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Abstract
Stability analysis of impulsive nonlinear fractional-order system (FOS) is discussed. First, the existence and uniqueness of

solutions for FOS is discussed with help of fixed point theory. The nonlinear system is considered with a constant time

delay and impulsive effects. Then, novel sufficient conditions to prove the Mittag–Leffler stability (MLS) of FOS are

established by using well known mathematical techniques. Also, the results are extended to present finite-time MLS

conditions for considered nonlinear FOSs. Finally, examples are given to show the validity of the derived results.
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1 Introduction

Systems modeled with fractional-order calculus have led to

the new developments and results which are applied in

several fields such as mechanics, biology, economics,

biophysics, aerodynamics, signal and image processing.

The applications of fractional calculus in viscoelasticity

and electrical circuits with fractance have found in litera-

ture, see for instance (Debnath 2003; Miller and Ross 1993;

Lakshmikantham 2008; Tabouche 2021) and references

therein. Particularly, results on some physical problems

using fractional-order dynamics found in nonlinear regu-

larized long-wave model (Yavuz and Abdeljawad 2020),

Schrodinger–KdV equation (Yavuz et al. 2021), circulant

Halvorsen system (Hammouch et al. 2021), and option

pricing models (Yavuz 2022). Recently, Naik et al. (2020)

studied the COVID-19 model using fractional-order oper-

ator and discussed the average absolute relative error

between actual cases and the model’s solution for infec-

tious class, also discussed the impact of alternative drugs

applied for treating the infected individuals. Fractional-

order dynamics based susceptible-infected-recovered epi-

demic model for predicting the spread of an infectious

disease were studied in Dasbasi (2021).

It is noted that when dealing with dynamical systems

using varity of differential equations, the first and foremost

one is existence of solution (Deep and Tunc 2020). Bohner

et al. (2021) studied the fractional Volterra integro-differ-

ential equation with multiple kernels and delays. Yavuz

et al. (2018) derived the approximate analytical solution

for fractional partial differential equations with singular

and nonsingular kernels using the Atangana–Baleanu and

Liouville–Caputo fractional operators. On the other hand,

impulses in differential equations reflects the dynamics of

real world problems with unexpected discontinuities and

rapid changes at certain instants such as blood flows, heart

beats and so on, see Guo and Jiang (2012), Stamova and Tr

(2016), & Area and Nieto (2021). Slynko and Tunc (2019)

studied the Lyapunov stability of impulsive linear switched

systems by constructing an equivalent impulsive system

without switching.

In literature, the concepts of stability analysis of

impulsive FOS are studied by various approaches; in this

paper, we made an attempt to study MLS analysis for

nonlinear impulsive FOS with time delays. Stability of

solutions is essential one in the qualitative theory of
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dynamical systems as it addresses the system trajectories

under small perturbations of initial conditions. The stability

analysis of FOS is more difficult than the classical ones

because the derivative of fractional-order is nonlocal and

has infirm singular kernels (Agarwal et al. 2015, 2007;

Arthi et al. 2019; Baleanu and Wu 2019; Yunquan and

Chunfang 2016; Arthi et al. 2021). Recently, many authors

focused on the various types of stability analysis for FOS,

for example, the q-MLS and direct Lyapunov method for

q-FOS was discussed in Li et al. (2018). Hyers-Ulam sta-

bility of nonlinear fractional system with delays has been

analysed in Khan et al. (2020). Stability of fractional

predator-prey system with harvesting rate was presented in

Yavuz and Sene (2020). The Mittag–Leffler input stability

of FOSs with exogenous disturbances using the Lyapunov

characterization were studied in Sene (2020). The finite-

time stability results for discrete-time FOSs using Gronwall

inequality have been investigated in Wu et al. (2018a). The

exponential stability of nonlinear FOS using Hurwitz state

matrix and Lyapunov direct method was established in

Sene (2019).

Among the different approaches MLS which is gener-

ally characterised by Mittag–Leffler functions holds the

features of power-law convergence. So, compared to the

other methods MLS is more useful in FOSs because the

Mittag–Leffler functions are commonly used in fractional

calculus. Li et al. (2010) proposed the MLS using frac-

tional Lyapunov direct method. MLS and uniform

asymptotic stability of nonlinear impulsive FOS were

obtained in Stamova (2015). The MLS of nonlinear FOS

with impulses was analysed in Yang et al. (2017). The

MLS for impulsive FOSs with instantaneous and non-in-

stantaneous impulses are studied in Agarwal et al. (2017).

