RESEARCH PAPER

Some Pre-C*-algebras Generated by a C*-algebra ${\mathcal A}$ with Completion $C([-1, 1], \mathcal{A})$

Kourosh Nourouzi $1 \cdot$ Ali Reza¹

Received: 1 February 2019 / Accepted: 16 November 2019 / Published online: 4 December 2019 - Shiraz University 2019

Abstract

For any C^{*}-algebra A, we give a Banach *-algebra with approximate identity which $C([-1, 1], \mathcal{A})$, the C^{*}-algebra of all Avalued continuous functions on [0, 1], is its C*-envelope. We show that $C([-1, 1], \mathcal{A})$ is $*$ -isomorphic to a C*-subalgebra of bounded continuous functions from self-adjoint elements of the closed unital ball of $\mathcal E$ to $\mathcal A\otimes\mathcal E$ for any unital C*-algebra E. Furthermore, for any C*-algebra A and numerical semigroup S we give a pre-C*-algebra with completion $C([0,1], \mathcal{A})$ via Cauchy extensions of C*-algebras. It is also shown that the Dirichlet extension of A is *-isomorphic to $C([0,1], \mathcal{A})$. Finally, we introduce the notion of M-Cauchy envelope of C^* -algebras, where M is an at most countable commutative monoid.

Keywords Pre-C^{*}-algebra \cdot Extension of C^{*}-algebras \cdot Cauchy extension \cdot Dirichlet extension \cdot Crossed product

Mathematics Subject Classfication $46L05 \cdot 46M15$

1 Introduction and Preliminaries

For any C^* -algebra A finding some pre- C^* -algebras with completion $C([0, 1], \mathcal{A})$, the C^{*}-algebra of all \mathcal{A} -valued continuous functions on [0, 1] is interesting. In fact, the idea may be interpreted as recovering $C([0, 1], \mathcal{A})$ by some $pre-C^*$ -algebras. One approach to this is given in Nourouzi and Reza (2019) (2019) via a type of extension of C^* -algebras which are called Cauchy extensions. For the extension of C^* -algebras, we refer the reader to, e.g., Arveson ([1977\)](#page-5-0) and Busby ([1968\)](#page-5-0). In this paper, starting with a C^* -algebra A we give some pre- C^* -algebras with completion $C([0, 1], \mathcal{A})$ through Cauchy and Dirichlet extensions of C^* -algebras. In the last section, we introduce M-Cauchy envelope of C^* -algebras, where M is an at most countable commutative monoid M.

We recall some definitions and results from Nourouzi and Reza ([2019](#page-5-0)) which will be needed.

Let A be a C^{*}-algebra. We denote by $A[Z]$ the set of all formal power series $F(Z) = \sum_{n=0}^{\infty} a_n Z^n$, where each $a_n \in$

A and $\sum_{n=0}^{\infty} ||a_n|| < \infty$. Then, $\mathcal{A}[Z]$ becomes a complex involutive algebra with the pointwise addition, scalar multiplication and involution and with the Cauchy product as multiplication. That is, for any formal power series $F(Z) = \sum_{n=0}^{\infty} a_n Z^n$ and $G(Z) = \sum_{n=0}^{\infty} b_n Z^n$ in the complex involutive algebra $\mathcal{A}[Z]$ and scalar $\lambda \in \mathbb{C}$ we have

$$
\sum_{n=0}^{\infty} a_n Z^n + \sum_{n=0}^{\infty} b_n Z^n = \sum_{n=0}^{\infty} (a_n + b_n) Z^n,
$$

$$
\lambda \sum_{n=0}^{\infty} a_n Z^n = \sum_{n=0}^{\infty} \lambda a_n Z^n,
$$

$$
F^*(Z) = \sum_{n=0}^{\infty} a_n^* Z^n,
$$

$$
F(Z)G(Z) = \sum_{n=0}^{\infty} \left(\sum_{n=p+q} a_p b_q \right) Z^n.
$$

Suppose that K is a subset of $[-1, 1]$ such that 0 is a limit point of K. The norm $\|\cdot\|_K$ defined by

$$
||F||_K = \sup_{t \in K} \left| \left| \sum_{n=0}^{\infty} a_n t^n \right| \right|,
$$

for all $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ satisfies $||FF^*||_K =$ $||F||_K^2$. Note that $(A[Z], *, || \cdot ||_K)$ is a pre-C^{*}-algebra which

