RESEARCH PAPER

Some Pre-C*-algebras Generated by a C*-algebra ${\cal A}$ with Completion C([-1,1], ${\cal A})$

Kourosh Nourouzi¹ · Ali Reza¹

Received: 1 February 2019/Accepted: 16 November 2019/Published online: 4 December 2019 © Shiraz University 2019

Abstract

For any C*-algebra \mathcal{A} , we give a Banach *-algebra with approximate identity which $C([-1, 1], \mathcal{A})$, the C*-algebra of all \mathcal{A} -valued continuous functions on [0, 1], is its C*-envelope. We show that $C([-1, 1], \mathcal{A})$ is *-isomorphic to a C*-subalgebra of bounded continuous functions from self-adjoint elements of the closed unital ball of \mathcal{E} to $\mathcal{A} \otimes \mathcal{E}$ for any unital C*-algebra \mathcal{E} . Furthermore, for any C*-algebra \mathcal{A} and numerical semigroup S we give a pre-C*-algebra with completion $C([0, 1], \mathcal{A})$ via Cauchy extensions of C*-algebras. It is also shown that the Dirichlet extension of \mathcal{A} is *-isomorphic to $C([0, 1], \mathcal{A})$. Finally, we introduce the notion of M-Cauchy envelope of C*-algebras, where M is an at most countable commutative monoid.

Keywords Pre-C*-algebra · Extension of C*-algebras · Cauchy extension · Dirichlet extension · Crossed product

Mathematics Subject Classification 46L05 · 46M15

1 Introduction and Preliminaries

For any C^{*}-algebra \mathcal{A} finding some pre-C^{*}-algebras with completion $C([0, 1], \mathcal{A})$, the C^{*}-algebra of all \mathcal{A} -valued continuous functions on [0, 1] is interesting. In fact, the idea may be interpreted as recovering $C([0, 1], \mathcal{A})$ by some pre-C^{*}-algebras. One approach to this is given in Nourouzi and Reza (2019) via a type of extension of C^{*}-algebras which are called Cauchy extensions. For the extension of C^{*}-algebras, we refer the reader to, e.g., Arveson (1977) and Busby (1968). In this paper, starting with a C^{*}-algebra \mathcal{A} we give some pre-C^{*}-algebras with completion $C([0, 1], \mathcal{A})$ through Cauchy and Dirichlet extensions of C^{*}-algebras. In the last section, we introduce *M*-Cauchy envelope of C^{*}-algebras, where *M* is an at most countable commutative monoid *M*.

We recall some definitions and results from Nourouzi and Reza (2019) which will be needed.

Let \mathcal{A} be a C*-algebra. We denote by $\mathcal{A}[Z]$ the set of all formal power series $F(Z) = \sum_{n=0}^{\infty} a_n Z^n$, where each $a_n \in$

Kourosh Nourouzi nourouzi@kntu.ac.ir \mathcal{A} and $\sum_{n=0}^{\infty} ||a_n|| < \infty$. Then, $\mathcal{A}[Z]$ becomes a complex involutive algebra with the pointwise addition, scalar multiplication and involution and with the Cauchy product as multiplication. That is, for any formal power series $F(Z) = \sum_{n=0}^{\infty} a_n Z^n$ and $G(Z) = \sum_{n=0}^{\infty} b_n Z^n$ in the complex involutive algebra $\mathcal{A}[Z]$ and scalar $\lambda \in \mathbb{C}$ we have

$$\sum_{n=0}^{\infty} a_n Z^n + \sum_{n=0}^{\infty} b_n Z^n = \sum_{n=0}^{\infty} (a_n + b_n) Z^n,$$
$$\lambda \sum_{n=0}^{\infty} a_n Z^n = \sum_{n=0}^{\infty} \lambda a_n Z^n,$$
$$F^*(Z) = \sum_{n=0}^{\infty} a_n^* Z^n,$$
$$F(Z)G(Z) = \sum_{n=0}^{\infty} \left(\sum_{n=p+q} a_p b_q\right) Z^n.$$