The MLS of nonlinear FOS by extended the Lyapunov

direct method has been studied in Li et al. (2009). The

MLS for linear impulsive fractional delayed difference

equations was discussed in Wu et al. (2018b). The MLS for

coupled system of FOS with impulses were investigated in

Li (2015). The MLS and generalized MLS for fractional

genetic regulatory networks using the fractional Lyapunov

method has been established in Ren et al. (2015).The MLS

for nonlinear fractional neutral singular systems were

obtained by Li et al. (2012). The finite time stability of

delayed FOSs by Mittag–Leffler functions was analyzed in

Li and Wang (2018). MLS estimator for nonlinear FOS

using linear quadratic regulator approach has been studied

in Martnez-Fuentes and Martnez-Guerra (2018).

To the best of our knowledge, MLS of FOS with time

delays has not yet been fully analyzed, which motivates our

present study. There are few results available in the liter-

ature for MLS of FOS with impulsive effects that could not

be suitable for impulsive FOSs with time delays. With this

motivation, the existence and uniqueness of solutions, MLS

analysis of the impulsive nonlinear FOS with time delays

are established using the well-known fixed point theorems

and Mittag–Leffler approach. Further the main contribu-

tions of this paper are outlined as:

• The existence and uniqueness of solutions for the FOS

is discussed with help of fixed point theory.

• Some novel conditions for MLS of FOS are established

for the considered nonlinear system is with time delays

and impulses.

• Further the results are extended to finite-time MLS of

considered systems.

Finally, few examples are provided to validate the advan-

tages and effectiveness of the proposed results.

2 Problem Description

Consider the impulsive fractional-order nonlinear system

with constant time delay given by

0D
m
t xðtÞ ¼ f ðt; xðtÞÞ þ AxðtÞ þ Bxðt � rÞ; t 2 J=t1; t2; . . .tm;

xðtÞ ¼ /ðtÞ; t 2 ½�r; 0�;
DxðtkÞ ¼ xðtþk Þ � xðt�k Þ ¼ Ikxðt�k Þ; k ¼ 1; 2; . . .m;

ð1Þ

where 0D
m
t denotes the operator Caputo fractional deriva-

tive of m-order (0\m\1), f ð�Þ is a nonlinear function

assumed to be Lipshitz continuous, A and B are constant

matrices, r is the constant time delay, J ¼ ½0; T �, T 2 R,

0\t1\t2. . .\tm\T , Ik : R
n ! Rn are continuous for

k ¼ 1; 2; . . .m, xðtþk Þ ¼ lim
�!0þ

xðtk þ �Þ and xðt�k Þ ¼

lim
�!0�

xðtk þ �Þ. PC1ð½�r; T �; RnÞ be the Banach space of all

piecewise continuous functions from ½�r; T � into Rn.

Before presenting our main results, the following

hypotheses are introduced.

ðH1Þ PC1ð½�r; T �ÞðqÞ ¼ x 2 PC1ð½�r; T�;RnÞ :
�

xk k1 � qg and PC1ðqÞ ¼ / 2 PC1 : /k k1 � q
� �

,

8q[ 0.

ðH2Þ There exists a constant l[ 0, such that

f ðt;wÞk k� l wðtÞk k, for almost every t 2 J and all

w 2 PC1ðqÞ.
ðH3Þ There exists a constant l[ 0, such that

f ðt;w1Þ � f ðt;w2Þk k� l w1 � w2k k1, for almost

every t 2 J and all w1;w2 2 PC1ðqÞ.
ðH4Þ Let Ik 2 CðRn;RnÞ maps bounded set into bounded

set, for a constant M[ 0, such that kIkðxðt�k ÞÞ �
Ikðyðt�k ÞÞk�M x� yk k1 for each x; y 2
PC1ð½�r; T �ÞðqÞ for k ¼ 1; 2; . . .m.

Let us recall some basic definitions and lemmas which

are useful in deriving the main results.
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Definition 1 (Li et al. 2010) The solution x(t) of system

(1) is said to be Mittag–Leffler stable, if

kxðtÞk�m½xðt0Þ�Emð�kðt � t0ÞmÞb;

where t0 is the initial time, m 2 ð0; 1Þ, b[ 0, mð0Þ ¼ 0,

mðxÞ� 0 and m(x) is locally lipshitz on xðtÞ 2
PC1ð½�r; T�;RnÞ with lipshitz constant m0.

