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Abstract

In this paper, some known results about the functorial properties of the Fourier—Stieltjes algebra, B(G), will be generalized.
First of all, the idempotent theorem on the Fourier—Stieltjes algebra will be promoted and linked to the p-analog one. Next,
the p-analog of the n-Fourier space introduced by Arsac will be given, and by taking advantage of the theory of ultrafilters,
the connection between the dual space of the algebra of p-pseudofunctions and the p-analog of the n-Fourier space will be
fully investigated. As the main result, one of the significant and applicable functorial properties of the p-analog of the

Fourier—Stieltjes algebras will be achieved.
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1 Introduction

For a locally compact group G, the Fourier algebra, A(G),
and the Fourier—Stieltjes algebra, B(G), have been found by
Eymard in 1964 Eymard (1964). He investigated almost all
functorial properties of such algebras. On the other hand,
idempotent elements of B(G) are introduced by Host Host
(1986) and have gotten accurate by Ilie and Spronk in Ilie
and Spronk (2005). Even Runde (2007) went beyond and
add some specific conditions to it, by benefiting from the
theory of uniformly convex Banach spaces. In the next
attempt on studying Fourier-type algebras, for a represen-
tation (7, ) of G, on a Hilbert space H, Arsac Arsac
(1976) introduced m-Fourier and n-Fourier—Stieltjes spaces
A, and B, and tremendously studied their functorial
properties. Meanwhile, Figa-Talamanca-Herz algebra was
initially defined for abelian locally compact groups Figa-
Talamanca (1965) and then for general locally compact
groups in Herz (1971). Afterwards, in Runde (2005),
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Runde took main step and determined the true p-analog of
Eymard’s B(G), as it is indicated via B,(G). He has indi-
cated that the space B,(G) is a communicative unital
Banach algebra, and in the case that the underlying group
G is amenable, it can be identified with the multiplier
algebra of the Figa-Talamanca-Herz algebra, i.e. the
Banach space M(A,(G)). Accordingly, the vast majority
of functorial properties of the p-analog of the Fourier—
Stieltjes algebras B, (G) have been remained unknown, and
they would be the cause for a huge amount of studies. For
instance, in Neufang and Runde (2009), one of the possible
p-operator space structure on B,(G) is studied, while
another one is introduced by authors Ahmadpoor and
Shams Yousefi (2021). Besides, considerable amount of
primary questions about the element of such algebras is
still open. In this paper, we try to come up with detailed
explanation, to touch on some topics, which can be con-
sidered as initial steps in the studying on the p-analog of
the Fourier—Stieltjes algebras. The current paper is orga-
nized as follows: In Sect. 2, we give some preliminaries
about representations of a locally compact group on QSL,-
spaces which are building blocks of Runde’s B,(G). It is
indicated that the communicative Banach space B,(G) is
the dual space of the algebra of universal p-pseudofunc-
tions UPF,,(G). Next, in the main section, Sect. 3, we
divide our results into three main subsections. In one
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approach, Sect. 3.1 is devoted to the generalization of the
idempotent theorem (Theorem 2) in terms of p-analog of
the Fourier—Stieltjes algebra. Indeed, we have benefited
from the aforementioned theory of Banach spaces and
added one more equivalent statement to the latest version
of it, that is done by Runde (2007, Theorem 1.5). In the
next attempt, we have touched briefly on the generalization
of m-Fourier spaces and simply introduced it, then through
restating the result in Runde (2005), in respect to the notion
of ultrafilter, we have reached to the appropriate descrip-
tion of the dual space of the algebra of p-pseudofunctions
PF, ;(G), for an arbitrary representation (7,E) of the
locally compact group G on a QSL,-space E, which is
denoted by B,  (Proposition 2). At this aim, we have
generated somewhat crucial properties on the representa-
tions of a locally compact group, via the notion of ultra-
filter and ultrapower space.

Finally, as a conclusion of previous results, in Proposi-
tion 5 we have shown that a function in u € B,(Gy) can be
extended to a function u° € B,(G), where Gy is an open
amenable subgroup of the locally compact group G, and
the general form of this proposition channels us to
Theorem 3.

2 Preliminaries

In this paper, G and H are locally compact groups, and for
p € (1,00), the number p’ is its complex conjugate, i.e.
I/p+1/p" = 1. In the first step, we give essential notions
and definitions on QSL,-spaces, and representations of
groups on such spaces. For more information, one can see
Runde (2005).

Definition 1 A representation of a locally compact group
G is a pair (7, E), where E is a Banach space and 7 is a
group homomorphism from G into the invertible isometries
on E, that is continuous with respect to the given topology
on G and the strong operator topology on B(E).

Remark 1 Every representation (7, E) of a locally compact
group G induces a representation of the group algebra
L;(G) on E, i.e. a contractive algebra homomorphism from
Li(G) into B(E), which we shall denote likewise by 7,
through

) = [ Fnax £ € L(G),
(1)
w)én) = [ Fe)mEnar E€EmeE,

where the integral (1) converges with respect to the strong
operator topology.
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Definition 2 Let (7, E) and (p, F) be representations of the
locally compact group G. Then,

1. (m,E) and (p, F) are called equivalent, if there exists
an invertible isometry ¢ : E — F such that

pn(x)p~ = p(x), x€G.