Suppose that *K* is a subset of [-1, 1] such that 0 is a limit point of *K*. The norm $\|\cdot\|_{K}$ defined by

$$\|F\|_{K} = \sup_{t \in K} \left\| \sum_{n=0}^{\infty} a_{n} t^{n} \right\|,$$

for all $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ satisfies $||FF^*||_K = ||F||_K^2$. Note that $(\mathcal{A}[Z], *, \|\cdot\|_K)$ is a pre-C*-algebra which

¹ Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16765-3381 Tehran, Iran

is not a C*-algebra. The completion $[\mathcal{A}]_K$ of $(\mathcal{A}, *, \|\cdot\|_K)$ is called the Cauchy extension of \mathcal{A} which is *-isomorphic to the set of all uniformly continuous functions from K to \mathcal{A} [Nourouzi and Reza 2019, Theorem 5 (iii)]. If K = [0, 1], then $[\mathcal{A}]_K \cong C([0, 1], \mathcal{A})$ [Nourouzi and Reza 2019, Theorem 5 (ii)]. Also, $(\mathcal{A}[Z], *, \|\cdot\|_1)$ is a Banach *-algebra where

$$||F||_1 = \sum_{n=0}^{\infty} ||a_n||$$

for all $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ [see (Nourouzi and Reza 2019, Proposition 1)].

2 C([-1, 1], A) as Enveloping C^{*}-algebra

It is worth mentioning that if $(U_{\lambda})_{\lambda \in \Lambda}$ is an approximate identity for C*-algebra \mathcal{A} , then $(U_{\lambda})_{\lambda \in \Lambda}$ is also an approximate identity for $(\mathcal{A}[Z], \|\cdot\|_1)$. Indeed, let $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ and $\varepsilon > 0$ be given. There is a positive integer N such that $\sum_{n=N+1}^{\infty} 2||a_n|| < \varepsilon$. For any $\lambda \in \Lambda$, we have

$$\|F(Z) - U_{\lambda}F(Z)\| = \sum_{n=0}^{\infty} \|a_n - U_{\lambda}a_n\|$$
$$= \sum_{n=0}^{N} \|a_n - U_{\lambda}a_n\|$$
$$+ \sum_{n=N+1}^{\infty} \|a_n - U_{\lambda}a_n\|$$
$$\leq \sum_{n=0}^{N} \|a_n - U_{\lambda}a_n\| + \varepsilon.$$

Therefore,

 $\lim_{\lambda} \sup \|F(Z) - U_{\lambda}F(Z)\| \leq \varepsilon.$

Since $\varepsilon > 0$ was arbitrary, we have

$$\lim_{\lambda} \|F(Z) - U_{\lambda}F(Z)\| = 0$$

Similarly, we get

$$\lim_{\lambda} \|F(Z) - F(Z)U_{\lambda}\| = 0.$$

That is, $(U_{\lambda})_{\lambda \in \Lambda}$ is also an approximate identity for $(\mathcal{A}[Z], \|\cdot\|_1)$.

Theorem 1 For any C^{*}-algebra \mathcal{A} , $C([-1,1],\mathcal{A})$ is the enveloping C^{*}-algebra of $(\mathcal{A}[Z],*, \|\cdot\|_1)$.

Proof We first show that (i): the C*-envelope C*($\mathcal{A}[Z]$) of $(\mathcal{A}[Z], \|\cdot\|_1)$ is not trivial and (ii): C*($\mathbb{C}[Z]$) \cong C[-1, 1]. To prove (i), let Φ be the universal representation of C*-

algebra $C(J, \mathcal{A})$, where J = [-1, 1]. Then, $\Phi \circ i$ is a faithful representation of Banach *-algebra $(\mathcal{A}[Z], \|\cdot\|_1)$, where $i : \mathcal{A}[Z] \hookrightarrow C(J, \mathcal{A})$ is the inclusion map. Consider the (nontrivial) universal representation π of $(\mathcal{A}[Z], \|\cdot\|_1)$ [see (Dixmier 1977, 2.7.6)]. Let *Rep* denote the set of all representations of $\mathcal{A}[Z]$. We have

$$\|F\|_J \le \sup_{\omega \in Rep} \|\omega(F)\| = \|\pi(F)\|.$$

This implies that π is faithful. Therefore, $\mathcal{A}[Z]$ equipped with the norm $\|\cdot\|'$ defined by $\|F\|' = \|\pi(F)\|$ for any $F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z]$ is a pre-C*-algebra with completion C*($\mathcal{A}[Z]$).

