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Abstract
In this paper, some known results about the functorial properties of the Fourier–Stieltjes algebra, B(G), will be generalized.

First of all, the idempotent theorem on the Fourier–Stieltjes algebra will be promoted and linked to the p-analog one. Next,

the p-analog of the p-Fourier space introduced by Arsac will be given, and by taking advantage of the theory of ultrafilters,

the connection between the dual space of the algebra of p-pseudofunctions and the p-analog of the p-Fourier space will be

fully investigated. As the main result, one of the significant and applicable functorial properties of the p-analog of the

Fourier–Stieltjes algebras will be achieved.
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1 Introduction

For a locally compact group G, the Fourier algebra, A(G),

and the Fourier–Stieltjes algebra, B(G), have been found by

Eymard in 1964 Eymard (1964). He investigated almost all

functorial properties of such algebras. On the other hand,

idempotent elements of B(G) are introduced by Host Host

(1986) and have gotten accurate by Ilie and Spronk in Ilie

and Spronk (2005). Even Runde (2007) went beyond and

add some specific conditions to it, by benefiting from the

theory of uniformly convex Banach spaces. In the next

attempt on studying Fourier-type algebras, for a represen-

tation ðp;HÞ of G, on a Hilbert space H, Arsac Arsac

(1976) introduced p-Fourier and p-Fourier–Stieltjes spaces

Ap and Bp and tremendously studied their functorial

properties. Meanwhile, Figà-Talamanca-Herz algebra was

initially defined for abelian locally compact groups Figà-

Talamanca (1965) and then for general locally compact

groups in Herz (1971). Afterwards, in Runde (2005),

Runde took main step and determined the true p-analog of

Eymard’s B(G), as it is indicated via BpðGÞ. He has indi-

cated that the space BpðGÞ is a communicative unital

Banach algebra, and in the case that the underlying group

G is amenable, it can be identified with the multiplier

algebra of the Figà-Talamanca-Herz algebra, i.e. the

Banach space MðApðGÞÞ. Accordingly, the vast majority

of functorial properties of the p-analog of the Fourier–

Stieltjes algebras BpðGÞ have been remained unknown, and

they would be the cause for a huge amount of studies. For

instance, in Neufang and Runde (2009), one of the possible

p-operator space structure on BpðGÞ is studied, while

another one is introduced by authors Ahmadpoor and

Shams Yousefi (2021). Besides, considerable amount of

primary questions about the element of such algebras is

still open. In this paper, we try to come up with detailed

explanation, to touch on some topics, which can be con-

sidered as initial steps in the studying on the p-analog of

the Fourier–Stieltjes algebras. The current paper is orga-

nized as follows: In Sect. 2, we give some preliminaries

about representations of a locally compact group on QSLp-

spaces which are building blocks of Runde’s BpðGÞ. It is

indicated that the communicative Banach space BpðGÞ is

the dual space of the algebra of universal p-pseudofunc-

tions UPFpðGÞ. Next, in the main section, Sect. 3, we

divide our results into three main subsections. In one
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approach, Sect. 3.1 is devoted to the generalization of the

idempotent theorem (Theorem 2) in terms of p-analog of

the Fourier–Stieltjes algebra. Indeed, we have benefited

from the aforementioned theory of Banach spaces and

added one more equivalent statement to the latest version

of it, that is done by Runde (2007, Theorem 1.5). In the

next attempt, we have touched briefly on the generalization

of p-Fourier spaces and simply introduced it, then through

restating the result in Runde (2005), in respect to the notion

of ultrafilter, we have reached to the appropriate descrip-

tion of the dual space of the algebra of p-pseudofunctions

PFp;pðGÞ, for an arbitrary representation ðp;EÞ of the

locally compact group G on a QSLp-space E, which is

denoted by Bp;p (Proposition 2). At this aim, we have

generated somewhat crucial properties on the representa-

tions of a locally compact group, via the notion of ultra-

filter and ultrapower space.

Finally, as a conclusion of previous results, in Proposi-

tion 5 we have shown that a function in u 2 BpðG0Þ can be

extended to a function u� 2 BpðGÞ, where G0 is an open

amenable subgroup of the locally compact group G, and

the general form of this proposition channels us to

Theorem 3.

2 Preliminaries

In this paper, G and H are locally compact groups, and for

p 2 ð1;1Þ, the number p0 is its complex conjugate, i.e.

1=pþ 1=p0 ¼ 1. In the first step, we give essential notions

and definitions on QSLp-spaces, and representations of

groups on such spaces. For more information, one can see

Runde (2005).

Definition 1 A representation of a locally compact group

G is a pair ðp;EÞ, where E is a Banach space and p is a

group homomorphism from G into the invertible isometries

on E, that is continuous with respect to the given topology

on G and the strong operator topology on BðEÞ.

Remark 1 Every representation ðp;EÞ of a locally compact

group G induces a representation of the group algebra

L1ðGÞ on E, i.e. a contractive algebra homomorphism from

L1ðGÞ into BðEÞ, which we shall denote likewise by p,

through

pðf Þ ¼
Z

f ðxÞpðxÞdx; f 2 L1ðGÞ;

hpðf Þn; gi ¼
Z

f ðxÞhpðxÞn; gidx; n 2 E; g 2 E�;

ð1Þ

where the integral (1) converges with respect to the strong

operator topology.

Definition 2 Let ðp;EÞ and ðq;FÞ be representations of the

locally compact group G. Then,

1. ðp;EÞ and ðq;FÞ are called equivalent, if there exists

an invertible isometry u : E ! F such that

upðxÞu�1 ¼ qðxÞ; x 2 G:

2. ðq;FÞ is said to be a subrepresentation of ðp;EÞ, if F is

a closed subspace of E, and for every x 2 G we have

pðxÞjF ¼ qðxÞ.
3. ðq;FÞ is said to be contained in ðp;EÞ, if it is

equivalent to a subrepresentation of ðp;EÞ, and will be

denoted by ðq;FÞ � ðp;EÞ.

Definition 3

1. A Banach space is called an Lp-space if it is of the form

LpðXÞ for some measure space X.

2. A Banach space is called a QSLp-space if it is

isometrically isomorphic to a quotient of a subspace

of an Lp-space.

We denote by ReppðGÞ the collection of all (equivalence

classes) of representations of G on a QSLp-space.