 \boxtimes Kourosh Nourouzi nourouzi@kntu.ac.ir

¹ Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16765-3381 Tehran, Iran

is not a C^{*}-algebra. The completion $[\mathcal{A}]_K$ of $(\mathcal{A}, *, \| \cdot \|_K)$ is called the Cauchy extension of A which is $*$ -isomorphic to the set of all uniformly continuous functions from K to A [Nourouzi and Reza 2019 , Theorem 5 (iii)]. If $K = [0, 1]$, then $[\mathcal{A}]_K \cong C([0,1], \mathcal{A})$ [Nourouzi and Reza [2019](#page-5-0), Theorem 5 (ii)]. Also, $(A[Z], *, \| \cdot \|_1)$ is a Banach $*$ -algebra where

$$
||F||_1 = \sum_{n=0}^{\infty} ||a_n||
$$

for all $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ [see (Nourouzi and Reza [2019,](#page-5-0) Proposition 1)].

2 $C([-1,1], \mathcal{A})$ as Enveloping C*-algebra

It is worth mentioning that if $(U_{\lambda})_{\lambda \in \Lambda}$ is an approximate identity for C^{*}-algebra A, then $(U_{\lambda})_{\lambda \in \Lambda}$ is also an approximate identity for $(A[Z], || \cdot ||_1)$. Indeed, let $F(Z) =$ $\sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ and $\varepsilon > 0$ be given. There is a positive integer N such that $\sum_{n=N+1}^{\infty} 2||a_n|| < \varepsilon$. For any $\lambda \in \Lambda$, we have

$$
||F(Z) - U_{\lambda}F(Z)|| = \sum_{n=0}^{\infty} ||a_n - U_{\lambda}a_n||
$$

=
$$
\sum_{n=0}^{N} ||a_n - U_{\lambda}a_n||
$$

+
$$
\sum_{n=N+1}^{\infty} ||a_n - U_{\lambda}a_n||
$$

$$
\leq \sum_{n=0}^{N} ||a_n - U_{\lambda}a_n|| + \varepsilon.
$$

Therefore,

 $\lim_{\lambda} \sup ||F(Z) - U_{\lambda}F(Z)|| \leq \varepsilon.$

Since $\epsilon > 0$ was arbitrary, we have

$$
\lim_{\lambda} ||F(Z) - U_{\lambda} F(Z)|| = 0.
$$

Similarly, we get

$$
\lim_{\lambda} ||F(Z) - F(Z)U_{\lambda}|| = 0.
$$

That is, $(U_{\lambda})_{\lambda \in \Lambda}$ is also an approximate identity for $(\mathcal{A}[Z], \|\cdot\|_1).$

Theorem 1 For any C^{*}-algebra A, $C([-1,1], A)$ is the enveloping C^* -algebra of $(A[Z], *, \| \cdot \|_1)$.

Proof We first show that (i): the C^{*}-envelope $C^*(\mathcal{A}[Z])$ of $(A[Z], || \cdot ||_1)$ is not trivial and (ii): $C^*(\mathbb{C}[Z]) \cong C[-1,1].$ To prove (i), let Φ be the universal representation of C^* -

algebra $C(J, A)$, where $J = [-1, 1]$. Then, $\Phi \circ i$ is a faithful representation of Banach *-algebra $(\mathcal{A}[Z], \|\cdot\|_1)$, where $i : A[Z] \rightarrow C(J, A)$ is the inclusion map. Consider the (nontrivial) universal representation π of $(A[Z], \|\cdot\|_1)$ [see (Dixmier [1977](#page-5-0), 2.7.6)]. Let Rep denote the set of all representations of $\mathcal{A}[Z]$. We have

$$
||F||_J \leq \sup_{\omega \in \mathop{\mathit Rep}} ||\omega(F)|| = ||\pi(F)||.
$$

This implies that π is faithful. Therefore, $\mathcal{A}[Z]$ equipped with the norm $\|\cdot\|'$ defined by $\|F\|' = \|\pi(F)\|$ for any $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ is a pre-C*-algebra with completion $C^*(\mathcal{A}[Z]).$