To see (ii), since $\|\cdot\|_J \leq \|\cdot\|'$, one can consider $B = C^*(\mathbb{C}[Z])$ as a *-subalgebra of E = C[-1, 1]. Let $f \in B$. We have $\sigma_E(f) = f(J) = \sigma_B(f)$ (σ stands for the spectrum), and therefore, $r_B(f) = r_E(f)$, where r_B and r_E are the spectral radii with respect to B and E, respectively. We have

$$||f||_J^2 = ||f\bar{f}||_J = r_E(f\bar{f}) = r_B(f\bar{f}) = ||f\bar{f}||' = ||f||'^2.$$

That is $||f||' = ||f||_J$. This implies that $C^*(\mathbb{C}[Z]) \cong C[-1, 1]$.

Now, from (Grothendieck 1955, Theorem 2) we have $\mathcal{A}[Z] \cong \mathbb{C}[Z] \hat{\otimes_{\gamma}} \mathcal{A},$

where $\mathbb{C}[Z]\hat{\otimes}_{\gamma}\mathcal{A}$ is the projective tensor product of $\mathbb{C}[Z]$ and \mathcal{A} , i.e., the completion of the algebraic tensor product $\mathbb{C}[Z] \otimes \mathcal{A}$ with respect to the norm

$$\|u\|_{\gamma} = \inf \left\{ \sum_{i=1}^n \|x_i\| \|y_i\| : u = \sum_{i=1}^n x_i \otimes y_i \in \mathbb{C}[Z] \otimes \mathcal{A} \right\}.$$

On the other hand, by (Okayasu 1966, Theorem 3) we have the isometric *-isomorphism

$$C^*(\mathbb{C}[Z]\hat{\otimes_{\gamma}}\mathcal{A}) \cong C^*(\mathbb{C}[Z])\hat{\otimes}_{\max}\mathcal{A}.$$

Finally, we have

$$C^*(\mathcal{A}[Z]) \cong C^*(\mathbb{C}[Z] \hat{\otimes_{\gamma}} \mathcal{A})$$

$$\cong C^*(\mathbb{C}[Z]) \hat{\otimes}_{\max} \mathcal{A}$$

$$\cong C[-1,1] \otimes \mathcal{A} \cong C([-1,1], \mathcal{A}).$$

Suppose that \mathcal{A} and \mathcal{E} are two unital C*-algebras. Let $S(\mathcal{E})$ be the set of all self-adjoint elements in the closed unit ball of \mathcal{E} . Define the *-homomorphism $\theta : \mathcal{A}[Z] \to C_b(S(\mathcal{E}), \mathcal{A} \otimes \mathcal{E})$ by $\theta(F)(b) = \sum_{n=0}^{\infty} a_n \otimes b^n$, where $b \in S(\mathcal{E})$, and $C_b(S(\mathcal{E}), \mathcal{A} \otimes \mathcal{E})$ is the set of all bounded continuous functions from $S(\mathcal{E})$ to $\mathcal{A} \otimes \mathcal{E}$ and \otimes is the minimal (maximal) tensor product.

Corollary 1 The C*-algebra C([-1, 1], A) is *-isomorphic to Im $\tilde{\theta}$, where $\tilde{\theta}$ is the extension of θ .

Proof By Theorem 1 we have

$$\|\theta(F)\| = \sup_{b \in S(\mathcal{E})} \left\| \sum_{n=0}^{\infty} a_n \otimes b^n \right\|$$
$$\leq \sup_{t \in J} \left\| \sum_{n=0}^{\infty} a_n t^n \right\|$$
$$= \|F\|_J$$
$$= \|F\|'$$

On the other hand, since $\lambda 1 \in S(\mathcal{E})$ for $-1 \leq \lambda \leq 1$, we have $||F||_J \leq ||\theta(F)||$. Therefore, $||\theta(F)|| = ||F||_J$ and the extension

$$\theta: C([-1,1],\mathcal{A}) \to C_b(S(\mathcal{E}),\mathcal{A}\otimes\mathcal{E})$$

is an isometry.