2. (p,F) is said to be a subrepresentation of (x, E), if F is
a closed subspace of E, and for every x € G we have
72|y = pl).

3. (p,F) is said to be contained in (=, E), if it is
equivalent to a subrepresentation of (7, E), and will be
denoted by (p, F) C (n,E).

Definition 3

1. A Banach space is called an L,-space if it is of the form
L,(X) for some measure space X.

2. A Banach space is called a QSL,-space if it is
isometrically isomorphic to a quotient of a subspace
of an L,-space.

We denote by Rep,(G) the collection of all (equivalence
classes) of representations of G on a QSL,-space.

Definition 4 A representation of a Banach algebra A is a
pair (7, E), where E is a Banach space, and 7 is a con-
tractive algebra homomorphism from A to B(E). We call
(m,E) isometric if 7 is an isometry and essential if the
linear span of {n(a)¢ : a € A, { € E} is dense in E.

Remark 2 If G is a locally compact group and (7, E) is a
representation of G in the sense of Definition 1, then (1)
induces an essential representation of L,(G). Conversely,
every essential representation of L;(G) arises in this
fashion.

Definition 5

1. A representation (, E) € Rep,(G) is called cyclic, if
there exists &, € E such that n(L;(G))&, is dense in E.
The set of cyclic representations of G on QSL,,-spaces
is denoted by Cyc,(G).

2. A representation (7,E) € Rep,(G) is called p-univer-
sal, if it contains every cyclic representation.

Remark 3 By Gardella and Thiel (2015, Remark 2.9-(3),
and 2015, Proposition 2.4), it is easy to see that every p-
universal representation of G contains every cyclic repre-
sentation of G on a QSL,-space, in the sense of equiva-
lency. In addition, every representation in Rep,(G) is
contained in a p-universal representation. Actually, one
could make a new p-universal representation by con-
structing /,-direct sum of an arbitrary representation with a
p-universal representation.
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Now we are ready to describe the Figa-Talamanca-Herz
and the p-analog of the Fourier-Stieltjes algebras.

Definition 6 Figa-Talamanca-Herz algebra on the locally
compact group G, which is denoted by A,(G), is the col-
lection of functions u : G — C of the form

o0

u(x) = (Ap(®)énn,), x€G, 2)

n=1
with
(én)neN - LP(G)7 (”n)neN C LP’(G)a and

S (3)
> lcalllnll <oo,
n=1

where 4, is the left regular representation of G on L”(G),
defined as

bp: G = B(P(G)), p(x)E(y) = E(x1y),
Eel’(G), x,y €G.

The norm of A,(G) is defined as:

Jull = inf {31l = ) = D ()}

n=1 n=1

where the infimum is taken over all expressions of u in (2)
with (3). With this norm and pointwise operations, A,(G)
turns into a commutative regular Banach algebra.

Remark 4 The p-analog of the Fourier-Stieltjes algebra
has been studied, for example in Cowling (1979), Forrest
(1994), Miao (1996) and Pier (1984), as the multiplier
algebra of the Figa-Talamanca-Herz algebra. In this paper,
we follow the construction of Runde in definition and
notation (see Runde 2005), which we swap indexes p and

/

p.

Definition 7 The set of all functions of the form

0]

u(x) = Z(nn(x)fn,nn>, & €E, n,€E,, x€G,

n=1
(4)
where
(o En)pen € Cye,y(G), and > [l |l < oo,
n=1
equipped with the norm

[Jull = inf{z I€allllmall  u(x) = Z(nn(X)imﬂn% xe 0}7

n=1

is denoted by B,(G) and is called the p-analog of the
Fourier—Stieltjes algebra of the locally compact group G.

Remark 5

1. By Runde (2005, Lemma 4.6), the space B,(G) can be
defined to be the set of all coefficient functions of a p-
universal representation (7,E), and the norm of an
element u € B,(G) is the infimum of all values
S0 I Hn, |l < oo, which such vectors exist in the
representation of u as a coefficient function of (x, E),
ie u(-) = Z;C:l<n(')énv77n>'

2. In Runde (2007, Lemma 2.4), the following identifi-
cation is shown for an open subgroup Gy of a locally
compact group G

Ap(Go) = {f € A)(G) : supp(f) C Go},

and through this fact, one can assume that functions in
A,(Gy) are restriction of functions in A,(G) to the open
subgroup Gy.

Definition 8 Let (7, E) € Rep,(G).

1. For each f € L (G), let [|f]|, == [|n(f)|| (), then || - ||,
defines an algebra seminorm on L;(G).

2. By PF,,(G), we mean the p-pseudofunctions associ-
ated with (m, E), which is the closure of n(L;(G)) in
B(E).

3. If (mE)=(4,L,(G)), we denote PF,; (G) by
PF,(G).

4. If (m,E) is p-universal, we denote PF,.(G) by
UPF,(G) and call it the algebra of universal p-
pseudofunctions.

Remark 6

1. For p = 2, the algebra PF,(G) is the reduced group C*-
algebra, and UPF,(G) is the full group C*-algebra of
G.

2. If (p,F) € Rep,(G) is such that (r,E) contains every
cyclic subrepresentation of (p, F), then |- ||, <[ -,
holds. In particular, the definition of UPF,(G) is
independent of a particular p-universal representation.