Definition 4 A representation of a Banach algebra A is a

pair ðp;EÞ, where E is a Banach space, and p is a con-

tractive algebra homomorphism from A to BðEÞ. We call

ðp;EÞ isometric if p is an isometry and essential if the

linear span of fpðaÞn : a 2 A; n 2 Eg is dense in E.

Remark 2 If G is a locally compact group and ðp;EÞ is a

representation of G in the sense of Definition 1, then (1)

induces an essential representation of L1ðGÞ. Conversely,

every essential representation of L1ðGÞ arises in this

fashion.

Definition 5

1. A representation ðp;EÞ 2 ReppðGÞ is called cyclic, if

there exists n0 2 E such that pðL1ðGÞÞn0 is dense in E.

The set of cyclic representations of G on QSLp-spaces

is denoted by CycpðGÞ.
2. A representation ðp;EÞ 2 ReppðGÞ is called p-univer-

sal, if it contains every cyclic representation.

Remark 3 By Gardella and Thiel (2015, Remark 2.9-(3),

and 2015, Proposition 2.4), it is easy to see that every p-

universal representation of G contains every cyclic repre-

sentation of G on a QSLp-space, in the sense of equiva-

lency. In addition, every representation in ReppðGÞ is

contained in a p-universal representation. Actually, one

could make a new p-universal representation by con-

structing lp-direct sum of an arbitrary representation with a

p-universal representation.
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Now we are ready to describe the Figà-Talamanca-Herz

and the p-analog of the Fourier–Stieltjes algebras.

Definition 6 Figà-Talamanca-Herz algebra on the locally

compact group G, which is denoted by ApðGÞ, is the col-

lection of functions u : G ! C of the form

uðxÞ ¼
X1
n¼1

hkpðxÞnn; gni; x 2 G; ð2Þ

with

ðnnÞn2N � LpðGÞ; ðgnÞn2N � Lp0 ðGÞ; and

X1
n¼1

knnkkgnk\1;
ð3Þ

where kp is the left regular representation of G on LpðGÞ,
defined as

kp : G ! BðLpðGÞÞ; kpðxÞnðyÞ ¼ nðx�1yÞ;
n 2 LpðGÞ; x; y 2 G:

The norm of ApðGÞ is defined as:

kuk ¼ inf
nX1

n¼1

knnkkgnk : uð�Þ ¼
X1
n¼1

hkpð�Þnn; gni
o
;

where the infimum is taken over all expressions of u in (2)

with (3). With this norm and pointwise operations, ApðGÞ
turns into a commutative regular Banach algebra.

Remark 4 The p-analog of the Fourier–Stieltjes algebra

has been studied, for example in Cowling (1979), Forrest

(1994), Miao (1996) and Pier (1984), as the multiplier

algebra of the Figà-Talamanca-Herz algebra. In this paper,

we follow the construction of Runde in definition and

notation (see Runde 2005), which we swap indexes p and

p0.

Definition 7 The set of all functions of the form

uðxÞ ¼
X1
n¼1

hpnðxÞnn; gni; nn 2 En; gn 2 E�
n; x 2 G;

ð4Þ

where

ðpn;EnÞn2N � CycpðGÞ; and
X1
n¼1

knnkkgnk\1;

equipped with the norm

kuk ¼ inf
X1
n¼1

knnkkgnk : uðxÞ ¼
X1
n¼1

hpnðxÞnn; gni; x 2 G

( )
;

is denoted by BpðGÞ and is called the p-analog of the

Fourier–Stieltjes algebra of the locally compact group G.

Remark 5

1. By Runde (2005, Lemma 4.6), the space BpðGÞ can be

defined to be the set of all coefficient functions of a p-

universal representation ðp;EÞ, and the norm of an

element u 2 BpðGÞ is the infimum of all valuesP1
n¼1 knnkkgnk\1, which such vectors exist in the

representation of u as a coefficient function of ðp;EÞ,
i.e. uð�Þ ¼

P1
n¼1hpð�Þnn; gni.

2. In Runde (2007, Lemma 2.4), the following identifi-

cation is shown for an open subgroup G0 of a locally

compact group G

ApðG0Þ ffi ff 2 ApðGÞ : suppðf Þ � G0g;

and through this fact, one can assume that functions in

ApðG0Þ are restriction of functions in ApðGÞ to the open

subgroup G0.

Definition 8 Let ðp;EÞ 2 ReppðGÞ.

1. For each f 2 L1ðGÞ, let kfkp :¼ kpðf ÞkBðEÞ, then k � kp
defines an algebra seminorm on L1ðGÞ.

2. By PFp;pðGÞ, we mean the p-pseudofunctions associ-

ated with ðp;EÞ, which is the closure of pðL1ðGÞÞ in

BðEÞ.
3. If ðp;EÞ ¼ ðkp; LpðGÞÞ, we denote PFp;kpðGÞ by

PFpðGÞ.
4. If ðp;EÞ is p-universal, we denote PFp;pðGÞ by

UPFpðGÞ and call it the algebra of universal p-

pseudofunctions.

Remark 6

1. For p ¼ 2, the algebra PFpðGÞ is the reduced group C�-

algebra, and UPFpðGÞ is the full group C�-algebra of

G.

2. If ðq;FÞ 2 ReppðGÞ is such that ðp;EÞ contains every

cyclic subrepresentation of ðq;FÞ, then k � kq 	k � kp
holds. In particular, the definition of UPFpðGÞ is

independent of a particular p-universal representation.

3. With h�; �i denoting L1ðGÞ � L1ðGÞ duality, and with

ðp;EÞ a p-universal representation of G, we have

kfkp ¼ supfjhf ; gij : g 2 BpðGÞ; kgkBpðGÞ 	 1g; f 2 L1ðGÞ:

Next lemma states that BpðGÞ is a dual space.

Lemma 1 (Runde 2005, Lemma 6.5) Let

ðp;EÞ 2 ReppðGÞ. Then, for each / 2 PFp;pðGÞ�, there is a
unique g 2 BpðGÞ, with kgkBpðGÞ 	 k/k such that
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hpðf Þ;/i ¼
Z
G

f ðxÞgðxÞdx; f 2 L1ðGÞ: ð5Þ

Moreover, if ðp;EÞ is p-universal, we have

kgkBpðGÞ ¼ k/k.