Definition 2 (Hei and Wu 2016) The system (1) is finite

time stable with respect to d; �; Jf g, for d\�, if and only if

k/k\d ) kxðtÞk\�; 8t 2 J, where xðtÞ 2 PC1ð½�r;
T �;RnÞ, k/k ¼ sup

�r� t� 0

k/k.

3 Main Results

3.1 Existence and Uniqueness Results

Before discussing the stability results, we discuss the

existence, uniqueness for system (1).

Lemma 1 (Lazarevic and Spasic 2009) Let 0\m\1 and

let f : J ! R be continuous, the initial value problem

0D
m
t xðtÞ ¼ f ðt; xðtÞÞ þ AxðtÞ þ Bxðh� rÞ; t 2 ½0; T �;
xð0Þ ¼/ð0Þ;

ð2Þ

has the following Volterra fractional integral

xðtÞ ¼ /ð0Þ þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ þ AxðhÞ½

þBxðh� rÞ�dh; t 2 ½0; T �:
ð3Þ

Then, every solution of (3) is also a solution of (2) and

conversely.

Lemma 2 (Feckan et al. 2012) Let m 2 ð0; 1Þ and f : J !
R be continuous. A function x 2 CðJ;RÞ is given by

xðtÞ ¼ x0 �
1

CðmÞ

Z t0

0

ðt0 � hÞm�1ðf ðt; xðtÞÞ þ AxðtÞ

þ Bxðh� rÞÞdh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1ðf ðt; xðtÞÞ þ AxðtÞ

þ Bxðh� rÞÞdh;

is only solution of fractional Cauchy problem

cDm
t xðtÞ ¼ f ðt; xðtÞÞ þ AxðtÞ þ Bxðh� rÞ;

t 2 J; xðt0Þ ¼ x0; t0 [ 0:

Theorem 3 Let 0\m\1 and f : J � PC1 ! Rn be

Lebesgue measurable function with respect to t on J. A

function xðtÞ 2 PC1 ½�r; T�;Rnð Þ is a solution of the system

(1), if and only if, xðtÞ 2 PC1 ½�r; T�;Rnð Þ is a solution of

the fractional-order integral equations given by

Proof Assume x(t) satisfies the system (1). If t 2 ½0; t1Þ
then

0D
m
t xðtÞ ¼f ðt; xðtÞÞ þ AxðtÞ

þ Bxðt � rÞ; t 2 ½0; t1Þ;
ð5Þ

with xð0Þ ¼ /ð0Þ. Integrating (5) from 0 to t1 then

xðtÞ ¼ /ð0Þ þ 1

CðmÞ

Z t1

0

ðt � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh:

Suppose t 2 ½t1; t2Þ, then

0D
m
t xðtÞ ¼ f ðt; xðtÞÞ þ AxðtÞ þ Bxðt � rÞ; t 2 ½t1; t2Þ;

with xðtþ1 Þ ¼ xðt1�Þ þ I1ðxðt�1 ÞÞ. Then, by Lemma 2, we get

xðtÞ ¼

/ðtÞ; t 2 ½�r; 0�;

/ð0Þ þ 1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ�dh; t 2 ½0; t1Þ;

/ð0Þ þ I1ðxðt�1 Þ þ
1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ�dh; t 2 ½t1; t2Þ;

..

. ..
.

/ð0Þ þ
Pm

k¼1

Ikxðt�k Þ þ
1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ�dh; t 2 ½tm; T�:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð4Þ
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xðtÞ ¼xðtþ1 Þ �
1

CðmÞ

Z t1

0

ðt1 � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ½ �dh

¼xðt�1 Þ þ I1xðt�1 Þ �
1

CðmÞ

Z t1

0

ðt1 � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ½ �dh

¼/ð0Þ þ I1xðt�1 Þ þ
1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh:

Suppose t 2 ½t2; t3Þ, by Lemma 2, we have

xðtÞ ¼ xðtþ2 Þ �
1

CðmÞ

Z t2

0

ðt2 � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ½ �dh

¼ xðt�2 Þ þ I2xðt�2 Þ �
1

CðmÞ

Z t2

0

ðt2 � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ½ �dh

¼ /ð0Þ þ I1xðt�1 Þ þ I2xðt�2 Þ

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ½ �dh:

By similar arguments, for t 2 ½tm; T �, one can have

xðtÞ ¼ /ð0Þ þ
Xm

k¼1

Ikxðt�k Þ þ
1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞ½

þAxðhÞ þ Bxðh� rÞ�dh:

Conversely, let x(t) satisfies (4). If t 2 ½0; t1Þ then using the

fact that 0D
m
t is the left inverse of Imt , we have (5). If

t 2 ½tk; tkþ1Þ,k ¼ 1; 2; . . .m then using the ideas of the

Caputo derivative, we obtain

0D
m
t ¼ f ðt; xðtÞÞ þ AxðtÞ þ Bxðt � rÞ; t 2 ½tk; tkþ1Þ;

and Dxðt�k Þ ¼ Ikðxðt�k ÞÞ.

Next, to discuss the uniqueness of system (1), define a

mapping for x 2 PC1 ½�r; T �;Rnð Þ as

Theorem 4 Assume (H1), (H2), (H3) and (H4) hold, then

the system (1) has at least one solution on J provided that

/ð0Þk k þ 1
Cðmþ1Þ Bk k /k krm þ ðlþ Ak k þ Bk kÞTmq½ � þ mM

q
� 1;

ð6Þ

where M ¼ max Ikðxðt�k ÞÞ
�� �� : xk k1 � q

� �
; k ¼ 1; 2; . . .m:

Proof From Assumption (H1) it is clear that

PC1ð½�r; T�ÞðqÞ is a closed, bounded and convex subset of

PC1ð½�r; T�;RnÞ. Now, we use Schauder fixed point the-

orem to prove that F in (6) has a fixed point.

Step 1. F maps PC1ð½�r; T �ÞðqÞ into PC1ð½�r; T �ÞðqÞ.

FxðtÞ ¼

/ðtÞ; t 2 ½�r; 0�;

/ð0Þ þ 1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ þ AxðhÞBxðh� rÞ�dh; t 2 ½0; t1Þ;

/ð0Þ þ I1ðxðt�1 Þ þ
1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ�dh; t 2 ½t1; t2Þ;

..

. ..
.

/ð0Þ þ
Pm

k¼1

Ikxðt�k Þ þ
1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ þ AxðhÞ þ Bxðh� rÞ�dh; t 2 ½tm; T �:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:
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According to Holder inequality and the condition (H2),

for t 2 ½0; t1Þ

ðFxÞðtÞk k� /ð0Þk k þ 1

CðmÞ

Z t

0

t � hð Þm�1 f ðh; xðhÞÞk kdh

þ 1

CðmÞ

Z t

0

t � hð Þm�1 AxðhÞk kdh

þ 1

CðmÞ

Z t

0

t � hð Þm�1 Bxðh� rÞk kdh

� /ð0Þk k þ 1

CðmÞ

Z t

0

t � hð Þm�1 f ðh; xðhÞÞk kdh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 AxðhÞk kdh

þ Bk k 1

CðmÞ

Z t�r

�r
ðt � r� sÞm�1 xðhÞk kdh

� /ð0Þk k þ 1

CðmÞ

Z t

0

t � hð Þm�1 f ðh; xðhÞÞk kdh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 AxðhÞk kdh

þ Bk k /k k
Cðmþ 1Þ t � rð Þm�tm½ �

þ Bk k 1

CðmÞ

Z t

0

ðt � hÞm�1 xðhÞk kdh

� /ð0Þk k þ 1

Cðmþ 1Þ Bk k /k krm½

þðlþ Ak k þ Bk kÞtm1q
�

� q:

ð7Þ

Similarly, for t 2 ½tk; tkþ1Þ; k ¼ 1; 2; . . .m

ðFxÞðtÞk k� /ð0Þk k þ mM

þ 1

Cðmþ 1Þ Bk k /k krm þ ðlþ Ak k þ Bk kÞTmq½ �

� q:

ð8Þ

Combining (7), (8) and noting that ðFxÞðtÞk k ¼
/ðtÞk k� /k k1 � q; for t 2 ½�r; 0�; it yields

ðFxÞðtÞk k1 � q: Hence F : PC1ð½�r; T �ÞðqÞ ! PC1

ð½�r; T �ÞðqÞ:
Step 2. F is continuous.