3. With (-,-) denoting L,(G) — Ly (G) duality, and with
(m, E) a p-universal representation of G, we have

Fll. = sup{[(f; &)] : & € By(G), llgllp,) <1}, f€Li(G)

Next lemma states that B,(G) is a dual space.

Lemma 1 (Runde 2005, Lemma 6.5) Let
(n,E) € Rep,(G). Then, for each ¢ € PE, (G)", there is a
unique g € B,(G), with |8l 5 () < | D|| such that
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(w(f).9) = [ fOelodr S € Li(G) ©
G

Moreover, if (n,E) is p-universal, we have

l&lls,c) = Il

3 Generalized Functorial Properties

As the aim of the present paper, here we generalize some
properties of the Fourier—Stieltjes algebra, B(G), to the p-
analog of the Fourier—Stieltjes algebra, B,(G), for a locally
compact group G. In the first step, we generalize the
idempotent theorem, which was stated in the most possible
version as Theorem 1.5 in Runde (2007) in Theorem 2.
Next, we introduce the p-analog of the n-Fourier and -
Fourier—Stieltjes spaces given by Arsac in Arsac (1976) in
Definition 9 and state the expected properties in lemma and
proposition afterwards. By such generalization, we then
approach to extending result, Theorem 3, which would be
crucial on solving similar problems around B(G) for the p-
analog case. For instance, in studies on homomorphisms on
the p-analog of the Fourier—Stieltjes algebra, B,(G), which
can be considered as a p-analog of what has been done in
Ilie and Spronk (2005), Theorem 3 would be essential.

3.1 Idempotent Theorem

In order to being prepared for Theorem 2, which is a
generalization of Runde (2007, Theorem 1.5), we need
some elementary definitions and facts, and we give them in
the following.

Definition 9

1. A Banach space (E,| -||) is said to be uniformly
convex if for every 0 <e <2 there is > 0 so that for
any two vectors x and y in E with [|x|| = ||y|| = 1, the
condition |[lx —y| >e€ implies that [**||<1-06.
Intuitively, the centre of a line segment inside the unit
ball must lie deep inside the unit ball unless the
segment is short.

2. A Banach space E is said to be smooth if for each
¢ € E\{0} there exists a unique » € E* such that
Il = 1 and (&) = 1],

Remark 7 1t is worthwhile to note that by Definition 9,
every closed subspace of a uniformly convex Banach space
is again a uniformly convex Banach space.

Now we state an immensely important theorem about a
quotient space which can be found in Istratescu (1983).
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4. Yc € By(G) with [|zc|

Theorem 1 (Istratescu 1983, Theorem 2.4.18) Let E be a
uniformly convex Banach space and F be a closed linear
subspace of E. Then, the quotient space E/F is uniformly
convex Banach space.

Now we can conclude the following statement.

Corollary 1 Every QSL,,-space E is uniformly convex and
smooth.

Proof Uniformly convexity of QSL,-space E can be
derived from Remark 7 and Theorem 1. Since E is uni-
formly convex, by Fabian et al. (2001, Lemma 8.4(i) and
Theorem 9.10), it is concluded that E* is smooth, but E* is
a QSL,-space so is uniformly convex, and then, E** is
smooth, but £ = E** so E is smooth. O

Theorem 2 For a subset C C G, the following statements
are equivalent.

1. Cis a left open coset,
%c € B(G) with |[1cllge) = 1,

3. xc#0 is a normalized coefficient function of a
representation (n, E) where E or E* is smooth,

B,(G) =1

Proof Equivalency of the first three statements has been
proved in Runde (2007, Theorem 1.5). We demonstrate
(2)= (4) =(3). Let (2) hold. Then from the fact that
B(G) C B,(G) and this embedding is a contraction, we
have y¢ € B,(G) with ||xcl|5,G) <1, which by inequality
Ny < -
(2) implies (4).

Now let y¢ € B,(G) with [|y¢llg ) = 1. So, by Defi-
nition 7, the function y- is a normalized coefficient
function of an isometric group representation on a QSL,-

B,(G)> we have ”XC”B,,(G) = 1 which shows

space, which is smooth by Corollary 1 that is (3). O

Corollary 2 Let G be a locally compact group and
Y € Qy(G), and then, we have yy € B,(G). Moreover, we
have

1< HXY”B,,(G) <2™ with

Y= YO\ U:‘il Yt}7

(6)

my =inf{m e N :

where for i =0,1,...,m sets Y;, are as (15).

Proof Since Y € Qy(G), then by (15), there exist open
coset Yy and open subcosets Y; C Yy, for i =1,...,m and
m € N such that ¥ = Yo\ U, ¥;. By Theorem 2-(4), we
have yy, € By(G), with [|yy,|lz ) =1, for i=0,1,....m.