3 Generalized Functorial Properties

As the aim of the present paper, here we generalize some

properties of the Fourier–Stieltjes algebra, B(G), to the p-

analog of the Fourier–Stieltjes algebra, BpðGÞ, for a locally

compact group G. In the first step, we generalize the

idempotent theorem, which was stated in the most possible

version as Theorem 1.5 in Runde (2007) in Theorem 2.

Next, we introduce the p-analog of the p-Fourier and p-

Fourier–Stieltjes spaces given by Arsac in Arsac (1976) in

Definition 9 and state the expected properties in lemma and

proposition afterwards. By such generalization, we then

approach to extending result, Theorem 3, which would be

crucial on solving similar problems around B(G) for the p-

analog case. For instance, in studies on homomorphisms on

the p-analog of the Fourier–Stieltjes algebra, BpðGÞ, which

can be considered as a p-analog of what has been done in

Ilie and Spronk (2005), Theorem 3 would be essential.

3.1 Idempotent Theorem

In order to being prepared for Theorem 2, which is a

generalization of Runde (2007, Theorem 1.5), we need

some elementary definitions and facts, and we give them in

the following.

Definition 9

1. A Banach space ðE; k � kÞ is said to be uniformly

convex if for every 0\�	 2 there is d[ 0 so that for

any two vectors x and y in E with kxk ¼ kyk ¼ 1, the

condition kx� yk
 � implies that k xþy
2
k	 1 � d.

Intuitively, the centre of a line segment inside the unit

ball must lie deep inside the unit ball unless the

segment is short.

2. A Banach space E is said to be smooth if for each

n 2 Enf0g there exists a unique g 2 E� such that

kgk ¼ 1 and hn; gi ¼ knk.

Remark 7 It is worthwhile to note that by Definition 9,

every closed subspace of a uniformly convex Banach space

is again a uniformly convex Banach space.

Now we state an immensely important theorem about a

quotient space which can be found in Istratescu (1983).

Theorem 1 (Istratescu 1983, Theorem 2.4.18) Let E be a

uniformly convex Banach space and F be a closed linear

subspace of E. Then, the quotient space E/F is uniformly

convex Banach space.

Now we can conclude the following statement.

Corollary 1 Every QSLp-space E is uniformly convex and

smooth.

Proof Uniformly convexity of QSLp-space E can be

derived from Remark 7 and Theorem 1. Since E is uni-

formly convex, by Fabian et al. (2001, Lemma 8.4(i) and

Theorem 9.10), it is concluded that E� is smooth, but E� is

a QSLp0 -space so is uniformly convex, and then, E�� is

smooth, but E ¼ E�� so E is smooth. h

Theorem 2 For a subset C � G, the following statements

are equivalent.

1. C is a left open coset,

2. vC 2 BðGÞ with kvCkBðGÞ ¼ 1,

3. vC 6¼ 0 is a normalized coefficient function of a

representation ðp;EÞ where E or E� is smooth,

4. vC 2 BpðGÞ with kvCkBpðGÞ ¼ 1.

Proof Equivalency of the first three statements has been

proved in Runde (2007, Theorem 1.5). We demonstrate

(2)) (4) )(3). Let (2) hold. Then from the fact that

BðGÞ � BpðGÞ and this embedding is a contraction, we

have vC 2 BpðGÞ with kvCkBpðGÞ 	 1, which by inequality

k � kCbðGÞ 	 k � kBpðGÞ, we have kvCkBpðGÞ ¼ 1 which shows

(2) implies (4).

Now let vC 2 BpðGÞ with kvCkBpðGÞ ¼ 1. So, by Defi-

nition 7, the function vC is a normalized coefficient

function of an isometric group representation on a QSLp-

space, which is smooth by Corollary 1 that is (3). h

Corollary 2 Let G be a locally compact group and

Y 2 X0ðGÞ, and then, we have vY 2 BpðGÞ. Moreover, we

have

1	kvYkBpðGÞ 	 2mY ; with

mY ¼ inffm 2 N : Y ¼ Y0n [m
i¼1 Yig;

ð6Þ

where for i ¼ 0; 1; . . .;m sets Yi, are as (15).

Proof Since Y 2 X0ðGÞ, then by (15), there exist open

coset Y0 and open subcosets Yi � Y0, for i ¼ 1; . . .;m and

m 2 N such that Y ¼ Y0n [m
i¼1 Yi. By Theorem 2-(4), we

have vYi 2 BpðGÞ, with kvYikBpðGÞ ¼ 1, for i ¼ 0; 1; . . .;m.

On the other hand, since
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vY ¼ vY0
�

Xm
i¼1

vYi �
X
i;j¼1

vYi\Yj

 

þ
X
i;j;k¼1

vYi\Yj\Yk þ � � � þ ð�1Þmþ1vY1\Y2\...\Ym

!
;

ð7Þ

then we have kvYkBpðGÞ 	 2mY , and by taking infimum on all

possible decomposition of Y as (15) relation (6) holds. h

3.2 p-Analog of the p-Fourier Spaces

In the sequel, we will give some extensions of results in

Arsac (1976). For a unitary representation ðp;HpÞ with

Hilbert space Hp, the p-Fourier space has been defined to

be closed linear span of the set of the coefficient functions

of the representation ðp;HpÞ, and is denoted by Ap, with

the norm in usual way. Moreover, p-Fourier–Stieltjes

algebra, Bp, for such representation is defined to be w�-
closure of Ap. Additionally, if we let C�

pðGÞ be the C�-

algebra associated with p, we have Bp ¼ C�
pðGÞ

�
. Here we

introduce p-generalization of these results; however, these

generalizations are not new (see Cowling and Fendler

(1984)), but in terms of Fourier-type algebras is somewhat

new.

Definition 10 For a representation ðp;EÞ 2 ReppðGÞ, we

define the p-analog of the p-Fourier space, Ap;p, to be

closed linear span of the collection of the coefficient

functions of representation ðp;EÞ, i.e. functions of the form

uðxÞ ¼
X
n

hpðxÞnn; gni; x 2 G; ðnnÞn2N � E; ðgnÞn2N � E�;

equipped with the norm

kukAp;p
¼ inf

nX1
n¼1

ktnkksnk : uðxÞ ¼
X
n

hpðxÞtn; sni; x 2 G
o
;

and evidently, infimum is taken over all possible equivalent

representative of u so that the value is convergent.