3 Numerical Semigroups and Cauchy Extensions

A numerical semigroup is a submonoid of the additive monoid $\mathbb{N} = \{0, 1, 2, 3, ...\}$ such that the greatest common divisor of its nonzero elements is equal to one. A submonoid $S \subseteq \mathbb{N}$ is a numerical semigroup if and only if $\mathbb{N} \setminus S$ is a finite set. Let *S* be a nontrivial submonoid of \mathbb{N} and $0 \neq \delta$ be the greatest common divisor of the elements of *S*. The function $\sigma : S \to \mathbb{N}$ defined by $\sigma(s) = s/\delta$ is bijective homomorphism between *S* and Im σ . This means that every nontrivial submonoid of \mathbb{N} is isomorphic to a numerical semigroup. If *S* is a numerical semigroup, then $\delta S = \{\delta s : s \in S\}$ is a nontrivial submonoid of \mathbb{N} for any integer $\delta > 0$ [see Rosales et al. (2006)].

Let \mathcal{A} be a C*-algebra and *S* a submonoid of \mathbb{N} . Then, the set $(\mathcal{A}, S)[Z]$ consisting of all power series of the form $F(Z) = \sum_{s \in S} a_s Z^s$ belonging to $\mathcal{A}[Z]$ equipped with the norm

$$\|F(Z)\|_{K} = \sup_{t \in K} \|F(t)\|.$$

is a sub-pre-C*-algebra of $\mathcal{A}[Z]$, where *K* is a subset of [0, 1] with 0 as limit point. The completion $[\mathcal{A}, S]_K$ of $(\mathcal{A}, S)[Z]$ is a C*-algebra which is in fact, (S, K)-Cauchy extension of \mathcal{A} . In particular, $[\mathcal{A}]_K = [\mathcal{A}, \mathbb{N}]_K$.

Theorem 2 If S is a numerical semigroup and I = [0, 1], then $[\mathcal{A}, S]_I \cong [\mathcal{A}]_I$.

Proof Put

$$\mathcal{A}_m = \left\{ F(Z) = \sum_{n=0}^{\infty} a_n Z^n \in \mathcal{A}[Z] : a_0 = a_1 = \cdots = a_{m-1} = 0 \right\},$$

where $m \ge 1$ is an integer. Since S is a numerical semigroup, there exists an integer $m \ge 1$ such that $\mathcal{A}_m \subset (\mathcal{A}, S)[Z]$. The completion $\hat{\mathcal{A}}_m$ of \mathcal{A}_m is equal to $\hat{\mathcal{A}}_1$. In fact, we have

$$at^{\alpha} = \lim_{N \to \infty} \sum_{n=0}^{N} at^{2\alpha} (1-t^{\alpha})^n,$$

for $\alpha = 1, 2, 3, ...$ and any $a \in \mathcal{A}$ and $t \in I$. This shows that $a_1t + a_2t^2 + \cdots + a_{m-1}t^{m-1} \in \hat{\mathcal{A}}_m$,

for any element $a_1, a_2, \ldots, a_{m-1}$ of \mathcal{A} . Therefore, $\hat{\mathcal{A}}_1 = \hat{\mathcal{A}}_m$ from which we have $\hat{\mathcal{A}}_1 \subset [\mathcal{A}, S]_I$. Since $0 \in S$, we have $\mathcal{A} \subset [\mathcal{A}, S]_I$, and therefore, $\mathcal{A}[Z] \subseteq [\mathcal{A}, S]_I$. Now by [Nourouzi and Reza 2019, Theorem 5 (ii), (i)] we have $[\mathcal{A}, S]_I \cong [\mathcal{A}]_I \cong C([0, 1], \mathcal{A})$.

A subset *K* of real numbers is said to be δ -regular if $K_{\delta} = \{x^{\delta} : x \in K\} = [0, 1]$, where $\delta > 0$ is an even integer. For example, the set

$$K = \left\{ \sqrt[\delta]{x} : x \in \mathbb{Q}, 0 \le x \le 1 \right\} \cup \left\{ -\sqrt[\delta]{x} : x \in \mathbb{R} - \mathbb{Q}, 0 \le x \le 1 \right\}$$

is a δ -regular set for any even integer $\delta > 1$.

