

Z t

t0

t � fð Þa�1
max

f2 t0; t0þH½ �
V fð Þk k df;

� LHa

C aþ 1ð Þ max
f2 t0; t0þH½ �

V fð Þk k;

� LHaM

C aþ 1ð Þ :

ð10Þ

If H� C aþ1ð ÞQ
LM

� �1=a
, it may be deduced using (10) as

max
f2 t0; t0þH½ �

c V tð Þ � d t0ð Þð Þk k�Q, this suggests that

c V tð Þð Þ 2 P; for every V tð Þ 2 P:

According to the Banach contraction principle, if

H\min
C aþ1ð ÞQ

LM

� �1=a
; C aþ1ð Þ

2L

� �1=a
	 


, there is only one

fixed point in P for c. It is possible to derive the following

theorem from the discussion above.

Iranian Journal of Science

123



Theorem 1 If H\min
C aþ1ð ÞQ

LM

� �1=a
; C aþ1ð Þ

2L

� �1=a
	 


holds,

then there occurs only one solution to the initial value

problem (5).

4 Stability Analysis and Hopf Bifurcation

The intersections of systems (4) such that Da x ¼ 0 and

Da y ¼ 0 constitute the equilibria. Therefore, there are

three equilibrium points in system (4): trivial equilibrium

E0 0; 0ð Þ, axial equilibrium E1 x; 0ð Þ and interior equilib-

rium E� x�; y�ð Þ.
It is necessary to linearize the framework (4) about a

suitable equilibrium point in order to use Lemma 1 to

determine the stability of distinct equilibria. The system

(4)’s variational matrix is given by

J ¼
r0 �

2r0x

K0

� K1 1 � wð Þy
1 þ b 1 � wð Þxð Þ2

� K1 1 � wð Þx
1 þ b 1 � wð Þx e

�ks

K1 1 � wð Þy
1 þ b 1 � wð Þxð Þ2

K1 1 � wð Þx
1 þ b 1 �wð Þx e

�ks � 1 þ 2Kf y
� �

0
BBB@

1
CCCA:

ð11Þ

Theorem 2 Equilibrium point E0 ¼ 0; 0ð Þ is inherently

not stable if r0 [ 0:

Proof The variational matrix (11) at the trivial equilibrium

point E0 ¼ 0; 0ð Þ is J ¼ r0 0

0 �1

� �
.

The latent values of the variational matrix are k1 ¼
r0 [ 0 and k2 ¼ �1\0. Thus s að Þ ¼ ap

2
� min arg k1ð Þ;f

arg k2ð Þg ¼ ap
2
� min 0; pf g ¼ ap

2
[ 0 as 0\a� 1. Hence,

using lemma1, the trivial equilibrium point is never stable.

Theorem 3 The equilibrium point E1 ¼ K0; 0ð Þ is locally
asymptotically stable if b[K1 and w\1 (as all values of

s[ 0).

Proof The community matrix at E1 is given by.

J E1ð Þ ¼
r0 �

2r0x

K0

� K1 1 � wð Þx
1 þ b 1 � wð Þx e

�ks

0
K1 1 � wð Þx

1 þ b 1 � wð Þx e
�ks � 1

0
BB@

1
CCA ð12Þ

The characteristic equation is k2a þ C1k
a þ C2

� e�ks C3k
a þ C4ð Þ

¼ 0; ð13Þ

where C1 ¼ 1 � r0 þ 2r0x
K0

; C2 ¼ 2r0x
K0

� r0; C3 ¼ K1 1�wð Þx
1þb 1�wð Þx

and

C4 ¼ 2r0K1 1 � wð Þx2

K0 1 þ b 1 � wð Þxð Þ �
r0K1 1 � wð Þx
1 þ b 1 � wð Þx :

When s ¼ 0,

k2a þ C1 � C3ð Þka þ C2 � C4ð Þ ¼ 0: ð14Þ

Equation (14) makes it clear that for C1 � C3 [ 0 and

C2 � C4 [ 0, if b[K1 andw\1.