On the other hand, since
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ZyYﬂY

v (7)
m+1
-+ (_1) " XY,mYzm..mYm>a

Xy = Xy, — <Z Ly, —
+ Z Xvinvny, T

ijhk=1

then we have || xy|| () < 2", and by taking infimum on all
possible decomposition of Y as (15) relation (6) holds. [

3.2 p-Analog of the n-Fourier Spaces

In the sequel, we will give some extensions of results in
Arsac (1976). For a unitary representation (7w, ) with
Hilbert space H,, the n-Fourier space has been defined to
be closed linear span of the set of the coefficient functions
of the representation (7, H;), and is denoted by A,, with
the norm in usual way. Moreover, m-Fourier—Stieltjes
algebra, B, for such representation is defined to be w*-
closure of A,. Additionally, if we let C%(G) be the C*-
algebra associated with 7, we have B, = C:(G)"
introduce p-generalization of these results; however, these
generalizations are not new (see Cowling and Fendler
(1984)), but in terms of Fourier-type algebras is somewhat
new.

. Here we

Definition 10 For a representation (7, E) € Rep,(G), we
define the p-analog of the m-Fourier space, Apz, to be
closed linear span of the collection of the coefficient
functions of representation (7, E), i.e. functions of the form

u(x) =Y (1(x)En 1)

n

X € G7 (én)nEN c E? (Vln)nEN c E*7

equipped with the norm

lull,. = inf { S lalllisall -+ ux) = D (w(x)ta,52), x € G},
n=1 n

and evidently, infimum is taken over all possible equivalent
representative of u so that the value is convergent.
Remark 8

1. For (m,E) € Rep,(G) consider  the  map
¥V, E* QF — Cy(G), defined via

Y’(Zn ® g) = (e ). 5 €6

This map is onto to its range, which is A, -, and so we
can identify it with the Banach space E* QE/ ker Y,
and the norm on A, ; is the quotient norm, i.e.

H Z & @n, +ker¥,,
—inf {3 aalllsll = D2 0ms0) = > (m()e0,) |
= [ > @ténn)

So, one can identify A,, with the quotient space
E*QE/ker ¥, .
2. Since we have A, ; & E*®E/ ker ¥, -, then the space
A, is a Banach space.

In the next proposition, we give an equivalent formula
of computing norm on the space A, for a representation
(n,E) € Rep,(G). For this aim, we denote the set of cyclic
subrepresentations of a representation (7, E) by Cyc, ,(G).

Proposition 1 Let (n,E) € Rep,(G) and u € A, 5. Then,
we have

lully,, = inf { S llalllsall = u) = D00, (xtas52), x € G

(8)
where the infimum is taken on all representations of u, in
which ((pn, ))neN C Cyc, »(G) with (tn),c € Fy and
($n)pen € Fr

Proof Let us denote the infimum in (8) by C. Assume that
for x€ G, we have u(x)=>  (n(x)&,n,) with
> €]l <oo. For each n € N, if we put

Fo= 2L (G)E ", p:G— B(F), p,(x) =1, x€G,

and t, = ,, s, = 1,|r , then we have

(tonF) = (a3t 50),

n

with C< 357, [[aallllsall < 32, 1<alllim,]l. Since (&),en C
E and (1), C E* are arbitrary in the representing of u,

we have C < ||u]|,

C Cyc,.(G), u(x)

o’

For the inverse inequality, let € > 0 is given. Then, there

exist ((meﬂ))neN g Cycp,ﬂ:(G)’ (t")nEN C F”’
(Sn)yeny € Fy, such that for each n €N, we have

(Pu: Fn) C (m, E) and
Dollalllsall <C+e, ulx) = (pu(x)tnssa),

x €.

Now for each n € N, by applying Hahn—Banach theorem,
we can extend each s, € F), to the 5, € E* such that
7,1l = ||sx||- Therefore,

lulla,, < D leallllnall = D lleallllsull <€ + e,
n n

and it means [[ul, <C. O
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In the next attempt, we will generalize some known
results, and for this aim, we need to be precise about
notions there. To clarify everything, we bring some defi-
nitions and their requirement in the sequel. To do this, we
briefly state some facts about ultrafilters on Banach spaces.
The main reference here is Heinrich (1980), and the more
applicable one is Daws (2004).

Let (E;),,, be a collection of Banach spaces for an
indexing set | . Consider the Banach space L. ([, E;) of
elements (&;),.; equipped with the pointwise operations
and the supremum norm ||(;),[| = sup;¢; |||z, Now, let U

be an ultrafilter on [ , and let N;; be as following

Ny = {(&)ia + limll&il = 0},

where by limy ||&;|| we mean the limit of (¢;),., along the
ultrafilter U, that exists due to the fact that the values |||
belong to the compact interval [0, M], where
sup;¢; ||&]] = M <oo. Note that Ny, is a closed subspace;
therefore, the completion of the quotient space
Ly (l,E;)/Ny is a Banach space. This Banach space is
denoted by (E;),,, and it is called the ultraproduct of (E;),,
with respect to the ultrafilter U. Besides, the quotient norm
of an element (&;),, € (E;),, coincides with the limy ||&;||.

In general, we have (E;),S(E;),, isometrically. In
addition, when for each i € I we have E; = E, then the
ultraproduct space is called the ultrapower of the Banach
space E and is denoted by (E),, . Moreover, if E is a super-
reflexive space, then we have (E;);, = (E}),, , and this is a
well-known fact that an ultrapower of a QSL,-space E is
again a QSL,-space.

