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Abstract

This article explores the applications of g-calculus in polynomial basis functions and curve modeling. We define the
properties of g-Bernstein Cholodowsky basis polynomials. A novel approach to Bézier curves is introduced, utilizing basis
polynomials to create generalized curves with shape-preserving properties. Additionally, the article presents degree ele-
vation and De Casteljau algorithms tailored for these curves.
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1 Introduction

Bézier curves are elegant and fundamental mathematical
constructions used in computer graphics, Computer-Aided
Design (CAD), animation, and various other fields to
describe and model smooth curves and shapes. Named after
the French engineer Bézier (1972), who developed them in
the 1960 while working at the automotive company
Renault, Bézier curves have become an essential tool in the
creation of digital imagery and design. He defined the
curves with the help of Bernstein polynomial basis as
follows:

CW) = gu) P
=0

where g (V) = <’Jn>v’(1 ~v)"7  and  Pjj=
0,1,2,---,m are the control points.

At their core, Bézier curves are a way to represent
mathematically and interpolate points within a curve’s
path. They are defined by a set of control points that
influence the curve’s shape. What makes Bézier curves
especially powerful, is their ability to generate curves of
varying complexity, from simple straight lines to intricate
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and smooth curves. This flexibility along with their intu-
itive control mechanisms has made Bézier curves a
cornerstone in the world of computer graphics. Due to the
importance of Bézier curves, they are widely studied as one
can see (Hu et al. 2015; Ismail and Ali 1957; Kaur and
Goyal 2023; Muraru 2010; Pales and Rédl 2015).

For the purpose of altering the geometry of curves
without altering the control points, parametric generaliza-
tions of Bézier curves emerged. There are several papers of
generalization of the positive linear operators by intro-
ducing parameters as one can see (Ansari et al. 2022; Cai
et al. 2022; Goyal 2022; Mursaleen et al.
2017, 2020, 2019). These parameters in basis polynomials
work as a shape parameter. Han et al. (2008) used m shape
parameters, such as A;,i = 1,2, --,m, to define Q—Bézier
curves. The authors observed that the shape of the curves
can be altered by modifying the values of shape parame-
ters. Han et al. (2014) modified the Bézier curves by
incorporating Lupas g—analogue in order to regulate the
curves’ shape. When ¢ = 1, the generalization transforms
into traditional Bézier curves. Similarly, Khan et al. (2019)
generalized Bézier curves based on shifted nodes using two
real and non-negative parameters. The authors showed that
the curves generated over any subinterval of [0, 1] with the
shifted nodes are similar to classical Bézier curves.

Khatri and Mishra (2022) defined the generalized Bézier
curves by choosing Bernstein-Stancu Chlodowsky basis
polynomials defined by Aral et al. (2012) by using a
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positive increasing sequence (by),~; such that lim b, =
- n—oo

bn . .
00, lim — = 0 in the following form:
n—oo n

mto=(3) (5 Go-755)

n+a t n—k
X -7 )
(n +b b,,)

b, <t< n—i_z b, and a, b are the real numbers
n

(1.1)

a
here ——
v n+b

such that 0 <a <b. The authors studied the properties of
basis polynomials and the curves induced by these poly-
nomials. They also defined De Casteljau algorithm and
degree elevation for these curves. Motivated by the
advantages of parametric generalizations, we define the
g—Bézier curves of basis polynomials (1.1).

The present article is structured as: In the next section,
we present fundamental results of g-calculus, which serves
as the foundation for the subsequent sections. Section 3
focuses on the properties and characteristics of g-Bernstein
Cholodowsky basis polynomials, exploring their applica-
tions and associated results. In Sect. 4, we study a gener-
alized approach to Bézier curves utilizing g-Bernstein
Cholodowsky basis polynomials and their properties to
preserve specific shapes. Section 5 discusses the degree
elevation of these Bézier curves and in Sect. 6, we give De
Casteljau algorithm tailored for these curves. These algo-
rithms are essential tools for manipulating and optimizing
these curves. In the last section, we present some examples
to show the flexibility in the shape of the curve with the
choice of the parameters.

2 Preliminaries

For a given real number ¢ > 0 and any m € N, we have

1-4"
, qF1
m,=9 1—q :

q
m, g=1

(2.1)

Let N, = {[m],,m € N}, the set Ny is the generalization
of the set of non-negative integers N, which can be
obtained by taking g = 1.