To see (ii), since $\|\cdot\|_J \le \|\cdot\|'$, one can consider $B =$ $C^*(\mathbb{C}[Z])$ as a $*$ -subalgebra of $E = C[-1, 1]$. Let $f \in B$. We have $\sigma_E(f) = f(J) = \sigma_B(f)$ (σ stands for the spectrum), and therefore, $r_B(f) = r_E(f)$, where r_B and r_E are the spectral radii with respect to B and E , respectively. We have

$$
||f||_J^2 = ||f\bar{f}||_J = r_E(f\bar{f}) = r_B(f\bar{f}) = ||f\bar{f}||' = ||f||'^2.
$$

That is $||f||' = ||f||_J$. This implies that $C^*(\mathbb{C}[Z]) \cong$ $C[-1, 1].$

Now, from (Grothendieck [1955,](#page-5-0) Theorem 2) we have

$$
\mathcal{A}[Z] \cong \mathbb{C}[Z] \hat{\otimes}_{\gamma} \mathcal{A},
$$

where $\mathbb{C}[Z] \hat{\otimes}_{\gamma} A$ is the projective tensor product of $\mathbb{C}[Z]$ and A , i.e., the completion of the algebraic tensor product $\mathbb{C}[Z] \otimes A$ with respect to the norm

$$
||u||_{\gamma} = \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : u = \sum_{i=1}^{n} x_i \otimes y_i \in \mathbb{C}[Z] \otimes \mathcal{A} \right\}.
$$

On the other hand, by (Okayasu [1966](#page-5-0), Theorem 3) we have the isometric $*$ -isomorphism

$$
C^*(\mathbb{C}[Z]\hat{\otimes}_{\gamma}A)\cong C^*(\mathbb{C}[Z])\hat{\otimes}_{\max}A.
$$

Finally, we have

$$
C^*(\mathcal{A}[Z]) \cong C^*(\mathbb{C}[Z] \hat{\otimes}_\gamma \mathcal{A})
$$

\n
$$
\cong C^*(\mathbb{C}[Z]) \hat{\otimes}_{\max} \mathcal{A}
$$

\n
$$
\cong C[-1,1] \otimes \mathcal{A} \cong C([-1,1],\mathcal{A}).
$$

Suppose that A and E are two unital C^* -algebras. Let $S(\mathcal{E})$ be the set of all self-adjoint elements in the closed unit ball of \mathcal{E} . Define the *-homomorphism $\theta : A[Z] \rightarrow$ $C_b(S(\mathcal{E}), A \otimes \mathcal{E})$ by $\theta(F)(b) = \sum_{n=0}^{\infty} a_n \otimes b^n$, where $b \in S(\mathcal{E})$, and $C_b(S(\mathcal{E}), \mathcal{A} \otimes \mathcal{E})$ is the set of all bounded continuous functions from $S(\mathcal{E})$ to $\mathcal{A}\otimes\mathcal{E}$ and \otimes is the minimal (maximal) tensor product.

Corollary 1 The C*-algebra $C([-1, 1], \mathcal{A})$ is *-isomorphic to Im $\tilde{\theta}$, where $\tilde{\theta}$ is the extension of θ .

Proof By Theorem [1](#page-1-0) we have

$$
\|\theta(F)\| = \sup_{b \in S(\mathcal{E})} \left\| \sum_{n=0}^{\infty} a_n \otimes b^n \right\|
$$

\n
$$
\leq \sup_{t \in J} \left\| \sum_{n=0}^{\infty} a_n t^n \right\|
$$

\n
$$
= \|F\|_J
$$

\n
$$
= \|F\|'
$$

On the other hand, since $\lambda 1 \in S(\mathcal{E})$ for $-1 \leq \lambda \leq 1$, we have $||F||_I \le ||\theta(F)||$. Therefore, $||\theta(F)|| = ||F||_I$ and the extension

$$
\tilde{\theta}: C([-1,1], \mathcal{A}) \to C_b(S(\mathcal{E}), \mathcal{A} \otimes \mathcal{E})
$$