Let xl be a sequence such that xl ! x on

PC1ð½�r; T�ÞðqÞ, by the continuity of f ðt;wÞ with respect

to w, IkðcÞ with respect to c and xðfÞ with respect to f,
respectively, it is easy to see that f ðt; xlðtÞÞ ! f ðt; xðtÞÞ,
t 2 J, IkðxlÞ ! IkðxÞ, k ¼ 1; 2; . . .m on PC1ð½�r; T �ÞðqÞ
and xlðtÞ ! xðtÞ, t 2 J as l ! 1.

For t 2 ½0; t1Þ

ðFxlÞðtÞ � ðFxÞðtÞk k ¼ 1

CðmÞ k
Z t

0

ðt � hÞm�1½f ðh; xlðhÞÞ

�f ðh; xðhÞÞ�dhk

þ 1

CðmÞ k
Z t

0

ðt � hÞm�1½AxlðhÞ

�AxðhÞ�dhk

þ 1

CðmÞ k
Z t

0

ðt � hÞm�1½Bxlðh� rÞ

�Bxðh� rÞ�dhk:

Using Step 1, we get

� Bk k /k krm
Cðmþ 1Þ þ tm1

Cðmþ 1Þ sups2J
f ðh; xlðhÞÞ � f ðh; xðhÞÞk k

þ tm1
Cðmþ 1Þ sups2J

AxlðhÞ � AxðhÞk k

þ tm1
Cðmþ 1Þ sups2J

BxlðhÞ � BxðhÞk k:

ð9Þ

By similar arguments, for t 2 ½tk; tkþ1Þ; k ¼ 1; 2; . . .m

ðFxlÞðtÞ � ðFxÞðtÞk k

¼
Xk

i¼1

Iiðxlðt�i ÞÞ � Ikðxðt�i ÞÞ
�� ��

�����

�����

þ 1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xlðhÞÞ � f ðh; xðhÞÞ�dh
����

����

þ 1

CðmÞ

Z t

0

ðt � hÞm�1½AxlðhÞ � AxðhÞ�dh
����

����

þ 1

CðmÞ

Z t

0

ðt � hÞm�1½Bxlðh� rÞ � Bxðh� rÞ�dh
����

����

�
Xk

i¼1

Iiðxlðt�i ÞÞ � Iiðxðt�i ÞÞ
�� ��þ Bk k /k krm

Cðmþ 1Þ

þ Tm

Cðmþ 1Þ sups2J
f ðh; xlðhÞÞ � f ðh; xðhÞÞk k

þ Tm

Cðmþ 1Þ sups2J
AxlðhÞ � AxðhÞk k

þ Tm

Cðmþ 1Þ sups2J
BxlðhÞ � BxðhÞk k:

ð10Þ

Since l ! 1, f ðt; xlðtÞÞ convergent to f(t, x(t)), IkðxlÞ is

convergent to IkðxÞ, k ¼ 1; 2; . . .m and xlðtÞ is convergent

to x(t) for t 2 J. Combining (9) and (10), noting that

ðFxlÞðtÞ � ðFxÞðtÞk k ¼ /ðtÞ � /ðtÞk k ¼ 0 for t 2 ½�r; 0�,
it yields ðFxlÞðtÞ � ðFxÞðtÞk k1! 0 as l ! 1. Therefore

F is continuous.

Step 3. F maps bounded sets into equicontinuous sets of

PC1ð½�r; T�;RnÞ.
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Since PC1ð½�r; T �ÞðqÞ be a bounded set and

x 2 PC1ð½�r; T�ÞðqÞ, obviously Fx is equicontinuous on

½�r; 0�. For any arbitrary h1, h2 2 ½0; t1Þ, h1\h2, based on

the Holder inequality and Step 1, we have

ðFxÞðh2Þ�ðFxÞðh1Þk k

� Bk k /k krm
Cðmþ1Þ

þ 1

CðmÞ

Z h1

0

½ðh2�hÞm�1�ðh1�hÞm�1�f ðh;xðhÞÞ
��

þAxðhÞþBxðhÞkdh

þ 1

CðmÞ

Z h2

h1

½ðh2�hÞm�1�f ðh;xðhÞÞþAxðhÞþBxðhÞ
�� ��dh

� Bk k /k krm
Cðmþ1Þ þ lqþ Ak kqþ Bk kq

Cðmþ1Þ ½hm1þðh2�h1Þm�hm2�

þ lqþ Ak kqþ Bk kq
Cðmþ1Þ ½ðh2�h1Þm�

� Bk k /k krmþ2½lqþ Ak kqþ Bk kq�
Cðmþ1Þ ðh2�h1Þm;

as h2 ! h1, the RHS of above inequality tends to zero.