For given m € N, [m] ! is defined as

A [m]fm—1], 1], m>1
[m],! = { 1 m—0 (2.2)
The g—Binomial coefficient [T] is defined as:
m]  [m]!
¥ L‘ 0 23
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for m>j>1 and O otherwise.
The Pascal type relation between g—Binomial coeffi-
cients is defined as follows:

Wi IR N

[m] mei|m—1 m—1
| =" 2l I
LJ 1, =11, i1y

The product in g-analogue is defined in the following way:

(2.4)

(2.5)

m—

a+wgﬂh+4w§jﬁﬁuqf.

(2.6)
=0 =0

3 Properties of g-Bernstein Cholodowsky
Basis Polynomial

Firstly, we define the g—analogue of (1.1) as the basis
polynomial for n € N as follows:

o L) (5-5)

V) =
e rflnl, o v (v o
,H([n]qfﬁﬁ‘f (b_n[n}ﬁﬁ))

1

n [}’l}q —+ o Vv il v o :uZ,k(V)7
Lo, #8761 \b 1, + 5

(3.1)

ab, [n],+a

where v € |— ,———b,|.

[, + B [n], + B
Theorem 1 ~The basis polynomial (3.1) has the following
properties:

(1) Non-negativity:
ab, [, +o

nl, + B[, +p"

Phi(v)>0 for

(2) Partition of unity: Z pai(v) = 1.
k=0

bﬂ
(3) End point interpolation property pf, x =
S\l + B
1, k=0
0, k#0’
nj, +o =
" [n], b, {1, k=n
“\1l, + 8 0, k#n
(4) Reducibility: when g =1,b, =1 and o = f =0, it
reduces to classical Bernstein polynomials.
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1 n
(5) Symmetry: p! (1) =p;, ([’l][qi]iﬁ - t), where

Proof The proofs for the properties (1), (3) and (4) are
quite simple. So, we left it for the reader.
For property (2), consider

k
n . _ " n liL
;.un,k(v) Zl:k:|q(bn [n]q _,’_ﬁ)

k=0

G (3.2)

Using (2.6), it becomes:

n . B [n]q—&—oc_ln b,
;ﬂmk(v) = ({n]q + B b,.> 1+ [n], +

Thus, by using (3.1) and (3.3), we get

< P‘Z,k(V)

;Pn.k(v) :kZOﬁ [n}q+0(71+q]._1 2 o
j=1 [}’l}q + ﬁ bn bn [n]q + ﬁ

=1.

\'
Now, for property (5), consider ¢ = b

nuz(nfk (V)

(gt vy o
,H([nmﬁ b 4 (bn [n1q+ﬁ>)

p?l,nfk(t) =

n \ o "t ["L,JFO‘ \Y ¢ k)
L_kL b W, 7F) \WL,+F B)

H(n;l)n L [n]q'i‘a_l +1_ o
i P} qjil [n]q‘i'ﬁ by b, [n}q‘f'ﬁ

Hence, the proof is completed.

Now, we present the effect of different values of the
parameter ¢ in the basis functions and choosing n = 4,0 =
0.2,$=0.8,b, =+/n. In Fig. 1 the values of g=1,
whereas ¢ = 2 in Fig. 2. O

Theorem 2 For n>1, each n™ degree basis polynomial

can be written as combination of two (n — l)m degree basis
polynomials, that is
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Pas(V) = [n]q—i—cx y v B
W, + B ba T \b T, B

+
[n]q+a_l+ n—1 1_ o
<[nq B b, 1 (bn Mfrﬁ))

Proof Consider

t(ll, e v [V o
Il (u—+ﬁ AL Pl
j=1 i n n "y
[n
k
Using the recurrence Eq. (2.4) of g—binomial coefficients:

HEEL e

Therefore,

PZ,k (v) =

Pz,k (v) =

k n—k
| (2-g) (s
q <bn ["]q + ﬁ) (["]q + B bn) )

Jr
. [”]q‘*‘o‘ii (v o
,H([n]ﬁﬂ b, "7 (bn [n1q+ﬁ>>
" (e v\
k P by [”L,"’ﬁ [”]q+ﬁ by

q(k—l)?.(k—2)+k71

T ], +o v v a
,H([nmﬁ‘bﬁ‘f (bn‘[n]q+ﬂ>

Hence, we reach at the desired result. O

Theorem 3 Each n degree basis polynomial can be
expressed as linear combination of two (n+ l)m degree
polynomials in the following way

n—k+1
PZ,k (v) = %P%m (v)