For a Banach space E, the natural embedding J : E —
(E), , defined via J(&) = (&;),, where & = ¢, is an iso-
metric one. Furthermore, for the case that E is super-re-
flexive, if (n;),, € (E*),, = (E),, then we have

(%), (’7;’)1,{> = lig{n<éa )

Additionally, there is a well-known canonical isometric
map kg : E — E** that is defined by (1, xg(&)) = (&),
and it is a surjection, if and only if E is reflexive. For a
Banach space E, and an ultrafilter I/, since the unit ball of
E** is compact, then the following map is well-defined and
contractive

T (E)y—E, J((&)y)

=w' —limkg (&),

and for every n € E we have (17, 7((&;),,)) = limy(&;, ).

According to Daws (2004, Proposition 2), for a Banach
space E there exist an ultrafilter / and an isometric map,
J:E* — (E), suchthat J|; =J, JoJ =idg~,and J o J
is a norm one projection from (E),, onto J(E**).
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For a Banach space E, and a complex number
€ (1,00), the Banach space L,(E) =L,(N,E), is as
following

L(8) = {(&. + e = (32 &7y <o),
which by Daws (2004, Proposition 4) it is super-reflexive
whenever E is so. Additionally, in the case that E is a
QSL,-space, then L,(E) is again a QSL,-space.

Now, for a representation (7, E) € Rep,(G), we intro-
duce two representations (n>°,L,(E)) and (my, (E),), as
follows:

— B(L,(E)),
( )(Cn)y) = (m(X)C0),, X € G, (&), € Lp(E),

G — B((E)y),
() ((&i)y) = (R(x)&)ys X € G, (&)y € (E)y-

Lemma 2 For a representation (m,E) € Rep,(G), con-
sider the aforementioned representations (n>°,L,(E)) and
(nu, (E)y). Then, the following statements hold.

1. The ranges of both representations are the subspaces
of invertible and isometric operators on their associ-
ated QSL,-spaces, and therefore, they belong to
Rep, (G).

2. These representations are related to (m,E) as repre-

sentations of the group algebra Li(G) as the same as
they are related as representations of the group G.
Precisely, for an element f € Li(G), we have

() = @), wulf) = (=()y-

3. (n*°,L,(E)) and (my,(E),) are essential representa-

tions of L1(G).

Proof The first two parts hold naturally. For the third part,
we briefly assure the reader about our claim. Case one:
(7>, L,(E)). Let (&,), € L,(E). Since (m, E) is an essential
representation, then for every given € > 0, for each n € N,
there exist f, € Li(G) and t, € E such that

1

. € 1
H”(fn)fn—CnH<m7 M= (an> <oo (since p > 1),

then we have

||(7T(fn)tn)n - (é")nH <Ee€.

So, the arbitrary element (), is approximated by the
element (7u(f,)t,),, that lives in the range of 7, as a
representation of L;(G). Case two: (ny, (E),,). Let (&), €
(E),, and consider a representative (;),.; € Loo (I, E) of it.
By the same argument as above, for every given € > 0, for
each i € [, there exist f; € L1(G), and t; € E such that
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€
)i — Gill <3,
In(f)e — &l < 5
and consequently,
€
(=), = (&)l < 5 <e.

On the other hand, since for an element (r;); € Ly (1, E) we
have [|(r;),|| <||(ri);|| it is obtained that

[ (=(fi)t)y — (Ci)yll <e.

Throughout the fact that the element (7(f;)7;),, belongs to
the range of my, as representation of L;(G), we are done. [

Corollary 3 For a representation (m,E) € Rep,(G), the
representation (ny, (L,(E)),,, defined in the obvious way,
is an essential representation and belongs to Rep,(G).

Next proposition is somewhat a restatement of Lemma
1, which is Lemma 6.5 in Runde (2005). This restatement
is beneficial due to a detailed proof.

Proposition 2 Let (7, E) € Rep,(G). Then

1. there exists a free ultrafilter U, such that the canonical
representation of PF, .(G) on F = (L,(E)),, is weak-
weak * continuous, essential and isometric,

2. the identification PF, (G)" = A r V= Ap e holds.

Proof Here, we sometimes use F instead of (L,(E)),,, for
ease of notation, and sometimes do not use to highlight the
associated space and actions. To prove part one, by the
proof of Daws (2004, Proposition 5), there exists an
ultrafilter ¢/ on an indexing set [, such that by considering
the above-mentioned map J for E*®E and using the fact
that (E*®E)* = B(E), we have the following isometry:

J:B(E)" — (E*QE),,.

Through daws (2004, Theorem 1 or Proposition 5), for the

obtained ultrafilter above, the map P :F*®@F — B(E)*
defined for r = ((t;4),),, € F and s = ((5in),)y € F* via

(T.P(s® 1) =lim > (T(tin),sin), T € B(E).

is a linear isometric surjection. Therefore, the embedding
P*: B(E)™ — B(F) is an isometric homomorphism. So,
the canonical representation of PF, (G) C B(E) on F =
(Lp(E))y thatis P*[pg, () = Py, is weak-weak” continuous
and isometric. Precisely, the following map satisfies men-
tioned properties:

P} : P, 1(G) — B(F), Pi(n(f)) = 735 (F). f € Li(G).