Remark 8

1. For ðp;EÞ 2 ReppðGÞ consider the map

Wp;p : E
� b�E ! CbðGÞ, defined via

Wp;p

�X
n

gn � nn

�
¼
X
n

hpðxÞnn; gni; x 2 G:

This map is onto to its range, which is Ap;p, and so we

can identify it with the Banach space E� b�E= kerWp;p,

and the norm on Ap;p is the quotient norm, i.e.

���X
n

nn � gn þ kerWp;p

���
¼ inf

nX
n

ktnkksnk :
X
n

hpð�Þtn; sni ¼
X
n

hpð�Þnn; gni
o

¼
���X

n

hpð�Þnn; gni
���
Ap;p

:

So, one can identify Ap;p with the quotient space

E� b�E= kerWp;p.

2. Since we have Ap;p ffi E� b�E= kerWp;p, then the space

Ap;p is a Banach space.

In the next proposition, we give an equivalent formula

of computing norm on the space Ap;p, for a representation

ðp;EÞ 2 ReppðGÞ. For this aim, we denote the set of cyclic

subrepresentations of a representation ðp;EÞ by Cycp;pðGÞ.

Proposition 1 Let ðp;EÞ 2 ReppðGÞ and u 2 Ap;p. Then,

we have

kukAp;p
¼ inf

nX
n

ktnkksnk : uðxÞ ¼
X
n

hqnðxÞtn; sni; x 2 G
o
;

ð8Þ

where the infimum is taken on all representations of u, in

which
�
ðqn;FnÞ

�
n2N

� Cycp;pðGÞ with ðtnÞn2N � Fn and

ðsnÞn2N � F�
n .

Proof Let us denote the infimum in (8) by C. Assume that

for x 2 G, we have uðxÞ ¼
P

nhpðxÞnn; gni withP
n knnkkgnk\1. For each n 2 N, if we put

Fn ¼ pðL1ðGÞÞnn
k�kE ; qn : G ! BðFnÞ; qnðxÞ ¼ pðxÞjFn

; x 2 G;

and tn ¼ nn; sn ¼ gnjFn
, then we have

�
ðqn;FnÞ

�
n2N

� Cycp;pðGÞ; uðxÞ ¼
X
n

hqnðxÞtn; sni;

with C	
P1

n¼1 ktnkksnk	
P

n knnkkgnk. Since ðnÞn2N �
E and ðgÞn2N � E� are arbitrary in the representing of u,

we have C	kukAp;p
.

For the inverse inequality, let �[ 0 is given. Then, there

exist ððqn;FnÞÞn2N � Cycp;pðGÞ, ðtnÞn2N � Fn,

ðsnÞn2N � F�
n , such that for each n 2 N, we have

ðqn;FnÞ � ðp;EÞ andX
n

ktnkksnk\C þ �; uðxÞ ¼
X
n

hqnðxÞtn; sni; x 2 G:

Now for each n 2 N, by applying Hahn–Banach theorem,

we can extend each sn 2 F�
n to the gn 2 E� such that

kgnk ¼ ksnk. Therefore,

kukAp;p
	
X
n

ktnkkgnk ¼
X
n

ktnkksnk\C þ �;

and it means kukAp;p
	C. h

Iran J Sci Technol Trans Sci (2023) 47:109–120 113

123



In the next attempt, we will generalize some known

results, and for this aim, we need to be precise about

notions there. To clarify everything, we bring some defi-

nitions and their requirement in the sequel. To do this, we

briefly state some facts about ultrafilters on Banach spaces.

The main reference here is Heinrich (1980), and the more

applicable one is Daws (2004).

Let ðEiÞi2I be a collection of Banach spaces for an

indexing set I . Consider the Banach space L1ðI;EiÞ of

elements ðniÞi2I equipped with the pointwise operations

and the supremum norm kðniÞik ¼ supi2I knikEi
. Now, let U

be an ultrafilter on I , and let NU be as following

NU ¼
n
ðniÞi2I : lim

U
knik ¼ 0

o
;

where by limU knik we mean the limit of ðniÞi2I along the

ultrafilter U , that exists due to the fact that the values knik
belong to the compact interval [0, M], where

supi2I knik ¼ M\1. Note that NU is a closed subspace;

therefore, the completion of the quotient space

L1ðI;EiÞ=NU is a Banach space. This Banach space is

denoted by ðEiÞU , and it is called the ultraproduct of ðEiÞi2I
with respect to the ultrafilter U . Besides, the quotient norm

of an element ðniÞU 2 ðEiÞU coincides with the limU knik.

In general, we have ðE�
i ÞUjðEiÞ�U , isometrically. In

addition, when for each i 2 I we have Ei ¼ E, then the

ultraproduct space is called the ultrapower of the Banach

space E and is denoted by ðEÞU . Moreover, if E is a super-

reflexive space, then we have ðEiÞ�U ¼ ðE�
i ÞU , and this is a

well-known fact that an ultrapower of a QSLp-space E is

again a QSLp-space.

For a Banach space E, the natural embedding J : E !
ðEÞU , defined via JðnÞ ¼ ðniÞU where ni � n, is an iso-

metric one. Furthermore, for the case that E is super-re-

flexive, if ðgiÞU 2 ðE�ÞU ¼ ðEÞ�U then we have

hJðnÞ; ðgiÞUi ¼ lim
U
hn; gii:

Additionally, there is a well-known canonical isometric

map jE : E ! E�� that is defined by hg; jEðnÞi ¼ hn; gi,
and it is a surjection, if and only if E is reflexive. For a

Banach space E, and an ultrafilter U , since the unit ball of

E�� is compact, then the following map is well-defined and

contractive

J : ðEÞU ! E; J ððniÞUÞ ¼ w� � lim
U

jEðniÞ;

and for every g 2 E we have hg;J ððniÞUÞi ¼ limUhni; gi.
According to Daws (2004, Proposition 2), for a Banach

space E there exist an ultrafilter U and an isometric map,

J : E�� ! ðEÞU such that JjE ¼ J, J � J ¼ idE�� , and J � J
is a norm one projection from ðEÞU onto JðE��Þ.

For a Banach space E, and a complex number

p 2 ð1;1Þ, the Banach space LpðEÞ ¼ LpðN;EÞ, is as

following

LpðEÞ ¼
n
ðnnÞn : kðnnÞnk ¼

�X
n

knnkp
�1

p

\1
o
;

which by Daws (2004, Proposition 4) it is super-reflexive

whenever E is so. Additionally, in the case that E is a

QSLp-space, then LpðEÞ is again a QSLp-space.