is an isometry. \Box

3 Numerical Semigroups and Cauchy Extensions

A numerical semigroup is a submonoid of the additive monoid $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ such that the greatest common divisor of its nonzero elements is equal to one. A submonoid $S \subseteq \mathbb{N}$ is a numerical semigroup if and only if $\mathbb{N} \setminus S$ is a finite set. Let S be a nontrivial submonoid of \mathbb{N} and $0 \neq \delta$ be the greatest common divisor of the elements of S. The function $\sigma : S \to \mathbb{N}$ defined by $\sigma(s) = s/\delta$ is bijective homomorphism between S and Im σ . This means that every nontrivial submonoid of $\mathbb N$ is isomorphic to a numerical semigroup. If S is a numerical semigroup, then $\delta S = \{\delta s : s \in S\}$ is a nontrivial submonoid of N for any integer $\delta > 0$ [see Rosales et al. ([2006\)](#page-5-0)].

Let A be a C^{*}-algebra and S a submonoid of \mathbb{N} . Then, the set $(A, S)[Z]$ consisting of all power series of the form $F(Z) = \sum_{s \in S} a_s Z^s$ belonging to $\mathcal{A}[Z]$ equipped with the norm

$$
||F(Z)||_K = \sup_{t \in K} ||F(t)||.
$$

is a sub-pre-C*-algebra of $A[Z]$, where K is a subset of [0, 1] with 0 as limit point. The completion $[A, S]_K$ of $(A, S)[Z]$ is a C^{*}-algebra which is in fact, (S, K) -Cauchy extension of A. In particular, $[\mathcal{A}]_K = [\mathcal{A}, \mathbb{N}]_K$.

Theorem 2 If S is a numerical semigroup and $I = [0,1]$,then $[A, S]_I \cong [A]_I$.

Proof Put

$$
\mathcal{A}_m = \left\{ F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z] : a_0 = a_1 = \cdots = a_{m-1} = 0 \right\},\
$$

where $m \ge 1$ is an integer. Since S is a numerical semigroup, there exists an integer $m \ge 1$ such that

 $\mathcal{A}_m \subset (\mathcal{A}, S)[Z]$. The completion $\hat{\mathcal{A}}_m$ of \mathcal{A}_m is equal to $\hat{\mathcal{A}}_1$. In fact, we have

$$
at^{\alpha} = \lim_{N \to \infty} \sum_{n=0}^{N} at^{2\alpha} (1 - t^{\alpha})^n,
$$

for $\alpha = 1, 2, 3, \dots$ and any $a \in \mathcal{A}$ and $t \in I$. This shows that $a_1t + a_2t^2 + \cdots + a_{m-1}t^{m-1} \in \hat{\mathcal{A}}_m,$

for any element $a_1, a_2, \ldots, a_{m-1}$ of A. Therefore, $\hat{\mathcal{A}}_1 = \hat{\mathcal{A}}_m$ from which we have $\hat{\mathcal{A}}_1 \subset [\mathcal{A}, S]_I$. Since $0 \in S$, we have $A \subset [A, S]_I$, and therefore, $A[Z] \subseteq [A, S]_I$. Now by [Nourouzi and Reza [2019,](#page-5-0) Theorem 5 (ii), (i)] we have $[\mathcal{A}, S]_I \cong [\mathcal{A}]_I \cong C([0, 1], \mathcal{A}).$

A subset K of real numbers is said to be δ -regular if $K_{\delta} = \{x^{\delta} : x \in K\} = [0, 1]$, where $\delta > 0$ is an even integer. For example, the set

$$
K = \left\{ \sqrt[3]{x} : x \in \mathbb{Q}, 0 \le x \le 1 \right\} \cup \left\{ -\sqrt[3]{x} : x \in \mathbb{R} - \mathbb{Q}, 0 \le x \le 1 \right\}
$$

is a δ -regular set for any even integer $\delta > 1$.

Theorem 3 If K is a δ -regular set and S is a numerical semigroup, then $[A, \delta S]_K \cong C([0, 1], \mathcal{A})$ for any C^* -algebra A.