[n—k],\ ,
+ 1—m Pt g1 (V)-

N

k(k—1)
7q (- w

+ 1
e v (v o
JI(Mq+ﬁ‘bn+¢l<af‘mq+ﬁ>>

k n—k
><|:n] 17 * [n]‘/Jra,l
W \bw i, +8) \l, 45 b
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Since, we know, {nL: % {n i l](/
o] -t T
%%+Hq:<]_h—ﬂﬁ
[n—l—l]q [n—|—1}q

Using these equalities and (3.4), we get

[n—k+1],[n+1 v o ‘
[+ 1], [ k L by [nl,+B

><n+1 [n] +a Vv : Vv o
q _ =1 _
ﬂ([n}quﬂ b 7 (bn [n]q+ﬂ>>

§ [}’l]q-i-%il n—k+1
[, + B b

[k+1

n+1] w ), +o v v «
(e ()
k+1
n-‘rl} v
{k+1 q(bn [n]q+/3>
n—k

" [n]q+a71

[n], +B  bn '

Hence, we get the required result. U

pnl\( )

“* HED ok

4 Construction of Bézier Curves

We define the generalization of Bézier curves with the help
of the g-Bernstein Cholodowsky basis polynomial (3.1) in
the following way:

ank Cr,

where Cy, k=0,1,---
curves.

4.1)

,n are the control points of the

Theorem 4 The BeZier curves defined by (4.1) have the
following properties:

(1) Bézier curves lie inside the control polygon deter-
mined by the control points.
(2) End point interpolation property:

by \ _ o\
C([”]q n ﬁ) =Cp and C<[n]q n an> =C,.

(3) Reducibility: for g=1,a==0,b,=1, the
curves (4.1) reduce to classical Bézier curves.

Proof The above properties are easy to prove by using the
results of Theorem 1. Hence, we omit the details. O

Theorem 5 The Bezier curves (4.1) have the end-point
derivative property as:

C’( oby, ) _[n]y(& ~ o)
1) o)
C ([nl, + Of)b  [n],(Cy = Cui)
) e ()
n [n],+B

Proof Let
C(v) =) Cepli(v)
k=0
n q Vv
_ [ } lun,k( ) .Ck
k=0 n n q + o \Y 1 o
-+ ql _
_GWv)
Ga(v)
Thus,
C(v).Ca(v) = Ci(v).
Now, differentiating on both sides w.r.t. v, we get:
C(v).C5(V) + Ca(v).C'(v) = C|(v). (4.2)
V) = Z Cr-p45 1 (V), where

k=0 k n—k
n Vv o [I’l]( + o \Y kk—1)
=4 (- o o I
mh kj \bo [nl,+8) \[nl,+B bn ’

and by using Theorem 1,

= Z HZ,k(V)
=0

property (2) of
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We can easily calculate:

ab, B
(i) o

ab, B
[, +8)

],
nl, + B

A oby N (- m) (I,
Q(hh+ﬁ>_ b, (Mb+ﬁ

Using these equalities and (4.2), we get:

A ok ], (C1—Go)
CQ@+»"MC%)'

[n],+P

Similarly, Using (4.3)

22, Q) Springer

o (_obn ) G —nCo (T, !
"\, +8)  ba m,+8)

)

)

M, +o \ my+e N [ I, Q
C([n]ﬁﬁb”) o CZ([n]ﬁﬂb") B <[n},,+ﬂ> T
(Wt g C— G, \T
C‘([n]ﬁﬂb”)_ b, ([n},ﬁrﬁ) *

R W G P U S DA N
M, +87") by m,+8)

Again, with the help of identity (4.2), we find:

C/ <([n]q + a)bﬂ> _ [I’l]q(Cn - Cn—l)
[n}q + /3 bnqnfl (%) '

O

Remark 1 This property represents that tangent at the
point x = 0 is the resultant of vector from Py to P;. Sim-
ilarly, the tangent at the end point x = 1 is also the resultant
of vector from P,_; to P,.

5 Degree Elevation

Degree elevation has applications in computer graphics,
CAD, and font design, where it improves curve smoothness
and complexity control. It is also used for data fitting and
interpolation, ensuring accurate curve representations.
Degree elevation of Bézier curves is a mathematical
technique used to increase the degree of a Bézier curve and
control points while preserving its shape. This process
involves introducing new control points to create a higher-
degree curve, allowing for comparison with compatible
curves. It is a valuable tool in computer graphics and
design for achieving smoother and more precise curves.