Now, for a representation ðp;EÞ 2 ReppðGÞ, we intro-

duce two representations ðp1; LpðEÞÞ and ðpU ; ðEÞUÞ, as

follows:

p1 : G ! BðLpðEÞÞ;
p1ðxÞððnnÞnÞ ¼ ðpðxÞnnÞn; x 2 G; ðnnÞn 2 LpðEÞ;

pU : G ! BððEÞUÞ;
pUðxÞððniÞUÞ ¼ ðpðxÞniÞU ; x 2 G; ðniÞU 2 ðEÞU :

Lemma 2 For a representation ðp;EÞ 2 ReppðGÞ, con-

sider the aforementioned representations ðp1; LpðEÞÞ and
ðpU ; ðEÞUÞ. Then, the following statements hold.

1. The ranges of both representations are the subspaces

of invertible and isometric operators on their associ-

ated QSLp-spaces, and therefore, they belong to

ReppðGÞ.
2. These representations are related to ðp;EÞ as repre-

sentations of the group algebra L1ðGÞ as the same as

they are related as representations of the group G.

Precisely, for an element f 2 L1ðGÞ, we have

p1ðf Þ ¼ ðpðf ÞÞ1; pUðf Þ ¼ ðpðf ÞÞU :

3. ðp1; LpðEÞÞ and ðpU ; ðEÞUÞ are essential representa-

tions of L1ðGÞ.

Proof The first two parts hold naturally. For the third part,

we briefly assure the reader about our claim. Case one:

ðp1; LpðEÞÞ. Let ðnnÞn 2 LpðEÞ. Since ðp;EÞ is an essential

representation, then for every given �[ 0, for each n 2 N,

there exist fn 2 L1ðGÞ and tn 2 E such that

kpðfnÞtn � nnk\
�

nM
; M ¼

�X
n

1

np

�1
p

\1 ðsince p[ 1Þ;

then we have

kðpðfnÞtnÞn � ðnnÞnk\�:

So, the arbitrary element ðnnÞn is approximated by the

element ðpðfnÞtnÞn, that lives in the range of p1, as a

representation of L1ðGÞ. Case two: ðpU ; ðEÞUÞ. Let ðniÞU 2
ðEÞU and consider a representative ðniÞi2I 2 L1ðI;EÞ of it.

By the same argument as above, for every given �[ 0, for

each i 2 I, there exist fi 2 L1ðGÞ, and ti 2 E such that
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kpðfiÞti � nik\
�

2
;

and consequently,

kðpðfiÞtiÞi � ðniÞik	
�

2
\�:

On the other hand, since for an element ðriÞi 2 L1ðI;EÞ we

have kðriÞUk	kðriÞik it is obtained that

kðpðfiÞtiÞU � ðniÞUk\�:

Throughout the fact that the element ðpðfiÞtiÞU belongs to

the range of pU as representation of L1ðGÞ, we are done. h

Corollary 3 For a representation ðp;EÞ 2 ReppðGÞ, the

representation ðp1U ; ðLpðEÞÞU , defined in the obvious way,

is an essential representation and belongs to ReppðGÞ.

Next proposition is somewhat a restatement of Lemma

1, which is Lemma 6.5 in Runde (2005). This restatement

is beneficial due to a detailed proof.

Proposition 2 Let ðp;EÞ 2 ReppðGÞ. Then

1. there exists a free ultrafilter U , such that the canonical

representation of PFp;pðGÞ on F ¼ ðLpðEÞÞU is weak-

weak � continuous, essential and isometric,

2. the identification PFp;pðGÞ� ¼ Ap;p1
U

w�
¼ Ap;p1

U
holds.

Proof Here, we sometimes use F instead of ðLpðEÞÞU , for

ease of notation, and sometimes do not use to highlight the

associated space and actions. To prove part one, by the

proof of Daws (2004, Proposition 5), there exists an

ultrafilter U on an indexing set I, such that by considering

the above-mentioned map �J for E� b�E and using the fact

that ðE� b�EÞ� ¼ BðEÞ, we have the following isometry:

J : BðEÞ� ! ðE� b�EÞU :

Through daws (2004, Theorem 1 or Proposition 5), for the

obtained ultrafilter above, the map P : F� b�F ! BðEÞ�
defined for t ¼ ððti;nÞnÞU 2 F and s ¼ ððsi;nÞnÞU 2 F� via

hT ;Pðs� tÞi ¼ lim
U

X
n

hTðti;nÞ; si;ni; T 2 BðEÞ:

is a linear isometric surjection. Therefore, the embedding

P� : BðEÞ�� ! BðFÞ is an isometric homomorphism. So,

the canonical representation of PFp;pðGÞ � BðEÞ on F ¼
ðLpðEÞÞU that is P�jPFp;pðGÞ ¼ P�

r , is weak-weak� continuous

and isometric. Precisely, the following map satisfies men-

tioned properties:

P�
r : PFp;pðGÞ ! BðFÞ; P�

r ðpðf ÞÞ ¼ p1U ðf Þ; f 2 L1ðGÞ:

In fact, as an application of Lemma 2-(3), through the

following diagram,

the map P�
r is an essential representation of PFp;pðGÞ. In

detail, the map p is contractive with dense range, while p1U
is an essential representation as it is described at the end of

previous lemma. Since we have P�
r � p ¼ p1U , then our

claim is true and P�
r is an isometric, weak-weak� contin-

uous, and essential representation of PFp;pðGÞ. Subse-

quently, we have

PFp;pðGÞ ¼ PFp;p1
U
ðGÞ:

For the second part, since ðP�
r Þ

�
r , the restriction of the

conjugate map ðP�
r Þ

�
to the subspace F� b�F is a quotient

map onto PFp;pðGÞ�, then we have the map

ðP�
r Þ

�
r : F

� b�F ! PFp;pðGÞ�:

It is obtained that

PFp;pðGÞ� ¼ ðLp0 ðE�ÞÞU b�ðLpðEÞÞU= kerðP�
r Þ

�
r :

For an element / 2 PFp;pðGÞ�, there exists a unique s 2
F� b�F= kerðP�

r Þ
�
r such that for a given �[ 0 there exist

ðnkÞk � F and ðgkÞk � F� with s ¼
P

k nk � gk, and

k/k	
X
k

knkkkgkk\k/k þ �:

Additionally, for every f 2 L1ðGÞ, we have

hpðf Þ;/i ¼
X
k

hP�
r � pðf Þnk; gki ¼

X
k

hp1U ðf Þnk; gki ¼ hp1U ðf Þ; ui;

ð9Þ

where

uðxÞ ¼
X
k

hp1U ðxÞnk; gki 2 Ap;p1
U
; x 2 G;

and hp1U ; ui means the L1 � L1 duality between f and u, as

it is described in Lemma 1. Now, consider the map Wp;p1
U

,

as Remark 8-(1), associated with the representation

ðp1U ;FÞ. We have

Ap;p1
U
¼ ðLp0 ðE�ÞÞU b�ðLpðEÞÞU= kerWp;p1

U
:

Since PFp;pðGÞ ¼ PFp;p1
U
ðGÞ, then relation (9) reveals that

kernels of the maps ðP�
r Þ

�
r and Wp;p1

U
coincide and we are

done. h

Proposition 3 Let ðp;EÞ 2 ReppðGÞ. Then, we have the

following identification

Ap;p ¼ Ap;p1 :

Proof Let u 2 Ap;p1 , and �[ 0 be given. There exist the

sequence of vectors ððnn;mÞnÞm � LpðEÞ and ððgn;mÞnÞm �
LpðEÞ� ¼ Lp0 ðE�Þ such that
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uðxÞ ¼
X
m

hp1ðxÞðnn;mÞn; ðgn;mÞni ¼
X
m;n

hpðxÞnn;m; gn;mi;

ð10Þ

and

kukp1 þ �[
X
m

kðnn;mÞnkkðgn;mÞnk

X
n;m

knn;mkkgn;mk:

ð11Þ

In the last inequality, we utilized the Hölder inequality of

positive numbers. From (10), it is evident that u 2 Ap;p and

(11) shows that kukp;p 	kukp;p1 , which means that

Ap;p1 � Ap;p, contractively. We shall show the inverse

inclusion holds contractively. To do so, let u 2 Ap;p, and

for a given �[ 0 let vectors ðtnÞn � E and ðsnÞn � E� be

such that

uðxÞ ¼
X
n

hpðxÞtn; sni; x 2 G;

and

kuk þ �[
X
n

ktnkksnk:

Now, if we put

nn ¼ ktnk�1þ1
pksnk

1
ptn; gn ¼ ksnk�1þ 1

p0 ktnk
1
p0sn;

then we have ðnnÞn 2 LpðEÞ and ðgnÞn 2 Lp0 ðE�Þ.
Moreover,

�X
n

knnkp
�1

p ¼
�X

n

ktnkksnk
�1

p

\
�
kukp þ �

�1
p

;

�X
n

kgnkp
0
� 1

p0 ¼
�X

n

ktnkksnk
� 1

p0\
�
kukp þ �

� 1
p0
;

and

uðxÞ ¼ hp1ðxÞðnnÞn; ðgnÞni ¼
X
n

hpðxÞnn; gni

¼
X
n

hpðxÞtn; sni; x 2 G:

Therefore,

u 2 Ap;p1 ; and kukp1 	kðnnÞnkkðgnÞnk\kukp þ �:

h

Corollary 4 For a representation ðp;EÞ 2 reppðGÞ, we

have the following identification:

PFp;pðGÞ� ¼ Ap;pU :

Proof It is a straightforward. h

Remark 9

1. In the light of previous proposition, due to the fact that

ðp1U ;FÞ is weak-weak� continuous, essential an iso-

metric representation of PFp;pðGÞ, then we have

PFp;pðGÞ ¼ PFp;p1
U
ðGÞ:

2. In the case that the representation ðp;EÞ is a p-

universal representation, then since ðp1U ; ðlpðEÞÞUÞ is

also a p-universal representation, our notation coin-

cides with Runde’s one in Runde (2005).

3. We follow Arsac (1976) in notation and denote Ap;pU

by Bp;p, and we call it p-analog of the p-Fourier–

Stieltjes algebra, which by Proposition 2 is the dual

space of the space of p-pseudofunctions associated

with ðp;EÞ 2 ReppðGÞ, i.e. the dual space of PFp;pðGÞ
through the following duality

hpðf Þ; ui ¼
Z
G

uðxÞf ðxÞdx; f 2 L1ðGÞ; u 2 Bp;p;

and as we expect that, we have

kuk ¼ sup
kfkp 	 1

jhpðf Þ; uij ¼ sup
kfkp 	 1

j
Z
G

uðxÞf ðxÞdxj; u 2 Bp;p;

kfkp ¼ sup
kuk	 1

jhpðf Þ; uij ¼ sup
kuk	 1

j
Z
G

uðxÞf ðxÞdxj; f 2 L1ðGÞ:

So, we have set PFp;pðGÞ� ¼ Ap;pU ¼ Bp;p , and in the

case that ðp;EÞ ¼ ðkp;G; LpðGÞÞ we usually use the

symbol PFpðGÞ�.

4. It is obvious that Bp;p � BpðGÞ is a contractive

inclusion for every ðp;EÞ 2 ReppðGÞ, and if ðp;EÞ is

a p-universal representation, it will become an isomet-

ric isomorphism.

5. It is valuable to note that the ultrafilter U is the one for

which the embedding BðEÞ� � ðE� b�EÞU is isometric,

so the space Ap;p1
U

is determined. Furthermore, if V is

another free ultrafilter that makes the similar embed-

ding BðEÞ� � ðE� b�EÞV into an isometry, then we have

Ap;pU ¼ PFp;pðGÞ� ¼ Ap;pV :

So, our definition is independent of choosing suit-

able free ultrafilter; therefore, it is well defined.

6. For a locally compact group G, we have the following

contractive inclusions:

PFpðGÞ� ¼ Bp;kp � BpðGÞ � MðApðGÞÞ:
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All inclusions will become equalities in the case that

G is amenable [see Runde (2005, Theorem 6.6 and

Theorem 6.7)].

3.3 Extension Theorem

In the following, we study some functorial properties of the

p-analog of the Fourier–Stieltjes algebras. One of the ear-

liest questions about such algebras is when an extension of

a function defined on a subgroup belongs to the p-analog of

the Fourier–Stieltjes algebra on the larger group . For this

aim, we deal with the following notation. Let G0 � G be

any subset, and u : G0 ! C be a function. By u�, we mean

u� ¼
u on G0

0 o.w.