It is assumed that the validity of the solution k ¼ iu to

Eq. (13) holds under the condition that if s[ 0,

iuð Þ2aþC1 iuð ÞaþC2 � e�ius C3 iuð ÞaþC4ð Þ ¼ 0;

�u2a þ iC1u
a þ C2 � cosus� i sinusð Þ iC3u

a þ C4ð Þ
¼ 0:

The equations provided pertain to the process of

separating the real and imaginary components,

C3u
a sinusþ C4 cosus ¼ C2 � u2a; ð15Þ

�C3u
a cosusþ C4 sinus ¼ C1u

a: ð16Þ

Solving (15) and (16), we get

u4a þ C2
1 � 2C2 � C2

3

� �
u2a þ C2

2 � C2
4

� �
¼ 0: ð17Þ

The asymptotic stability of equilibrium is confirmed by

Eq. (13) for the case when s[ 0, suggesting the existence

of two real and negative roots. In contrast, the latent

Eq. (13) has two completely imaginary roots � iu0, and

(17) has one positive root by u0 if

C2
1
� 2C2 � C2

3

� �
[ 0 and C2 � C4ð Þ\0

i.e.,b[K1 and w\1. We can get an appropriate u0 using

(15) and (16), and the root of (13) has to fulfil

u2a
0 ¼ 1

2
C2

3 þ 2C2 � C2
1

� �
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

3 þ 2C2 � C2
1

� �
� 4 C2

2 � C2
4

� �q
\0:

Theorem 4 The coexisting equilibrium point E� ¼
x�; y�ð Þ of the framework (4) is asymptotically stable and

unstable for s[ s�. When s ¼ s�, the characteristic

Eq. (17) possesses two roots that are completely imaginary

� ina0 with.

n2a
0 ¼ 1

2
P2

3 þ 2P2 � P2
1

� �
þ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

3 þ 2P2 � P2
1

� �2�4 P2
2 � P2

4

� �q
\0 and s� ¼

1
n0

arccos
P4þP1P3ð Þn2a

0 �P2P4

P2
4
þP2

3
n2a

0

h i
þ 2jap

na0
:

Proof The Jacobian matrix of model (4) may be derived at

the positive equilibrium point E� as.
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J E�ð Þ ¼
� r0x

K0

þ bK1 1 � wð Þ2xy

1 þ b 1 � wð Þxð Þ2
� K1 1 � wð Þx

1 þ b 1 � wð Þx e
�ks

K1 1 � wð Þy
1 þ b 1 � wð Þxð Þ2

K1 1 � wð Þx
1 þ b 1 � wð Þx e

�ks � 1 þ 2Kf y
� �

0
BBB@

1
CCCA:

The characteristic equation is given by

k2a þ P1k
a þ P2 þ e�ks P3k

a þ P4ð Þ ¼ 0: ð18Þ

where P1 ¼ r0x
K0

� bK1 1�wð Þ2xy

1þb 1�wð Þxð Þ2 þ 1 þ 2Kf y
� �

, P2 ¼
r0x
K0

� bK1 1�wð Þ2xy

1þb 1�wð Þxð Þ2

� �
1 þ 2Kf y
� �

, P3 ¼ � K1 1�wð Þx
1þb 1�wð Þx, P4 ¼

K2

1
1�wð Þ2xy

1þb 1�wð Þxð Þ2 � r0K1 1�wð Þx2

K0 1þb 1�wð Þxð Þ.

When s ¼ 0, then (18) becomes

k2a þ P1 þ P3ð Þka þ P2 þ P4ð Þ ¼ 0: ð19Þ

The above Eq. (19) has two negative real roots if

P1 þ P3ð Þ[ 0 and P2 þ P4ð Þ[ 0 when

x\ K0K1 1�wð Þy
r0 1þb 1�wð Þxð Þ\

1þb 1�wð Þxð Þ
b 1�wð Þ ; K1\b and w[ 1. Hence,

the equilibrium E� can be considered asymptotically

stable under the condition s ¼ 0. When s[ 0, it is

assumed that the solution to Eq. (18) k ¼ in has to fulfil

�n2a þ P2 þ P1in
a þ cos ns� i sin nsð Þ P3in

a þ P4ð Þ ¼ 0;

n2a � P2 ¼ P3n
a sin nsþ P4 cos nsþ P1in

a

þ i P3n
a cos ns� P4 sin nsð Þ:

After performing the process of separating the real and

imaginary components, we get the following results,

P3n
a sin nsþ P4 cos ns ¼ n2a � P2; ð20Þ

P3n
a cos ns� P4 sin ns ¼ �P1n

a: ð21Þ

When we square and combine both equations, we obtain

n4a þ P2
1 � 2P2 � P2

3

� �
n2a þ P2

2 � P2
4

� �
¼ 0: ð22Þ

Simple computations allow us to quickly confirm that

P2
1 � 2P2 � P2

3

� �
[ 0 for K1\b and that there is no

positive real n fulfilling (22) if P2 � P4ð Þ[ 0. Hence,

(18) has negative roots. But in the case when

P2 � P4ð Þ\0, there is only one positive root in Eq. (22)

denoted by n0, and the characteristic Eq. (18) has two

completely imaginary roots � in0. Let k sð Þ ¼ # sð Þ þ in sð Þ
be the eigenvalue of (18) such that

# s�ð Þ ¼ 0 and n s�ð Þ ¼ n0. From (20) and (21), we have

s� ¼ 1
n0

arccos
P4þP1P3ð Þn2a

0 �P2P4

P2
4
þP2

3
n2a

0

h i
þ 2jap

na0
;

and from (22)

n2a
0 ¼ 1

2
P2

3 þ 2P2 � P2
1

� �
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

3 þ 2P2 � P2
1

� �2�4 P2
2 � P2

4

� �q
\0: ð23Þ

Thus, the coexisting equilibrium of framework (4) is

locally asymptotically stable for 0\a� 1 according to

Lemma 1.

4.1 Global Stability Analysis

Here, we further develop the study to investigate the

requirements for global stability (Deng et al. 2007; Li and

Zhang 2011) for the delay differential scheme of non-in-

teger order. After transforming the framework by lin-

earization into a suitable structure, we next examine the

global stability of the equilibrium points in (4).

Theorem 5 If all the roots of the latent equation D sð Þj j ¼
0 possess non-positive real parts, then the coexisting

equilibrium point x�; y�ð Þ of the scheme (4) is Lyapunov

globally asymptotically stable.

Proof We linearize the system (4) into the form.

Da x tð Þ ¼ h1x tð Þ þ h2y t � sð Þ;
Da y tð Þ ¼ g1x tð Þ þ g2y tð Þ þ g3y t � sð Þ: ð24Þ

where

h1 ¼ �r0 �
2r0x

�

K0

� K1 1 � wð Þy�
1 þ b 1 � wð Þx�

þ K1b 1 � wð Þ2x�y�

1 þ b 1 � wð Þx�ð Þ2
; h2

¼ � K1 1 � wð Þx�
1 þ b 1 � wð Þx� ;

g1 ¼ K1 1 � wð Þy�
1 þ b 1 � wð Þx� �

K1b 1 � wð Þ2x�y�

1 þ b 1 � wð Þx�ð Þ2
; g2

¼ � 1 þ 2Kf y
�� �
; g3 ¼ K1 1 � wð Þx�

1 þ b 1 � wð Þx� :

If the equilibrium point of the linear non-integer

differential equation is not zero, we can move it to the

origin. Put x tð Þ ¼ x tð Þ � x�; y tð Þ ¼ y tð Þ � y�, then the

Eq. (24) becomes
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Da x tð Þ ¼ h1x tð Þ þ h2y t � sð Þ;
Da y tð Þ ¼ g1x tð Þ þ g2 y tð Þ þ g3 y t � sð Þ: ð25Þ