Proof Let $(m_n)_{n=0}^{\infty}$ be an enumeration of the elements of S. If

$$
F(Z)=\sum_{n=0}^{\infty}a_nZ^{\delta m_n}\in(\mathcal{A},\delta S)[Z],
$$

then

$$
||F(Z)||_K = \sup_{t \in K} \left\| \sum_{n=0}^{\infty} a_n t^{\delta m_n} \right\|
$$

=
$$
\sup_{t \in [0,1]} \left\| \sum_{n=0}^{\infty} a_n t^{m_n} \right\| = ||F^{\delta}(Z)||_{[0,1]},
$$

where $F^{\delta}(Z) = \sum_{n=0}^{\infty} a_n Z^{m_n} \in (A, S)[Z]$. Note that $F \mapsto F^{\delta}$ is a bijective isometric *-homomorphism between $(\mathcal{A}, \delta S)[Z]$ and $(\mathcal{A}, S)[Z]$. Therefore, by Theorem 2, $[\mathcal{A}, \delta S]_K \cong C([0, 1])$ $, A$).

4 Dirichlet Extension of C*-algebras

Let $A < Z >$ be the set of all formal Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-Z}$, where A is a C*-algebra and each $a_n \in \mathcal{A}$ with $\sum_{n=1}^{\infty} ||a_n|| < \infty$. Then, $A < Z >$ is a $*$ -algebra with the pointwise addition, scalar multiplication and involution and the Dirichlet product. That is,

$$
\sum_{n=1}^{\infty} a_n n^{-Z} + \sum_{n=1}^{\infty} b_n n^{-Z} = \sum_{n=1}^{\infty} (a_n + b_n) n^{-Z},
$$

$$
\lambda \sum_{n=1}^{\infty} a_n n^{-Z} = \sum_{n=1}^{\infty} \lambda a_n n^{-Z},
$$

$$
\left(\sum_{n=1}^{\infty} a_n n^{-Z}\right)^* = \sum_{n=1}^{\infty} a_n^* n^{-Z},
$$

$$
\left(\sum_{n=1}^{\infty} a_n n^{-Z}\right) \left(\sum_{n=1}^{\infty} b_n n^{-Z}\right) = \sum_{n=1}^{\infty} \left(\sum_{n=pq} a_p b_q\right) n^{-Z},
$$

where $\sum_{n=1}^{\infty} a_n n^{-Z}$, $\sum_{n=1}^{\infty} b_n n^{-Z} \in \mathcal{A} \le Z >$, and $\lambda \in \mathbb{C}$. If

$$
\mathcal{A}_1 = \left\{ \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < Z > \, : a_1 = 0 \right\},
$$

then \mathcal{A}_1 is an ideal of $\mathcal{A} < Z >$. Since $1 + 4^{-Z}$ has an inverse

$$
\sum_{n=1}^{\infty} (-1)^{n+1} 4^{-(n-1)Z},
$$

then -1 is a spectral value of $(2^{-Z})^2$, and therefore, there is no complete C*-norm on $A \langle Z \rangle$. We need the following proposition [see (Apostol [1976,](#page-5-0) Theorem 11.3)].

Proposition 1 Suppose that A is a C^* -algebra and

$$
F(Z) = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < Z > \, .
$$

If $(s_m)_{m=1}^{\infty}$ is a sequence of real numbers such that $s_m \to$ $+\infty$ and

$$
\sum_{n=1}^{\infty} a_n n^{-s_m} = 0
$$

for all m, then $a_n = 0$ for all n.

Define
$$
\|\cdot\|_D
$$
 by
\n $\|F(Z)\|_D = \sup_{t \in [0,1]} \|\bar{F}(t)\|$,

where $F(Z) = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} \le Z > \mathcal{A} \le t$, $\alpha(t) = 1 - 1/t$ and $\bar{F}(t) = \sum_{n=1}^{\infty} a_n n^{\alpha(t)}$ is a continuous function on [0, 1] with $\bar{F}(0) = a_1$. Note that $\|\cdot\|_D$ is clearly a seminorm on $A < Z >$ and if $||F||_{D} = 0$, then $F = 0$ by Proposition 1. Therefore, $\|\cdot\|_D$ is a norm on $A\langle Z \rangle$. Furthermore,

$$
||FG||_D \le ||F||_D ||G||_D
$$

$$
||FF^*||_D = ||F||_D^2,
$$

for all $F, G \in \mathcal{A} \leq Z >$. Then, $(\mathcal{A} \leq Z > , \| \cdot \|_{D})$ is a pre-C*-algebra and we call the completion $\langle A \rangle_D$ of $A < Z >$ the Dirichlet extension of A.