�
:

The next lemma is going to express the relation between

representation of an open subgroup G0 with the one of the

initial group G.

Lemma 3 Let ðp;EÞ 2 ReppðGÞ. Then, the restriction of p

to the open subgroup G0, which is denoted by ðpG0
;EÞ

belongs to ReppðG0Þ. Moreover, for each f 2 L1ðG0Þ and

each g 2 L1ðGÞ, we have the following relations

pG0
ðf Þ ¼ pðf �Þ; and pG0

ðgjG0
Þ ¼ pðgvG0

Þ: ð12Þ

Proof It is evident that ðpG0
;EÞ 2 ReppðG0Þ. For the

second part, simple calculations below reveal that our

claim is true. For n 2 E and g 2 E�, if f 2 L1ðG0Þ and

g 2 L1ðGÞ, then we have

hpG0
ðf Þn; gi ¼

Z
G0

f ðxÞhpG0
ðxÞn; gidx

¼
Z
G0

f ðxÞhpðxÞn; gidx

¼
Z
G

f �ðxÞhpðxÞn; gidx

¼ hpðf �Þn; gi;

and

hpG0
ðgjG0

Þn; gi ¼
Z
G0

gjG0
ðxÞhpG0

ðxÞn; gidx

¼
Z
G0

gjG0
ðxÞhpðxÞn; gidx

¼
Z
G

gðxÞvG0
ðxÞhpðxÞn; gidx

¼ hpðgvG0
Þn; gi:

So, we have

hpG0
ðf Þn; gi ¼ hpðf �Þn; gi; ð13Þ

hpG0
ðgjG0

Þn; gi ¼ hpðgvG0
Þn; gi: ð14Þ

and since (13) and (14) hold for every n 2 E and g 2 E�,
then the relations in (12) are obtained. h

Proposition 4 Let G be a locally compact group and G0 be

its open subgroup, and let ðp;EÞ 2 ReppðGÞ. Then, the

following statements hold.

1. The map SpG0
: PFp;pG0

ðG0Þ ! PFp;pðGÞ defined via

SpG0
ðpG0

ðf ÞÞ ¼ pðf �Þ, for f 2 L1ðG0Þ, is an isometric

homomorphism. In fact, we have the following isomet-

ric identification

PFp;pG0
ðG0Þ

¼ fpðf Þ : f 2 L1ðGÞ; suppðf Þ � G0g
k�kBðEÞ � UPFp;pðGÞ:

2. The linear restriction mapping Rp : Bp;p ! Bp;pG0

which is defined for u 2 Bp;p, as RpðuÞ ¼ ujG0
is the

dual map of SpG0
and is a quotient map.

3. The extension map Ep : Bp;pG0
! Bp;p, defined via

EpðuÞ ¼ u� is an isometric map.

4. The restriction mapping R : BpðGÞ ! BpðG0Þ is a

contraction.

5. When ðp;EÞ is also a p-universal representation, we

have the following contractive inclusions:

PFpðG0Þ� � Bp;pG0
� BpðG0Þ � MðApðG0ÞÞ:

Under the assumption that G0 is amenable, we have

isometric identification below

PFpðG0Þ� ¼ Bp;pG0
¼ BpðG0Þ ¼ MðApðG0ÞÞ:

Proof

1. Through Lemma 3, the map SpG0
is an isometric

homomorphism with the range containing the dense

space fpðf Þ : f 2 L1ðGÞ; suppðf Þ � G0g. So, the

algebra PFp;pG0
ðG0Þ and the subalgebra

fpðf Þ : f 2 L1ðGÞ; suppðf Þ � G0g
k�kBðEÞ

of UPFpðGÞ
are identified.

2. Evidently, we have Rp = S�pG0
; therefore, SpG0

is a

quotient map.

3. Before showing Ep is an isometric map, it is needed to

take notice of the fact that since Rp is onto, then we

have

Bp;pG0
¼ PFp;pG0

ðG0Þ� ¼ PFp;pðGÞ�=PF?
p;pG0

¼ Bp;p=PF?
p;pG0

:

Obviously, Ep is contraction. Furthermore, we have
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kuk ¼ kRpðEpðuÞÞk	 kEpðuÞk	 kuk:

Moreover, one may be inclined to gain this conclusion

through the following argument. Define the map Ep :

PFp;pðGÞ ! PFp;pG0
ðG0Þ via Epðpðf ÞÞ ¼ pG0

ðf jG0
Þ, for

f 2 L1ðGÞ. Then, Ep is contraction and ðEpÞ� ¼ Ep. So,

Ep is well defined and contraction, as well.

4. From the part (2), the restriction map from BpðGÞ onto

Bp;pG0
is a contraction, and due to Remark 9-(4), for every

ðq;FÞ 2 ReppðG0Þ the identity map from Bp;q into

BpðG0Þ is a contraction; then, we have the result of this

part.

5. Let u 2 PFpðG0Þ�. Then by the part (3), we have

u� 2 PFpðGÞ�, and PFpðGÞ� � BpðGÞ, contractively,

via Remark 9-(6). Since Rðu�Þ ¼ u, it follows that

u 2 Bp;pG0
, where ðp;EÞ is a p-universal representation

of G. For the case that G0 is amenable, since through

aforementioned remark, we have PFpðG0Þ� = BpðG0Þ ,

so PFpðG0Þ� ¼ Bp;pG0
¼ BpðG0Þ.

h

The next proposition is the consequence of the previous

one and is one of the applicable result in dealing with

problems about p-analog of the Fourier–Stieltjes algebras.

Proposition 5 Let G be a locally compact group and G0 be

its open subgroup. Then

1. the extension mapping EMM : MðApðG0ÞÞ !
MðApðGÞÞ, defined for u 2 MðApðG0ÞÞ via EMMðuÞ
¼ u�, is an isometric map.

2. for every u 2 BpðG0Þ, we have u� 2 MðApðGÞÞ, and

the map EBM : BpðG0Þ ! MðApðGÞÞ, with u 7!u�, is a

contraction.

3. if G0 is also an amenable subgroup, then for every

u 2 BpðG0Þ, we have u� 2 BpðGÞ, and the associated

extending map EBB : BpðG0Þ ! BpðGÞ is an isometric

one.