In fact, as an application of Lemma 2-(3), through the
following diagram,

the map P} is an essential representation of PF, ,(G). In
detail, the map 7 is contractive with dense range, while m;;
is an essential representation as it is described at the end of
previous lemma. Since we have P;om = m), then our
claim is true and P} is an isometric, weak-weak™ contin-
uous, and essential representation of PF, (G). Subse-
quently, we have

PF, (G) = PF, .+ (G).

*
re

For the second part, since (P}),, the restriction of the

conjugate map (PF)" to the subspace F* QF is a quotient
map onto PF, ;(G)”, then we have the map

(PH):: F*&F — PE, »(G)".
It is obtained that
PF,+(G)" = (Ly(E")), & (Ly(E))y/ ker(P;); .

For an element ¢ € PF, ;(G)", there exists a unique 7 €
F*®F/ker(P*)" such that for a given ¢ > 0 there exist

r

(&), C Fand (), C F* witht=3_, & @1, and
Il <> lellindl <l + e
X

Additionally, for every f € L;(G), we have
(w(f), ¢y = Y (Py o n(F) &) = D (s (F) & i) = {7 (F), w),
k k
9)

u(x) = Z<nzo,lo(x)éka ) € Ap s

k

x€Qq,

and (nyy, u) means the L; — L., duality between f and u, as
it is described in Lemma 1. Now, consider the map ll’p.,n;;,

as Remark 8-(1), associated with the representation
(ngy, F). We have
Ap e = (Ly (E")), @(Ly(E))y, / ker Wp e

Since PF,, z(G) = PF,, »=(G), then relation (9) reveals that
kernels of the maps (P;); and ¥, . coincide and we are
done. |
Proposition 3 Let (m,E) € Rep,(G). Then, we have the

following identification

Apn = Ap e

Proof Letu € A, ~ , and € > 0 be given. There exist the
sequence of vectors ((ym),), € Lp(E) and ((1,,,),)
L,(E)" = Ly(E*) such that

-
m =

52, €\ Springer
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u(x) = > (00 Enmdns () = D7) Enms M),

| (10
and
lull e + € > > N CGnm)all g dall =D~ N mmll 1]
| (11)

In the last inequality, we utilized the Holder inequality of
positive numbers. From (10), it is evident that u € A, , and
(11) shows that |ju||, < |lul which means that
Ap e C Ay, contractively. We shall show the inverse
inclusion holds contractively. To do so, let u € A, , and
for a given ¢ > 0 let vectors (¢,), C E and (s,), C E* be
such that

p,T p,m?

u(x) = Z(n(x)t,,,s,ﬁ7 x € G,

n
and
lull + € > > laullIsall

n

Now, if we put
2 —144 -1 L
&n = a7 = llsull ™7 lltall7 505
then we have (&,),€L,(E) and (n,), € Ly(E").
Moreover,

(;anll”)‘l’ - (;||rn||||sn|)‘1’<(||u||n+e)‘l’,
(lennilp)# (annunsnnf < (Il +e)l’,

and

u(x) = (1) () (1)) = D _(m(X)E 1)
= Z X)tn,sn), x€G.

Therefore,

u€Apme, and lul| e < (&), 1 On) || <luall + €
O

Corollary 4 For a representation (1,E) € rep,(G), we
have the following identification:

PF,:(G)" = Apr,-

22, Q) Springer

Proof 1t is a straightforward. O
Remark 9
1. In the light of previous proposition, due to the fact that

6.

(ngy,F) is weak-weak* continuous, essential an iso-
metric representation of PF, (G), then we have

PF,.z(G) = PF, = (G).

In the case that the representation (m,E) is a p-
universal representation, then since (nff, (I,(E)),,) is
also a p-universal representation, our notation coin-
cides with Runde’s one in Runde (2005).

We follow Arsac (1976) in notation and denote A, 5,
by B,r, and we call it p-analog of the m-Fourier—
Stieltjes algebra, which by Proposition 2 is the dual
space of the space of p-pseudofunctions associated
with (7, E) € Rep,(G), i.e. the dual space of PF, ,(G)
through the following duality

(), u) = /G u(Xf(¥)dx, [ € Li(G), u€ By,

and as we expect that, we have

lull = sup [(n(f),w)| = sup | | u(x)f(x)dx|, u € Byx,
IFllz <1 Ifl.<1t JG

Al = HSI\IP [(m(f), )| = HTSJ Gu(x)f(x)de [ € Li(G).

So, we have set PF,, n(G) = Apr, =By, and in the

case that (m,E) = (4, ,L,(G)) we usually use the

symbol PF,(G)".

It is obvious that B,, C B,(G) is a contractive
inclusion for every (7, E) € Rep,(G), and if (r,E) is
a p-universal representation, it will become an isomet-
ric isomorphism.

It is valuable to note that the ultrafilter I/ is the one for
which the embedding B(E)* C (E*®E),, is isometric,
so the space Ap,n; is determined. Furthermore, if V is
another free ultrafilter that makes the similar embed-
ding B(E)"

Ay, =PF,(G) = Ay 1.

C (E*®E),, into an isometry, then we have

So, our definition is independent of choosing suit-
able free ultrafilter; therefore, it is well defined.
For a locally compact group G, we have the following
contractive inclusions:

PE,(G)" = B, C B,(G) C M(A,(G)).
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All inclusions will become equalities in the case that
G is amenable [see Runde (2005, Theorem 6.6 and
Theorem 6.7)].