In the following theorem, if $f \in C[0, 1]$ and $a \in \mathcal{A}$, by the notation fa we mean an A -valued continuous function defined by $(fa)(t) = f(t)a$, for any $t \in [0, 1]$.

Theorem 4 Let A be a C^{*}-algebra. Then, $\langle A \rangle_p \cong$ $C([0,1], \mathcal{A}).$

Proof First note that any $F = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} \le Z >$ induces a continuous function \bar{F} : [0, 1] \rightarrow A as

$$
\bar{F}(t)=\sum_{n=1}^{\infty}a_n n^{\alpha(t)},
$$

where $\alpha(t) = 1 - 1/t$ and $\bar{F}(0) = a_1$. Let

$$
\tilde{\mathcal{A}} = \left\{ \bar{F} : F = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < Z \ge \right\}.
$$

For any $a \in \mathcal{A}$ and $\overline{F} \in \tilde{\mathbb{C}}$ we have $\overline{F}a \in \tilde{\mathcal{A}}$, where

$$
(\bar{F}a)(t) = \sum_{n=1}^{\infty} \lambda_n a n^{\alpha(t)} \quad (t \in [0, 1]).
$$

Note that $\tilde{\mathbb{C}}$ is a self-adjoint algebra of complex functions on [0, 1] which separates the points of [0, 1] and never vanishes on it. By the Stone–Weierstrass theorem \tilde{C} is dense in $C([0, 1])$. Let $f \in C([0, 1])$. Consider a sequence $(F_m)_{m=1}^{\infty}$ in $\mathbb{C} < Z >$ such that $\bar{F}_m \to f$ in $|| \cdot ||_D$. Since each $\bar{F}_m a \in \tilde{\mathcal{A}} \cong \mathcal{A} \langle Z \rangle$ and $\bar{F}_m a \to fa$ in $(\langle \mathcal{A} \rangle_{D}, || \cdot ||_D)$, by (Murphy [1990,](#page-5-0) Lemma 6.4.16) the closed linear span of ${fb : f \in \mathbb{C} < Z > , b \in \mathcal{A}}$ is equal to $C([0, 1], \mathcal{A})$. That is $\langle A \rangle_D \cong C([0,1], A).$

5 M-Cauchy Envelope of C*-algebras

In this section, we replace the subsemigroups of $\mathbb N$ in Sect. [3](#page-2-0) by an at most countable commutative monoid M and use the idea of Sect. [2](#page-1-0) to obtain new C^* -algebras. In fact, by the idea given here we generalize Sects. [2](#page-1-0), [3](#page-2-0) and [4.](#page-2-0)

We began with some notations of crossed product of C*algebras [see e.g., Pedersen [\(1979](#page-5-0)) and Williams [\(2007](#page-5-0))]. Let G be a discrete group and A a C*-algebra. A G-C*algebra $(\mathcal{A}, \lambda_{\mathcal{A}})$ is a group homomorphism $\lambda_A : G \to \text{Aut}(\mathcal{A})$. We denote by $\mathcal{A} \rtimes_{\lambda_A} G$ the crossed product of A by G. The *-homomorphism $\varphi : A \to B$ of C^{*}-algebras is called G-equivariant (or $\lambda_A - \lambda_B$ -equivariant) homomorphism if

$$
\lambda_{\mathcal{B}}(g) \circ \varphi = \varphi \circ \lambda_{\mathcal{A}}(g) \quad (g \in G).
$$

The class $G-C^*$ -algebras and G -equivariant homomorphisms form a category which is denoted by $G-C^*$ -alg. We also denote by C^* -alg the category of C^* -algebras and $*$ homomorphisms.