Let C(v) = > p!,(v).Cy where k =0,1,...,n.
k=0

This curve can be
n+1

C(v) = > pl,  (v).Dy, by applying the technique of
=0

represented as

degree elevation. In this process, we get (n+ 2) control
points Dy to determine new curves in the following way:

DO = C07 Dn+1 = CI’H

D, = l_wc +
k = [n+1]q k—1

where k=1,2,---,n.

n—k+1],

Ci,
n+1] k

q

Let A =[Co,Cy,---,Cy]" be the vector of (n+1) control
points for the given Bézier curves of degree n and B =
[Do, Dy, - - ,D,,H]T be the vector of (n+2) control points
of the new Bézier curves of degree n + 1. We can find the
relationship between vectors A and B denoted by B =
M, A, where M,,;; is the matrix of order
(n+2) x (n+ 1) defined as follows:
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o, 0 0 0 0
[n+1],—[n], ], 0 0 0
0 m+1],-n-1], 1], - 0 0 0
1 : : :
My = I+ 1]q : : :
0 0 n+ 1], - 2], 2], 0
0 0 0 n+1, -0, (1,
L0 0 0 0 n+1],

Similarly, we can also represent this curve to any higher
degree curve without changing its shape.

For m € N, we can find Bézier curve of degree n + m.
The vector of control points of degree elevated curve
having degree n+m is R = [Ro, Ry, -+, Ryim), Where
R=M,,,, M, oM, 1P. For m — oo, the control poly-
gon converges to Bézier curve.

6 De Casteljau Agorithm

The De Casteljau algorithm is a fundamental method for
evaluating Bézier curves and surfaces. It works by recur-
sively dividing control points to find a point on the curve.
Starting with the original control points, it repeatedly
computes intermediate points along the curve or surface
until the desired level of precision is achieved.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Consider P? =P; where i =0,1,---,n.
[n],+o v
48 b

_ % + qnfr (% _ [n]:er
n—r(v _ _o

i (b” ["]"H}) P (viq),

[+ n—r{v _ _a i+l
(s e (o~ )

r=12,---,n, k=0,1,--

P;(V;Q) = ], o
(MM

P (v;q)
)

+

S n— .

(6.1)

The matrix to represent these points:

0 L L
0 0.2 0.4 0.6 0.8

Fig. 1 Basis polynomials for n = 4,0 = 0.2, =0.8,b, = /n,q =1
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[I’l]q x _ i n—r l _
[y + B b bn  [nl, + B
[n]q +o _ l n—r i
A W, B b O (m
0 0

0 0 ]
o
—[n]q+/)’> 0 0
[n]ll -‘r.OC v n—r 1 _ L
W, + 8 b T \b W, +B)

7 Numerical Examples

In the present section, we provide some examples to rep-
resent the control of the new introduced parameters on the
shape of Bézier curves.

Example 1 In Fig. 3, we choose the parameters o =
02,=08,b,=+/n and the control  points
(5, 0), (0, 10), (5, 20), (15, 20), (20, 10) and (15, 0). The
degree of the g—Bernstein-Chlodowsky Bézier curves is 5.
From the figure, it is clear that the parameter g is observed
to alter the shape of the curves while keeping all other

properties constant as well as maintaining the same control
polygon. This ability to modify the curve’s shape without
changing the control polygon contributes to the flexibility
of the curve.

Example 2 In Fig. 4, we choose the parameters o =
05,=09,b,=+/n. and the control points
(2,5),(5,0),(15,10), (15,15),(-5,20),(-5,25),(5,35)
and (8, 30). In this example, we observe the same nature of
our new introduced parameter ¢ as in Example 1.

Fig. 2 Basis polynomials for n = 4,0 = 0.2, = 0.8,b, = \/n,q =2
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control polygon

q=3

q=1
q=0.5

Fig. 3 Shape modification with different values of ¢

35—

30—

25—

——q=0.5
=1
q=2.7
15—
10—
5+ —
0 1 1 1 1 1 1 |
-2 0 2 4 6 8 10 12

Fig. 4 Shape modification with different values of ¢

8 Conclusion

The present article deals with the Bézier curve’s general-
ization, a technique that empowers us to fine-tune the shape
of these curves through the manipulation of diverse
parameters. Our exploration primarily focuses on g—ana-
logue of Chlodowsky Bézier curves, a versatile extension
of the classical Bézier curves. Additionally, we investigate

the process of degree elevation and De Casteljau’s algo-
rithm, an essential tool for working with Bézier curves.
This novel approach will give the flexibility to control the
shape of the curves by choosing the parameters.
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