Theorem 3 If K is a δ -regular set and S is a numerical semigroup, then $[\mathcal{A}, \delta S]_K \cong C([0, 1], \mathcal{A})$ for any C^{*}-algebra \mathcal{A} .

Proof Let $(m_n)_{n=0}^{\infty}$ be an enumeration of the elements of S. If

$$F(Z) = \sum_{n=0}^{\infty} a_n Z^{\delta m_n} \in (\mathcal{A}, \delta S)[Z],$$

then

$$\begin{split} \|F(Z)\|_{K} &= \sup_{t \in K} \left\| \sum_{n=0}^{\infty} a_{n} t^{\delta m_{n}} \right\| \\ &= \sup_{t \in [0,1]} \left\| \sum_{n=0}^{\infty} a_{n} t^{m_{n}} \right\| = \left\| F^{\delta}(Z) \right\|_{[0,1]} \end{split}$$

where $F^{\delta}(Z) = \sum_{n=0}^{\infty} a_n Z^{m_n} \in (\mathcal{A}, S)[Z]$. Note that $F \mapsto F^{\delta}$ is a bijective isometric *-homomorphism between $(\mathcal{A}, \delta S)[Z]$ and $(\mathcal{A}, S)[Z]$. Therefore, by Theorem 2, $[\mathcal{A}, \delta S]_K \cong C([0, 1], \mathcal{A})$.

4 Dirichlet Extension of C^{*}-algebras

Let $\mathcal{A} < Z >$ be the set of all formal Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-Z}$, where \mathcal{A} is a C*-algebra and each $a_n \in \mathcal{A}$ with $\sum_{n=1}^{\infty} ||a_n|| < \infty$. Then, $\mathcal{A} < Z >$ is a *-algebra with the pointwise addition, scalar multiplication and involution and the Dirichlet product. That is,

$$\sum_{n=1}^{\infty} a_n n^{-Z} + \sum_{n=1}^{\infty} b_n n^{-Z} = \sum_{n=1}^{\infty} (a_n + b_n) n^{-Z},$$
$$\lambda \sum_{n=1}^{\infty} a_n n^{-Z} = \sum_{n=1}^{\infty} \lambda a_n n^{-Z},$$
$$\left(\sum_{n=1}^{\infty} a_n n^{-Z}\right)^* = \sum_{n=1}^{\infty} a_n^* n^{-Z},$$
$$\left(\sum_{n=1}^{\infty} a_n n^{-Z}\right) \left(\sum_{n=1}^{\infty} b_n n^{-Z}\right) = \sum_{n=1}^{\infty} \left(\sum_{n=pq}^{n-pq} a_p b_q\right) n^{-Z},$$

where $\sum_{n=1}^{\infty} a_n n^{-Z}$, $\sum_{n=1}^{\infty} b_n n^{-Z} \in \mathcal{A} < \mathbb{Z} >$, and $\lambda \in \mathbb{C}$. If

$$\mathcal{A}_{1} = \left\{ \sum_{n=1}^{\infty} a_{n} n^{-Z} \in \mathcal{A} < Z > : a_{1} = 0 \right\},$$

then \mathcal{A}_1 is an ideal of $\mathcal{A}\!<\!Z\!>$. Since $1+4^{-Z}$ has an inverse

$$\sum_{n=1}^{\infty} (-1)^{n+1} 4^{-(n-1)Z},$$

then -1 is a spectral value of $(2^{-Z})^2$, and therefore, there is no complete C*-norm on $\mathcal{A} < Z >$. We need the following proposition [see (Apostol 1976, Theorem 11.3)].

Proposition 1 Suppose that A is a C^{*}-algebra and

$$F(Z) = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < Z > .$$

If $(s_m)_{m=1}^{\infty}$ is a sequence of real numbers such that $s_m \rightarrow +\infty$ and

$$\sum_{n=1}^{\infty} a_n n^{-s_m} = 0$$

for all m, then $a_n = 0$ for all n.