Let A, S and δ be a C^{*}-algebra, a numerical semigroup and a positive integer, respectively. If K is a subset of $[-1, 1]$ with 0 as limit point then by an argument similar to that of given in Theorem [3,](#page-2-0) the pre-C*-algebra $(A, \delta S)[Z]$ with the norm $\|\cdot\|_K$ is isometric \ast -isomorphism to the pre-C^{*}-algebra $(A, S)[Z]$ with the norm $\|\cdot\|_{K_\delta}$. Therefore, an argument similar to that of given in Theorem [2](#page-2-0) gives that $[\mathcal{A}, \delta S]_K \cong [\mathcal{A}]_{K_{\delta}}$. In particular, we have $[\mathcal{A}, \delta S]_I \cong [\mathcal{A}]_I$, where $I = [0, 1].$

Let A be a C^* -algebra and M an at most countable commutative monoid with unit e. Put

$$
(\mathcal{A}, M)[Z] = \left\{ F(Z) = \sum_{s \in M} a_s Z^s : \sum_{s \in M} ||a_s|| < \infty \right\}
$$

and define addition, scalar multiplication and involution component-wise on $(A, M)[Z]$. Product is defined by

$$
F(Z)G(Z) = \sum_{s \in M} \left(\sum_{s=pq} a_p b_q \right) Z^s,
$$

for any $F(Z) = \sum_{s \in M} a_s Z^s$ and $G(Z) = \sum_{s \in M} b_s Z^s$ in $(A, M)[Z]$. Define a norm on $(A, M)[Z]$ by

$$
||F(Z)||_1 = \sum_{s \in M} ||a_s|| \quad \left(F(Z) = \sum_{s \in M} a_s Z^s \in (A, M)[Z] \right).
$$

Then $(A, M)[Z]$ is a Banach *-algebra with approximate identity. We denote by $[A, M]$ the C*-envelope of $(A, M)[Z]$. We call $[A, M]$ the M-Cauchy envelope of A. Suppose that the map $i : A \rightarrow (A, M)[Z]$ is defined by $a \mapsto F(Z) = aZ^e$ and the map $p : (\mathcal{A}, M)[Z] \to \mathcal{A}$ is defined by $\sum_{s \in M} a_s Z^s \mapsto \sum_{s \in M} a_s$. Since $p \circ i = idA$, we have $\hat{p} \circ \hat{i} = id\mathcal{A}$, and therefore, \hat{i} is an embedding of A in [A, M]. Let π be a nontrivial representation of $(A, M)[Z]$. We denote by $[A, \pi, M]$ the completion of $(A, M)[Z]/\text{ker } \pi$ with norm

$$
||x + \ker \pi|| = ||\pi(x)||.
$$

In particular, if π is the universal representation, then $[A, \pi, M] = [A, M]$. The Banach *-algebra $(A, M)[Z]$ is called $*$ -semisimple if there is a representation π of $(A, M)[Z]$ with ker $\pi = 0$.

Example 1 In the following all Banach $*$ -algebras are assumed to be *-semisimple.

- (i) If $M = \mathbb{N}$, then, by Theorem [1,](#page-1-0) $[\mathcal{A}, M] \cong$ $C([0,1], \mathcal{A});$
- (ii) Let π be the representation of $(A, \mathbb{N})[Z]$ with norm

$$
\|\pi(F)\| = \sup_{t \in K} \left\| \sum_{n=0}^{\infty} a_n t^n \right\|
$$

for any $F(Z) = \sum_{n=0}^{\infty} a_n Z^n$ in $(\mathcal{A}, \mathbb{N})[Z]$. Then, $[\mathcal{A}, \pi, \mathbb{N}] = [\mathcal{A}]_K;$

(iii) Let $\mathbb{N}^* = \{1, 2, 3, \ldots\}$ be the monoid of natural numbers with multiplication as operation. Suppose that π is the representation of $(A, \mathbb{N}^*)[Z]$ with norm

$$
\|\pi(F)\| = \sup_{t \in [0,1]} \left\| \sum_{n=1}^{\infty} a_n n^{\alpha(t)} \right\|
$$

for any $F(Z) = \sum_{n=1}^{\infty} a_n n^{-Z}$ in $(\mathcal{A}, \mathbb{N}^*)[Z]$. Then, $[\mathcal{A}, \pi, \mathbb{N}^*] \cong C([0, 1], \mathcal{A})$ by Theorem [4;](#page-3-0)

(iv) Let G be a discrete group such that $a^2 = e$ for any $a \in G$. Then, $[\mathcal{A}, G] \cong \mathcal{A} \rtimes_{t} G$ where t is the trivial action on G action on G.