We apply the Laplace transform (Muth 1977) on either

side of (25) to examine the stability of model (4). Finally,

we have

saX sð Þ � sa�1c1 0ð Þ ¼ h1X sð Þ

þ h2e
�ss Y sð Þ þ

Z0

�s

e�ssc1 tð Þdt

0
@

1
A;

saY sð Þ � sa�1c2 0ð Þ ¼ g1X sð Þ þ g2Y sð Þ

þ g3e
�ss Y sð Þ þ

Z0

�s

e�ssc2 tð Þdt

0
@

1
A;

sa � h1ð ÞX sð Þ � h2e
�ssY sð Þ ¼ sa�1c1 0ð Þ

þ h2e
�ss

Z0

�s

e�ssc1 tð Þdt;

�g1X sð Þ þ sa � g2 � g3e
�ssð ÞY sð Þ

¼ sa�1c2 0ð Þ þ g3e
�ss

Z0

�s

e�ssc2 tð Þdt: ð26Þ

Here, it should be stated that the initial values x tð Þ ¼
c1 tð Þ and y tð Þ ¼ c2 tð Þ with t 2 �s; 0½ �: Also X sð Þ and Y sð Þ
are Laplace transform of x tð Þ and y tð Þ with X sð Þ ¼ L x tð Þð Þ
and Y sð Þ ¼ L y tð Þð Þ. The system (26) can be rewritten as

follows.

D sð Þ X sð Þ
Y sð Þ

� �
¼ z1 sð Þ

z2 sð Þ

� �
: ð27Þ

In which.

D sð Þ ¼ sa � h1 �h2e
�ss

�g1 sa � g2 � g3e
�ss

� �
and

z1 sð Þ ¼ sa�1c1 0ð Þ þ h2e
�ss

R0
�s

e�ssc1 tð Þdt,

z2 sð Þ ¼ sa�1c2 0ð Þ þ g3e
�ss

R0
�s

e�ssc2 tð Þdt:

D sð Þ gives as the model (4)’s latent matrix with its

polynomial D sð Þj j. The reliability of model (4) is therefore

determined by the pattern of the latent polynomial’s

distinctive roots. In which mean that if all of the roots of

the latent equation are not positive, the previously

mentioned non-integer order prey predator’s equilibrium

is Lyapunov globally asymptotically stable (Li and Zhang

2011). The result of multiplying two sides of (27) with s is

D sð Þ s X sð Þ
s Y sð Þ

� �
¼ s z1 sð Þ

s z2 sð Þ

� �
: ð28Þ

Since every root of the transcendental equation D sð Þj j ¼
0 must be on the open left complex plane, i.e., Re sð Þ\0,

then we consider (28) in Re sð Þ� 0: Within this limited

area, system (28) possess only solution s X sð Þ; s Y sð Þð Þ, so

that

lim
s!0;Re sð Þ� 0

sX sð Þ ¼ 0; lim
s!0;Re sð Þ� 0

sY sð Þ ¼ 0:

Considering the Laplace transform’s final-value theorem

(Khan et al. 2021) and the assumption in which every root

of the characteristic equation D sð Þj j ¼ 0, we get

lim
t!þ1

x tð Þ 	 lim
s!0;Re sð Þ� 0

sX sð Þ ¼ 0; and

lim
t!þ1

y tð Þ 	 lim
s!0;Re sð Þ� 0

sY sð Þ ¼ 0:

This indicates that the non-integer order prey-predator

model’s zero solution is Lyapunov globally asymptotically

stable.

5 Numerical Simulations

In this section, we give one example to show the feasibility

and effectiveness of the results obtained in this paper. The

Adams–Bashforth-Moulton predictor–corrector system

serves as the foundation for all of the simulation findings.