Define $\|\cdot\|_D$ by $\|F(Z)\|_D = \sup_{t \in [0,1]} \|\overline{F}(t)\|,$

where $F(Z) = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < Z > , \alpha(t) = 1 - 1/t$ and $\bar{F}(t) = \sum_{n=1}^{\infty} a_n n^{\alpha(t)}$ is a continuous function on [0, 1] with $\bar{F}(0) = a_1$. Note that $\|\cdot\|_D$ is clearly a seminorm on $\mathcal{A} < Z >$ and if $\|F\|_D = 0$, then F = 0 by Proposition 1. Therefore, $\|\cdot\|_D$ is a norm on $\mathcal{A} < Z >$. Furthermore,

$$||FG||_{D} \le ||F||_{D} ||G||_{D}$$
$$||FF^{*}||_{D} = ||F||_{D}^{2},$$

for all $F, G \in \mathcal{A} < Z >$. Then, $(\mathcal{A} < Z > , \|\cdot\|_D)$ is a pre-C^{*}-algebra and we call the completion $<\mathcal{A} >_D$ of $\mathcal{A} < Z >$ the Dirichlet extension of \mathcal{A} . In the following theorem, if $f \in C[0, 1]$ and $a \in A$, by the notation fa we mean an A-valued continuous function defined by (fa)(t) = f(t)a, for any $t \in [0, 1]$.

Theorem 4 Let \mathcal{A} be a C^{*}-algebra. Then, $\langle \mathcal{A} \rangle_D \cong C([0,1],\mathcal{A})$.

Proof First note that any $F = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < \mathbb{Z} >$ induces a continuous function $\overline{F} : [0, 1] \to \mathcal{A}$ as

$$\bar{F}(t) = \sum_{n=1}^{\infty} a_n n^{\alpha(t)},$$

where $\alpha(t) = 1 - 1/t$ and $\overline{F}(0) = a_1$. Let

$$\tilde{\mathcal{A}} = \left\{ \bar{F} : F = \sum_{n=1}^{\infty} a_n n^{-Z} \in \mathcal{A} < Z > \right\}.$$

For any $a \in \mathcal{A}$ and $\overline{F} \in \mathbb{C}$ we have $\overline{F}a \in \tilde{\mathcal{A}}$, where

$$(\bar{F}a)(t) = \sum_{n=1}^{\infty} \lambda_n a n^{\alpha(t)} \quad (t \in [0, 1])$$

Note that $\tilde{\mathbb{C}}$ is a self-adjoint algebra of complex functions on [0, 1] which separates the points of [0, 1] and never vanishes on it. By the Stone–Weierstrass theorem $\tilde{\mathbb{C}}$ is dense in C([0, 1]). Let $f \in C([0, 1])$. Consider a sequence $(F_m)_{m=1}^{\infty}$ in $\mathbb{C} < Z >$ such that $\bar{F}_m \to f$ in $\|\cdot\|_D$. Since each $\bar{F}_m a \in \tilde{\mathcal{A}} \cong \mathcal{A} < Z >$ and $\bar{F}_m a \to f a$ in $(<\mathcal{A} > _D, \|\cdot\|_D)$, by (Murphy 1990, Lemma 6.4.16) the closed linear span of $\{fb: f \in \mathbb{C} < Z >, b \in \mathcal{A}\}$ is equal to $C([0, 1], \mathcal{A})$. That is $<\mathcal{A} >_D \cong C([0, 1], \mathcal{A})$.

5 M-Cauchy Envelope of C^{*}-algebras

In this section, we replace the subsemigroups of \mathbb{N} in Sect. 3 by an at most countable commutative monoid M and use the idea of Sect. 2 to obtain new C*-algebras. In fact, by the idea given here we generalize Sects. 2, 3 and 4.

We began with some notations of crossed product of C^{*}algebras [see e.g., Pedersen (1979) and Williams (2007)]. Let *G* be a discrete group and *A* a C^{*}-algebra. A *G*-C^{*}algebra $(\mathcal{A}, \lambda_{\mathcal{A}})$ is a group homomorphism $\lambda_{\mathcal{A}}: G \to \operatorname{Aut}(\mathcal{A})$. We denote by $\mathcal{A} \rtimes_{\lambda_{\mathcal{A}}} G$ the crossed product of *A* by *G*. The *-homomorphism $\varphi : \mathcal{A} \to \mathcal{B}$ of C^{*}-algebras is called *G*-equivariant (or $\lambda_A - \lambda_B$ -equivariant) homomorphism if

$$\lambda_{\mathcal{B}}(g) \circ \varphi = \varphi \circ \lambda_{\mathcal{A}}(g) \quad (g \in G).$$

The class G-C*-algebras and G-equivariant homomorphisms form a category which is denoted by G-C*-alg. We also denote by C*-alg the category of C*-algebras and *-homomorphisms.