Theorem 5 For any at most countable commutative monoid M, there exists a discrete group G and a functor $M: C^*$ -alg $\rightarrow G$ - C^* -alg.

Proof Let $\varphi : A \to B$ be a $*$ -homomorphism of C^{*}-algebras. The map

$$
\tilde{\varphi}: (\mathcal{A}, M)[Z] \rightarrow (\mathcal{B}, M)[Z]
$$

defined by

$$
\tilde{\varphi}\left(\sum_{s\in M}a_s Z^s\right) = \sum_{s\in M}\varphi(a_s)Z^s
$$

induces a *-homomorphism $\hat{\varphi} : [\mathcal{A}, M] \to [\mathcal{B}, M]$. That is $[-, M]$ is a functor on the category of C*-algebras. Let $f : M \to M$ be an automorphism of monoids. The map \tilde{f} : $(\mathcal{A}, M)[Z] \rightarrow (\mathcal{A}, M)[Z]$ defined by $\sum_{s\in M} a_s Z^s \mapsto$ $(\mathcal{A}, M)[Z] \to (\mathcal{A}, M)[Z]$ defined by $\sum_{s \in M} a_s Z^s \mapsto$
 $\sum_{s \in M} a_{f(s)} Z^{f(s)}$ induces the automorphism $\hat{f} : [\mathcal{A}, M] \to$ $[A, M]$ of C^{*}-algebras. Consider the group Aut $(M) = G^{op}$, where G^{op} is the opposite group of G. Consider G as a discrete group. The map

$$
\lambda_{\mathcal{A}}:G\rightarrow \, \text{Aut}\left(\left[\mathcal{A},M\right]\right)
$$

defined by

$$
\lambda_{\mathcal{A}}(g) = \hat{g}_{\mathcal{A}} : [\mathcal{A}, M] \rightarrow [\mathcal{A}, M]
$$

is a homomorphism of groups and λ_A is an action of G on [A, M]. Let $\varphi : A \to B$ be a *-homomorphism of C*-algebras. Since

$$
\tilde{g}_{\mathcal{B}} \circ \tilde{\varphi} = \tilde{\varphi} \circ \tilde{g}_{\mathcal{A}} \quad (g \in G)
$$

we have

$$
\lambda_{\mathcal{B}}(g) \circ \hat{\varphi} = \hat{\varphi} \circ \lambda_{\mathcal{A}}(g) \quad (g \in G)
$$

and $\hat{\varphi}$ is a *G*-equivariant map. Therefore, $M = [-, M] : C^*$ $alg \rightarrow G-C^*$ -alg is the desired functor.

Acknowledgements The authors would like to thank the referees for giving constructive comments which helped to improve the quality of the paper.

References

- Apostol TM (1976) Introduction to analytic number theory. Undergraduate texts in mathematics. Springer, New York
- Arveson W (1977) Notes on extensions of C^{*} -algebras. Duke Math J 44(2):329–355
- Busby RC (1968) Double centralizers and extensions of C^* -algebras. Trans Am Math Soc 132:79–99
- Dixmier J (1977) C^* -algebras. Translated from the French by Francis Jellett. North-Holland Mathematical Library, vol 15. North-Holland Publishing Co., Amsterdam
- Grothendieck A (1955) Produits tensoriels topologiques et espaces nucléaires (French), vol 16. American Mathematical Society: Providence
- Murphy GJ (1990) C^* -algebras and operator theory. Academic Press Inc, Boston
- Nourouzi K, Reza A (2019) Functors induced by Cauchy extension of C^* -algebras. Sahand Commun Math Anal $14(1):27-53$
- Okayasu T (1966) On the tensor products of C^* -algebras. Tohoku Math J 2(18):325–331
- Pedersen GK (1979) C^* -algebras and their automorphism groups. London mathematical society monographs, 14. Academic Press, Inc., New York
- Rosales JC, García-Sánchez PA, García-García JI, Branco MB (2006) Numerical semigroups with maximal embedding dimension. Focus on commutative rings research. Nova Science Publishers, New York, pp 47–53
- Williams DP (2007) Crossed products of C^* -algebras. Mathematical surveys and monographs, 134. American Mathematical Society, Providence