Then Fx is equicontinuous on ½0; t1Þ.
By similar arguments, for the time interval ½tk; tkþ1Þ, we

obtain

ðFxÞðh2Þ � ðFxÞðh1Þk k

� Bk k /k krm þ 2½lqþ Ak kqþ Bk kq�
Cðmþ 1Þ ðh2 � h1Þm ! 0;

as h2 ! h1. This shows that Fx is equicontinuous on

½tk; tkþ1Þ for k ¼ 1; 2; . . .m:

In other words, since FðPC1ð½�r; T �ÞÞðqÞ �
PC1ð½�r; T�ÞðqÞ is uniformly bounded according to Step

1, then AðPC1ð½�r; T �ÞÞðqÞ is a relatively compact subset

of PC1ð½�r; T �;RnÞ. Thus
F : PC1ð½�r; T �ÞðqÞ ! PC1ð½�r; T�ÞðqÞ is completely

continuous.

Therefore, in the view of Steps 1-3 and by Schauder

fixed point theorem, one can conclude that F has a fixed

point in PC1ð½�r; T �ÞðqÞ and which is a solution of system

(1) on J. h

Theorem 5 Assume (H1), (H2), (H3) and (H4) hold, then

the system (1) has a unique solution on J, provided the

following inequality holds

c ¼ 1

Cðmþ 1Þ Bk k /k krm þ ðlþ Ak k þ Bk kÞTm½ � þ mM\1:

ð11Þ

Proof Let F be a function defined by (6). Then

F : PC1ð½�r; T �ÞðqÞ ! PC1ð½�r; T�ÞðqÞ.
Now, we apply the Banach contraction principle to

prove F has a unique fixed point.

According to the condition (H3) and inequality (11), for

arbitrary x1; x2 2 PC1ð½�r; T�ÞðqÞ; for t 2 ½�r; 0�
ðFx1ÞðtÞ � ðFx2ÞðtÞk k ¼ /ðtÞ � /ðtÞk k ¼ 0:

Suppose t 2 ½0; t1Þ

ðFx1ÞðtÞ�ðFx2ÞðtÞk k¼ 1

CðmÞ

Z t

0

ðt�hÞm�1½f ðh;x1ðhÞÞ
����

�f ðh;x2ðhÞÞ�dh
����þ

1

CðmÞ

Z t

0

ðt�hÞm�1½Ax1ðhÞ�Ax2ðhÞ�dh
����

����

þ 1

CðmÞ

Z t

0

ðt�hÞm�1½Bx1ðh�rÞ�Bx2ðh�rÞ�dh
����

����

� 1

CðmÞl
Z t

0

ðt�hÞm�1dh sup
s2½0;t�

x1�x2k k1

þ 1

CðmÞ Ak k
Z t

0

ðt�hÞm�1dh sup
s2½0;t�

x1�x2k k1

þ Bk k /k krm
Cðmþ1Þ þ 1

CðmÞ Bk k
Z t

0

ðt�hÞm�1dh sup
s2½0;t�

x1�x2k k1

� tm1l
Cðmþ1Þ x1�x2k k1þ tm1 Ak k

Cðmþ1Þ x1�x2k k1

þ Bk k /k krm
Cðmþ1Þ þ tm1 Bk k

Cðmþ1Þ x1�x2k k1

�c x1�x2k k1:

By similar arguments for t2½tk;tkþ1Þ, k¼1;2;...m; we have

ðFx1ÞðtÞ�ðFx2ÞðtÞk k� Tml
Cðmþ1Þ x1�x2k k1

þ Tm Ak k
Cðmþ1Þ x1�x2k k1

þ Bk k /k krm
Cðmþ1Þ

þ Tm Bk k
Cðmþ1Þ x1�x2k k1þmM x1�x2k k1

�c x1�x2k k1:

Since c\1, it follows that F is strict contraction. Hence by

Banach fixed point theorem it can be concluded that there

exists a unique fixed point and which is the unique solution

of system (1). h

3.2 Mittag–Leffler Stability

In this section, we prove the MLS of system (1) by using

Laplace transform.