3.3 Extension Theorem

In the following, we study some functorial properties of the
p-analog of the Fourier—Stieltjes algebras. One of the ear-
liest questions about such algebras is when an extension of
a function defined on a subgroup belongs to the p-analog of
the Fourier—Stieltjes algebra on the larger group . For this
aim, we deal with the following notation. Let Gy C G be
any subset, and u : Gyo — C be a function. By #°, we mean

. u on Gy
u’ = .
0 0.W.
The next lemma is going to express the relation between

representation of an open subgroup Gy with the one of the
initial group G.

Lemma 3 Let (n,E) € Rep,(G). Then, the restriction of n

to the open subgroup Gy, which is denoted by (ng,,E)
belongs to Rep,(Go). Moreover, for each f € Li(Go) and

each g € Li(G), we have the following relations

76, (f) = n(f*), (12)

and  7G,(glg,) = m(gxG,)-

Proof 1t is evident that (mg,,E) € Rep,(Go). For the

second part, simple calculations below reveal that our
claim is true. For £ € E and n € E*, if f € L;(Gy) and
g € Li(G), then we have

(1)) = [ 703) (1)
[ stz mas
/f n)dx

= (n(f°)¢m),

and

<MMMKW=AQMmemm®
:Lg@mm@awn

- /Gg(x)xco(x)m(X)f,mdx
= (n(gxgo)@ 17>

So, we have

<TEG0 (f)év 77> = <7'C(fo)f, ’7);
(G, (8lg,) & m) = (m(8xg, )&, m)-

and since (13) and (14) hold for every & € E and 5 € E*,
then the relations in (12) are obtained. U

Proposition 4 Let G be a locally compact group and Gy be
its open subgroup, and let (n,E) € Rep,(G). Then, the
following statements hold.

1. The map Sz, :PE,q, (Go) — PF, »(G) defined via

Srg, (MG, (f)) = n(f°), for f € Li(Gy), is an isometric
homomorphism. In fact, we have the following isomet-
ric identification

PE, 7, (Go)

= Ta() - FELi(G), supp(f) C Go} '™ C UPF, +(G).

2. The linear restriction mapping Ry :Bpz — By rg
which is defined for u € By, as Ry(u) = ulg, is the

dual map of Sy, and is a quotient map.

3. The extension map E; : B,,,%O — B, 5, defined via
E,(u) = u° is an isometric map.
4. The restriction mapping R :B,(G) — B,(Gy) is a

contraction.
5. When (n,E) is also a p-universal representation, we
have the following contractive inclusions:

PE,(Go)" C Byrg, © By(Go) € M(A,(Go)).

Under the assumption that Gy is amenable, we have
isometric identification below

PF,(Go)" = By n, = Bp(Go) = M(A,(Gy)).

Proof

1. Through Lemma 3, the map Sy, is an isometric

homomorphism with the range containing the dense

space {n(f) : f € Li(G), supp(f) C Go}. So, the
algebra F) 76, (Go) and  the  subalgebra

{z(f) = 7 € Li(G), supp(f) € Go} "' of UPF,(G)
are identified.
2. Evidently, we have R, = St

7'[(;0

; therefore, Snco is a

quotient map.

3. Before showing E; is an isometric map, it is needed to
take notice of the fact that since R, is onto, then we
have

B

PTGy

= PFPvn(;O(GO)* :PF (G) /P PiGy Pﬂ/P PTG,

Obviously, E, is contraction. Furthermore, we have

52, €\ Springer
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[lull = 1R (Er ()| < [|Ex ()| < lul]-

Moreover, one may be inclined to gain this conclusion
through the following argument. Define the map &, :
PE, +(G) = PE, x5, (Go) via Ex(n(f)) = g, (flg, ), for
f € Li(G). Then, &, is contraction and (£;)" = E;. So,
E, is well defined and contraction, as well.

4. From the part (2), the restriction map from B,(G) onto
B,,A,,TGU is a contraction, and due to Remark 9-(4), for every
(p,F) € Rep,(Go) the identity map from B,, into
BP(GO) is a contraction; then, we have the result of this
part.

5. Let u € PF,(Gy)". Then by the part (3), we have
u® € PF,(G)", and PF,(G)" C B,(G), contractively,
via Remark 9-(6). Since R(u°) =u, it follows that
u € By, , where (m, E) is a p-universal representation
of G. For the case that Gy is amenable, since through
aforementioned remark, we have PF,(Gy)" = B,(Go) .

2. This part can be concluded by the inclusions in
Proposition 4-(5) and the part (1).

3. Since Gy is amenable, then by Proposition 4-(5) (or
directly from Remark 9-(6)) we have the result.

O

One of the interesting problems on the Fourier—Stieltjes-
type algebras is to study weighted homomorphism associ-
ated with a piecewise affine map as it has been considered
in Ilie and Spronk (2005) and Ilie (2014). At this aim, it is
crucial to be sure that such a homomorphism is well
defined. Precisely, answering to the question that the
homomorphism @, : B,(G) — B,(H), defined via
D, (u) = (uoa)’, for u € B,(G) is well-defined or not,
would be precious. Here, o : ¥ C H — G is a continuous
piecewise affine map. So, we give some preliminaries here.
For a locally compact topological group H, let Qy(H)
denote the ring of subsets which generated by open cosets
of H. By Ilie (2014), we have

Y is an open coset of H,
Q(H)={Y\U., Y, : e S (15)
Y1, ..., Y, open subcosets of infinite index inY
50 PF,(Go)" = By.n, = By(Go). Moreover, for a set Y C H, by Aff(Y) we mean the

O

The next proposition is the consequence of the previous
one and is one of the applicable result in dealing with
problems about p-analog of the Fourier—Stieltjes algebras.