The generalised Adams–Bashforth-Moulton type corrector

system is based on a crucial fractional differential equation,

which is

Da
t �h tð Þ ¼ g t; �h tð Þ; d t � sð Þð Þ;

�h lð Þ 0ð Þ ¼ �hl0; l ¼ 0; 1; 2; . . .; n� 1; where n ¼ ad e:
The following expression is same as the Volterra inte-

gral equation

�h tð Þ ¼
Xn�1

l¼0

�h
lð Þ

0

tl

l!
þ 1

C að Þ

Z t

0

t � sð Þa�1g s; �h sð Þð Þds: ð29Þ

Diethelm et al. (2002), employed to good effect the

predictor–corrector model predicated on the Adams–

Bashforth-Moulton algorithm to integrate Eq. (29). On

employing this model to the non-integer order delayed

scheme (4), and taking h ¼ T
N ; tn ¼ nh; n ¼

0; 1; 2; . . .;N 2 Zþ; the discretization of the fractional-

order delayed model (4) can be easily achieved.

xnþ1 ¼ x0 þ
ha

C aþ 2ð Þ rrx
p
nþ1 1 �

xpnþ1

K0

� �
�
K1 1 � wð Þxpnþ1y

p
nþ1

1 þ b 1 � wð Þxpnþ1

� �

þ ha

C aþ 2ð Þ
Xn
j¼1

aj;nþ1 r0xj 1 � xj
K0

� �
� K1 1 � wð Þxjyj

1 þ b 1 � wð Þxj

� �
;
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ynþ1 ¼ y0 þ
ha

C aþ 2ð Þ
K1 1 � wð Þxpnþ1y

p
nþ1

1 þ b 1 � wð Þxpnþ1

� ypnþ1 � Kf ypnþ1

� �2

� �

þ ha

C aþ 2ð Þ
Xn
j¼1

aj;nþ1

K1 1 � wð Þxjyj
1 þ b 1 � wð Þ xj

� yj � Kf y
2
j

� �
;

where

xpnþ1 ¼ x0 þ
1

C að Þ
Xn
j¼0

cj;nþ1 r0xj 1 � xj
K0

� �
� K1 1 � wð Þxjyj

1 þ b 1 � wð Þxj

� �
;

ypnþ1 ¼ y0 þ
1

C að Þ
Xn
j¼0

cj;nþ1

K1 1 � wð Þxjyj
1 þ b 1 � wð Þxj

� yj � Kf y
2
j

� �
;

aj;nþ1 ¼
na�1 � n� að Þ nþ 1ð Þ; j ¼ 0;

n� j� 2ð Þaþ1þ n� jð Þaþ1�2 n� jþ 1ð Þaþ1; 1� j� n

1: j ¼ nþ 1

cj;nþ1 ¼ ha

a
n� jþ 1ð Þa� n� jð Þa½ �; 0� j� n:

Since there is currently no data available that is relevant

to our proposed model, we have to make the following

hypothetical choices for the parameter values:

Using three distinct values of s ¼ 0:2; 0:4; and 0.6, we

have now drawn the phase portraits of the system (4) about

E2 for a ¼ 0:95 as shown in Fig. 1. According to those

figures, when s passes s� ¼ 0:35, the behaviour of system

(4) shifts from stable to unstable. At nontrivial equilibrium

Fig. 1 Behavior of the model (4) with different time delays with the

parameter values

r0 ¼ 0:9; K0 ¼ 21; K1 ¼ 0:791; w ¼ 0:422; b ¼ 0:002; Kf ¼ 0:004

, that displays periodic outbreak due to Hopf bifurcation
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point E2, an unstable source is seen when s ¼ 0:4[ s�. As

E2 acts as a sink at s ¼ 0:2\s�, it becomes stable, as

determined by Theorem 4.

The derivative of fractional order, as seen in Fig. 2,

suppresses the oscillatory motion. The results show that the

system is unstable for a ¼ 0:98 and a ¼ 1, but stable for

a ¼ 0:85. Our findings lead us to the conclusion that the

dynamics of the system under consideration is significantly

affected by the derivative’s fractional order.

At last, we shall display how each population density is

impacted by prey refuge, or more specifically, how the prey

refuge rate, w, affects it. As the quantity of refuge increases

for fixed delays and fractional orders, Fig. 3 shows that it

can cause population breakouts by raising prey density

using the parameter values shown in Fig. 1 and for varying

values of w.

In contrast to the predator population, which initially

grows and then drops in density with prey refuge rate w, the

prey population density increases with prey refuge rate w.