Proof

1. By the following relation for u 2 MðApðG0ÞÞ and

v 2 ApðGÞ u� � v ¼ ðu � vjG0
Þ�; it can be concluded that

u� 2 MðApðGÞÞ, and obviously we have

ku�kMðApðGÞÞ ¼ kukMðApðG0ÞÞ

2. This part can be concluded by the inclusions in

Proposition 4-(5) and the part (1).

3. Since G0 is amenable, then by Proposition 4-(5) (or

directly from Remark 9-(6)) we have the result.

h

One of the interesting problems on the Fourier–Stieltjes-

type algebras is to study weighted homomorphism associ-

ated with a piecewise affine map as it has been considered

in Ilie and Spronk (2005) and Ilie (2014). At this aim, it is

crucial to be sure that such a homomorphism is well

defined. Precisely, answering to the question that the

homomorphism Ua : BpðGÞ ! BpðHÞ, defined via

UaðuÞ ¼ ðu � aÞ�, for u 2 BpðGÞ is well-defined or not,

would be precious. Here, a : Y � H ! G is a continuous

piecewise affine map. So, we give some preliminaries here.

For a locally compact topological group H, let X0ðHÞ
denote the ring of subsets which generated by open cosets

of H. By Ilie (2014), we have

Moreover, for a set Y � H, by AffðYÞ we mean the

smallest coset containing Y, and if

Y ¼ Y0n [n
i¼1 Yi 2 X0ðHÞ, then AffðYÞ ¼ Y0. Similarly, let

us denote by Xam�0ðHÞ the ring of open cosets of open

amenable subgroups of H. Now, we give the definition of a

piecewise affine map.

Definition 11 Let a : Y � H ! G be a map.

1. The map a is called an affine map on an open coset Y of

an open subgroup H0, if

aðxy�1zÞ ¼ aðxÞaðyÞ�1aðzÞ; x; y; z 2 Y ;

2. The map a is called a piecewise affine map if

3. there are pairwise disjoint Yi 2 X0ðHÞ, for

i ¼ 1; . . .; n, such that Y ¼ [n
i¼1Yi,

4. there are affine maps ai : AffðYiÞ � H ! G, for

i ¼ 1; . . .; n, such that ajYi ¼ aijYi :

Remark 10 Ilie (2004, Remark 2.2) If Y ¼ h0H0 is an

open coset of an open subgroup H0 � H, and a : Y � H !
G is an affine map, then there exists a group homomor-

phism b associated with a such that

X0ðHÞ ¼ Yn [n
i¼1 Yi :

Y is an open coset of H;

Y1; . . .; Yn open subcosets of infinite index in Y

� �
: ð15Þ
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b : H0 � H ! G; bðhÞ ¼ aðh0Þ�1aðh0hÞ; h 2 H0:

ð16Þ

The next lemma is straightforward, and we leave it

without proof, and it will be utilized in Theorem 3.

Lemma 4 Let G and H are locally compact groups and

ðp;EÞ 2 ReppðGÞ.

1. For an element x 2 G, let Lx : BpðGÞ ! BpðGÞ be the

left translation mapping defined through LxðuÞðyÞ ¼
uðxyÞ for y 2 G and u 2 BpðGÞ. Then, Lx is an

invertible isometric map.

2. For a continuous homomorphism b : H ! G, the pair

ðp � b;EÞ belongs to ReppðHÞ and the homomorphism

Ub : BpðGÞ ! BpðHÞ is well-defined contractive

homomorphism.

The following theorem is one of our important results in

this paper. Here, for a continuous piecewise affine map

a : Y � H ! G, we prove that the homomorphism

Ua : BpðGÞ ! BpðHÞ, defined via

UaðuÞ ¼
u � a on Y

0 o.w. Y

�

is well defined, and we determine its bound.

Theorem 3 Let G and H be locally compact groups, and

a : Y ¼ [n
k¼1Yk � H ! G be a continuous piecewise affine

map with disjoint Yk 2 Xam�0ðHÞ, for k ¼ 1; . . .; n. Then,

u 2 BpðGÞ implies that ðu � aÞ� 2 BpðHÞ, and conse-

quently, the weighted homomorphism Ua : BpðGÞ !
BpðHÞ is well-defined bounded homomorphism.

Proof We divide our proof into two steps. Step 1: First, we

let a : Y ¼ y0H0 � H ! G be a continuous affine map, and

b : H0 ! G be the homomorphism associated with a, as it

is explained in Remark 10, for an open amenable subgroup

H0 of H. As we initially explained in Lemma 4-(2), the

map u 7!u � b is an algebra homomorphism from

Ub : BpðGÞ ! BpðH0Þ. For the element y0, consider the

translation map Laðy0Þ : BpðGÞ ! BpðGÞ, then by the fol-

lowing relation, and applying Proposition 5-(3), we have

the result

ðu � aÞ� ¼ EBB � Ub � Laðy0Þ; u 2 BpðGÞ:

where EBB : BpðH0Þ ! BpðHÞ, is the extension mapping.

By the last relation, it is obtained that the extension of the

function u � a belongs to BpðHÞ, and evidently Ua is con-

tractive as it is the combination of isometric and contrac-

tive maps. Step 2: Now, let a : Y � H ! G be a continuous

piecewise affine map, so by our assumption of amenability,

and similar to Definition 11, there exist pairwise disjoint

sets Yk 2 Xam�0ðHÞ, for k ¼ 1; . . .; n with n 2 N, and affine

maps ak : AffðYkÞ � H ! G such that Y ¼ [n
k¼1Yk, and

akjYk ¼ ajYk . By previous step, we know that

ðu � akÞ� 2 BpðHÞ, and since

ðu � akÞ� ¼
Xn
k¼1

ðu � akÞ� � vYk ;

we have the result via Corollary 2, and the fact that BpðHÞ
is a Banach algebra. Moreover, we have

kðu � aÞ�k	 kuk
Xn
k¼1

2mYk ;

where the number mYk is as it is described in Corollary 2.

So, we have kUak	
Pn

k¼1 2mYk . h
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d’une représentation unitaire. Publ Dép Math (Lyon) 13:1–101

Cowling M (1979) An application of Littlewood–Paley theory in

harmonic analysis. Math Ann 241(1):83–96

Cowling M, Fendler G (1984) On representations in Banach spaces.

Math Ann 266:307–3015

Daws M (2004) Arens regularity of the algebra of operators on a

Banach space. Bull Lond Math Soc 36(4):493–503
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