Proposition 5 Let G be a locally compact group and Gy be
its open subgroup. Then

1. the  extension mapping  Eyy: M(A,(Go)) —
M(A,(G)), defined for u e M(A,(Go)) via Enp(u)
= u°, is an isometric map.

2. for every u € B,(Gy), we have u° € M(A,(G)), and
the map Egy : B,(Go) — M(A,(G)), with u—u®, is a
contraction.

3. if Gy is also an amenable subgroup, then for every
u € B,(Go), we have u° € B,(G), and the associated
extending map Egg : B,(Gy) — B,(G) is an isometric
one.

Proof

1. By the following relation for u € M(A,(Gy)) and
veA(G)u®-v=(u-v|g)°, it can be concluded that
u* € M(A,(G)), and
14l pa, oy = Nl a0y

obviously we  have

52, €\ Springer

smallest coset containing Y, and if
Y =Y\ UL, Y; € Qy(H), then Aff(Y) = Y. Similarly, let
us denote by Q,m_o(H) the ring of open cosets of open
amenable subgroups of H. Now, we give the definition of a
piecewise affine map.

Definition 11 Let «: Y C H — G be a map.

1. The map « is called an affine map on an open coset Y of
an open subgroup Hy, if

a(xy~'7) = a(x)a(y) 'a(z),  xy.z€Y,

2. The map o is called a piecewise affine map if

3. there are pairwise disjoint Y; € Qo(H), for
i=1,...,n,such that Y = UL Y,

4. there are affine maps o; : Aff(Y;) CH — G, for
i=1,...,n, such that af, = oyy.

Remark 10 Ilie (2004, Remark 2.2) If Y = hoH, is an
open coset of an open subgroup Hy C H,ando.: Y C H —
G is an affine map, then there exists a group homomor-
phism f associated with o such that
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B:HyCH—G, PB(h)=alhy) 'alhoh), he Hy.

(16)

The next lemma is straightforward, and we leave it
without proof, and it will be utilized in Theorem 3.

Lemma 4 Let G and H are locally compact groups and
(n,E) € Rep,(G).

1. For an element x € G, let L, : B,(G) — B,(G) be the
left translation mapping defined through L, (u)(y) =
u(xy) for y€ G and u € B,(G). Then, L, is an
invertible isometric map.

2. For a continuous homomorphism f : H — G, the pair
(mo B, E) belongs to Rep,(H) and the homomorphism
s : B,(G) — B,(H) is well-defined
homomorphism.

contractive

The following theorem is one of our important results in
this paper. Here, for a continuous piecewise affine map
o:YCH— G, we prove that the homomorphism
@, : B,(G) — B,(H), defined via

@a(u):{uoac

0 ow. Y

onY

is well defined, and we determine its bound.

Theorem 3 Let G and H be locally compact groups, and
o:Y =Ui_ Yy € H— G be a continuous piecewise affine
map with disjoint Yy € Qum_o(H), for k =1,...,n. Then,
u € B,(G) implies that (uoo)’ € B,(H), and conse-
quently, the weighted homomorphism &, : B,(G) —
B,(H) is well-defined bounded homomorphism.

Proof We divide our proof into two steps. Step I: First, we
leto : Y = yoHy C H — G be a continuous affine map, and
f : Hy — G be the homomorphism associated with o, as it
is explained in Remark 10, for an open amenable subgroup
Hy of H. As we initially explained in Lemma 4-(2), the
map wu—uof is an algebra homomorphism from
®p : B,(G) — B,(Hp). For the element yy, consider the
translation map L, : B,(G) — B,(G), then by the fol-
lowing relation, and applying Proposition 5-(3), we have
the result

(uoa)” = Eggo ®PpoLyy,), ucB,(G).

where Egg : B,(Hy) — B,(H), is the extension mapping.
By the last relation, it is obtained that the extension of the
function u o o belongs to B,(H), and evidently &, is con-
tractive as it is the combination of isometric and contrac-
tive maps. Step 2: Now, let o : Y C H — G be a continuous
piecewise affine map, so by our assumption of amenability,
and similar to Definition 11, there exist pairwise disjoint

sets ¥V, € Qunm_o(H),fork =1,...,nwithn € N, and affine
maps oy : Aff(Yy) C H — G such that ¥ = U}_,Y), and
%ly, = aly,. By previous step, we know that
(uooy)” € B,(H), and since

n

(woo)” = (wowm) - yy,
k=1

we have the result via Corollary 2, and the fact that B,(H)
is a Banach algebra. Moreover, we have

n
G0 )l < flull Y 2%,
k=1

where the number my, is as it is described in Corollary 2.
So, we have ||@,[| < >/, 2™, O
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