Theorem 6 Let xðtÞ 2 PC1ð½�r; T�;RnÞ in (4) is a solution
of the system (1) and satisfies

104 Iran J Sci Technol Trans Sci (2023) 47:99–108

123



xðtÞk k� 1� nMð Þ�1 /k k 1þ Bk krm
Cðmþ 1Þ

� �
Em gtmð Þ; t 2 tm; T½ �;

where g =
lþ Ak kþ Bk k

1�nM , then the system (1) is Mittag–Leffler

stable.

Proof In general, let t 2 tk; tkþ1½ Þ then

xðtÞ ¼/ð0Þ þ
Xm

k¼1

Ikðxðt�k ÞÞ þ
1

CðmÞ

Z t

0

ðt � hÞm�1½f ðh; xðhÞÞ

þ AxðhÞ þ Bxðh� rÞ�dh;

taking norm on both sides

xðtÞk k� /ð0Þk k þ
Xm

k¼1

Ikðxðt�k Þ
�� ��

þ 1

CðmÞ

Z t

0

t � hð Þm�1 f ðh; xðhÞÞk k

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 AxðhÞk kdh

þ Bk k 1

CðmÞ

Z t�r

�r
ðt � r� hÞm�1 xðhÞk kdh

� /ð0Þk k þ
Xm

k¼1

Ikðxðt�k ÞÞ
�� ��

þ 1

CðmÞ

Z t

0

t � hð Þm�1 f ðh; xðhÞÞk kdh

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 AxðhÞk kdh

þ Bk k 1

CðmÞ

Z 0

�r
ðt � r� hÞm�1 xðhÞk kdh

þ Bk k 1

CðmÞ

Z t�r

0

ðt � r� hÞm�1 xðhÞk kdh

� /ð0Þk k þ
Xm

k¼1

Ikðxðt�k ÞÞ
�� ��

þ 1

CðmÞ

Z t

0

t � hð Þm�1 f ðh; xðhÞÞk k

þ 1

CðmÞ

Z t

0

ðt � hÞm�1 AxðhÞk kdh

þ Bk k /k k
Cðmþ 1Þ t � rð Þm�tm½ � þ Bk k 1

CðmÞ
Z t

0

xðhÞk kdh:

By Assumptions (H2) and (H4), we have

xðtÞk k� /k k þ nM xðtÞk k þ l 0D
�m
t xðtÞk k þ Ak k 0D

�m
t xðtÞk k

þ Bk k /k krm
Cðmþ 1Þ

þ Bk k 0D
�m
t xðtÞk k:

ð12Þ

For any function QðtÞ[ 0, (12) becomes

xðtÞk k ¼ /k k þ nM xðtÞk k þ l 0D
�m
t xðtÞk k

þ Ak k 0D
�m
t xðtÞk k þ Bk k /k krm

Cðmþ 1Þ
þ Bk k 0D

�m
t xðtÞk k � QðtÞ:

Taking Laplace transform on both sides

xðhÞk k ¼ /k k
s

þ nM xðhÞk k þ l s�m xðhÞk k

þ Ak ks�m xðhÞk k þ Bk k /k krm
sCðmþ 1Þ þ

Bk ks�m xðhÞk k � QðsÞ:

ð1� nMÞ xðhÞk k ¼
sm�1 /k k 1þ Bk krm

Cðmþ1Þ

h i
� smQðsÞ

sm � g
;

where g ¼ lþ Ak kþ Bk k
1�nM . Next, taking Inverse Laplace trans-

form on both sides, one can have

ð1� nMÞ xðtÞk k ¼ /k k 1þ Bk krm
Cðmþ 1Þ

� �
Em gtmð Þ

� QðtÞ 	 t�1Em gtmð Þ;

where 0	0 denotes the convolution operator and the term

t�1Em gtmð Þ� 0.

Then, it then follows that

xðtÞk k� ð1� nMÞ�1

/k k 1þ Bk krm
Cðmþ 1Þ

� �
EmðgtmÞ; t 2 tn; tnþ1½ Þ:

Therefore, from Definition 1, the solution of the system (1)

is Mittag–Leffler stable. h

It is well-known that the concept of short time stability

(or) finite-time stability has attracted much attention

because it has a special property that for given bounded

initial condition, the system state does not exceeds some

bounds during the time interval. Considering this, now the

above MLS is extended to finite-time MLS using the fol-

lowing corollary.
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Corollary 1 The system (1) is finite time stale with respect

to d; �; Jf g, d\�; if and only if, the conditions

(S1) There exists a constant M[ 0, such that

Ikðxðt�k ÞÞ
�� ���M�, for k ¼ 1; 2; . . .m and any

x 2 PC1 ½�r; T�;Rnð Þ,
(S2) nM�þ d 1þ /k krm

Cðmþ1Þ

h i
EmðgtmÞ

n o
\�, where g

=lþ Ak kþ Bk k
1�nM

hold.