When they have places to hide, such long grass, they can

fend off predators like cats and owls, which helps to

maintain a greater population biomass in rats. Prey refuge

and fractional order have an impact on each population

density, as demonstrated by our numerical research.

6 Conclusions

This work presents a new and detailed model based on the

Caputo fractional order derivative that incorporates

latency, prey refuge, and predator death rate dependence in

order to simulate the dynamics of Bazykin’s prey-predator

Fig. 2 The model (4) exhibiting distinct fractional order (0\a� 1) while maintaining the same set of parameters as seen in Fig. 1. The fractional

order derivative damps the oscillation behavior
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model. Incorporating a refuge into system (4) provides a

more realistic model, since many prey populations contain

some form of refuge. A refuge can be important for the

biological control of pest, however, increasing the amount

of refuge can increase prey density (biomass) and lead to

population outbreaks. The work is significant because it

takes into account three practical factors at once that

haven’t been taken into account concurrently in other

works: fractional order, refuge effect, and time delay. We

analyse the uniqueness and boundedness of the changing

behaviour of the framework (4). In addition, comprehen-

sive local stability tests and the stability of equilibrium

points have been computed to provide a better under-

standing of the stability of the system under various cir-

cumstances. The need for an interior equilibrium point to

be globally asymptotically stable has also been determined.

The system’s dynamic analysis (4) leads to the following

deductions:

Hopf bifurcation occurs in the model when the time-

delay crosses the critical value s�. A few numerical sim-

ulations have confirmed the theoretical predictions.

Asymptotically, the interior equilibrium is stable at s ¼ 0.

For s ¼ s�, the stability holds. When s[ s�, the instability

in that model continues. The incorporation of memory,

denoted by fractional derivatives and time delay, enhances

the model’s dynamics. In order to preserve the ecological

balance and allow biological species to cohabit sustainably,

non-integer order and time-delay systems are essential.

The investigation of the fractional-order derivative’s

impact on the system is the primary goal of our study.

Based on our observations, the stability can be altered by

fractional-order derivative. When a ¼ 1 is used in an

integer-order system with w ¼ 0:422, the system is

Fig. 3 The system (4)’s phase portrait and time series with various refuge (w) values, using the other variables set to the same values as in Fig. 1

and s ¼ 0:2; a ¼ 0:98

Iranian Journal of Science

123



unstable, but when a is decreased, stability is achieved.

Therefore, the dynamics of the system are profoundly

affected by the non-integer order derivative. Thus, we infer

that the model’s solutions are stable for the non-integer

order derivative but unstable for the integer-order one

system.

In this work, we are particularly interested in the impact

of the fractional-order derivative on the system. We found

that the stability may be altered by using a fractional-order

derivative. When a ¼ 1 with w ¼ 0:422 are applied to an

integer-order system, the system is unstable, but when a is

decreased, stability is restored. Therefore, the non-inte-

ger order derivative has a significant impact on the sys-

tem’s behaviour. Thus, we infer that the model’s solutions

are stable for non-integer order derivative but unstable for

the integer-order one system.

Our numerical simulations also demonstrate the impact

of fractional order and prey refuge on population size. The

coexistence equilibrium point of system (4) may be

manipulated to the desired condition by adjusting the prey

refuge rate w. So, it’s good for both the prey population and

the predator population if the refuge rate for prey is raised

appropriately. From an ecological perspective, a higher

density of predators is the result of a reduced value of the

prey refuge rate, as more prey may be taken by the predator

population. Since we assume that the predator population is

entirely reliant on the prey population in our model, we

find that when the refuge rate w for prey increases, the

density of the predator population drops as a result of a

shortage of food supplies. When prey refuge rates rise to a

significant level, predator populations eventually become

extinct. The study of fractional order systems numerically

has made great strides. Numerical research employs a wide

variety of techniques, including the Homotopy perturbation

method, the Taylor basis approximations approach, the

Adomian decomposition method, Diethelma’s meth-

od (Diethelm et al. 2002), etc. We want to perform more

analysis of this work in the future using a variety of

numerical methods in an effort to improve our findings.
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