Proof Under the condition (S1) and by Theorem 6, we

have

xðtÞk k� /k k þ nM�þ 1

CðmÞ

Z t

0

ðt � hÞm�1 f ðh; xðhÞÞk

þAxðhÞ þ Bxðh� rÞkdh:

Now, it is easy to see that

xðtÞk k� nM�þ d 1þ Bk krm
Cðmþ 1Þ

� �� 	
EmðgtmÞ:

By Definition 2, the solution of the system (1) is finite-time

Mittag–Leffler stable. h

Remark 1 It is noted that the core ideas and proof process

in deriving the results in Theorem’s 4 & 5 on the existence

and uniqueness of solutions of the considered time-delay

system is followed from the similar ideas used in Guo and

Jiang (2012) for a system without time-delay. Also, the

MLS results proposed in Theorem 6 are new and different

from the finite-time stability results discussed for an evo-

lution system in Hei and Wu (2016). So this paper discloses

the new results for time-delay systems which are not dis-

cussed in the existing literature.

4 Numerical Examples

4.1 Example 1

Consider the following impulsive time delay fractional-

order system

0D
0:5
t x1ðtÞ ¼ tanh x1ðtÞ þ 0:2x1ðtÞ þ 0:02x1ðt � 0:04Þ

�0:01x2ðt � 0:04Þ;
0D

0:5
t x2ðtÞ ¼ tanh x2ðtÞ þ 0:2x2ðtÞ � 0:01x1ðt � 0:04Þ

þ0:02x2ðt � 0:04Þ;

9
>>>=

>>>;

;

t 2 J=t1; t2; . . .tm;

x1ðtÞ ¼ 0:1; x2ðtÞ ¼ 0:2; t 2 ½�0:04; 0�;
Dx1ðtkÞ ¼ x1ðtkÞ � x2ðt � kÞ ¼ 0:05;

Dx2ðtkÞ ¼ x1ðtkÞ � x2ðt � kÞ ¼ 0:05:

It is easy to see f ðt; xðtÞÞ ¼ tanh x1ðtÞ
tanh x2ðtÞ

� �
with l ¼ l ¼ 1,

A ¼ 0:2 0

0 0:2

� �
with kAk ¼ 0:2,

B ¼ 0:02 � 0:01
�0:01 0:02

� �
with kBk ¼ 0:0224, r ¼ 0:04.

It is easy to see that all Assumptions (H1), (H2), (H3)

and (H4) are hold. Now, for the choice of n ¼ 10, d ¼ 0:5,

� ¼ 1, it is easy to see the proposed conditions in Theorems

4–6 are satisfied. Hence, it can conclude that the unique

solution of above system exist and which is MLS.

4.2 Example 2

Consider the impulsive time delay fractional-order system

D0:5
0 xðtÞ¼ 0:04xðtÞ�0:2xðt�0:05Þþ0:06 t2 J=t1; t2; . . .tm

xðtÞ¼ 0:15 t2 ½�0:05; 0�
DxðtkÞ¼ xðtkÞ� xðt� kÞ¼ 0:007:

Let n ¼ 10, d ¼ 0:3, � ¼ 0:4, then we can verify that ðS1Þ
in Corollary 1 is satisfied for the considered system. So we

can calculate that the above system is finite-time MLS and

by solving the inequality in (S2), the estimated time is

obtained as T 
 0:3719.

5 Conclusion

The qualitative analysis of nonlinear impulsive FOSs with

time delays has been investigated, particularly on the

existence, uniqueness and MLS of considered systems. The

proposed results are new and have some novel ideas as the

delay dependent conditions were established using the

Laplace transforms and fractional-order calculus. Further,

the results are extended to finite-time MLS of the consid-

ered FOSs. Finally, some examples are provided to validate

the theoretical analysis. In practice the delay in the system

design will be of time-varying in nature and also the

nonlocal conditions in the initial data gives the better

approximation in many physical problems, extending the

results for these cases will be our future research directions.
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