Let \mathcal{A} , S and δ be a C*-algebra, a numerical semigroup and a positive integer, respectively. If K is a subset of [-1, 1] with 0 as limit point then by an argument similar to that of given in Theorem 3, the pre-C*-algebra $(\mathcal{A}, \delta S)[Z]$ with the norm $\|\cdot\|_{K}$ is isometric *-isomorphism to the pre-C*-algebra $(\mathcal{A}, S)[Z]$ with the norm $\|\cdot\|_{K_{\delta}}$. Therefore, an argument similar to that of given in Theorem 2 gives that $[\mathcal{A}, \delta S]_{K} \cong [\mathcal{A}]_{K_{\delta}}$. In particular, we have $[\mathcal{A}, \delta S]_{I} \cong [\mathcal{A}]_{I}$, where I = [0, 1].

Let \mathcal{A} be a C^{*}-algebra and M an at most countable commutative monoid with unit e. Put

$$(\mathcal{A}, M)[Z] = \left\{ F(Z) = \sum_{s \in M} a_s Z^s : \sum_{s \in M} ||a_s|| < \infty \right\}$$

and define addition, scalar multiplication and involution component-wise on $(\mathcal{A}, M)[Z]$. Product is defined by

$$F(Z)G(Z) = \sum_{s \in M} \left(\sum_{s=pq} a_p b_q \right) Z^s,$$

for any $F(Z) = \sum_{s \in M} a_s Z^s$ and $G(Z) = \sum_{s \in M} b_s Z^s$ in $(\mathcal{A}, M)[Z]$. Define a norm on $(\mathcal{A}, M)[Z]$ by

$$||F(Z)||_1 = \sum_{s \in M} ||a_s|| \quad \left(F(Z) = \sum_{s \in M} a_s Z^s \in (\mathcal{A}, M)[Z]\right).$$

Then $(\mathcal{A}, M)[Z]$ is a Banach *-algebra with approximate identity. We denote by $[\mathcal{A}, M]$ the C*-envelope of $(\mathcal{A}, M)[Z]$. We call $[\mathcal{A}, M]$ the *M*-Cauchy envelope of \mathcal{A} . Suppose that the map $i : \mathcal{A} \to (\mathcal{A}, M)[Z]$ is defined by $a \mapsto F(Z) = aZ^e$ and the map $p : (\mathcal{A}, M)[Z] \to \mathcal{A}$ is defined by $\sum_{s \in M} a_s Z^s \mapsto \sum_{s \in M} a_s$. Since $p \circ i = id\mathcal{A}$, we have $\hat{p} \circ \hat{i} = id\mathcal{A}$, and therefore, \hat{i} is an embedding of \mathcal{A} in $[\mathcal{A}, M]$. Let π be a nontrivial representation of $(\mathcal{A}, M)[Z]$. We denote by $[\mathcal{A}, \pi, M]$ the completion of $(\mathcal{A}, M)[Z]/\ker \pi$ with norm

$$||x + \ker \pi|| = ||\pi(x)||.$$

In particular, if π is the universal representation, then $[\mathcal{A}, \pi, M] = [\mathcal{A}, M]$. The Banach *-algebra $(\mathcal{A}, M)[Z]$ is called *-semisimple if there is a representation π of $(\mathcal{A}, M)[Z]$ with ker $\pi = 0$.

Example 1 In the following all Banach *-algebras are assumed to be *-semisimple.

- (i) If $M = \mathbb{N}$, then, by Theorem 1, $[\mathcal{A}, M] \cong C([0, 1], \mathcal{A});$
- (ii) Let π be the representation of $(\mathcal{A}, \mathbb{N})[Z]$ with norm

$$\|\pi(F)\| = \sup_{t \in K} \left\| \sum_{n=0}^{\infty} a_n t^n \right\|$$

for any $F(Z) = \sum_{n=0}^{\infty} a_n Z^n$ in $(\mathcal{A}, \mathbb{N})[Z]$. Then, $[\mathcal{A}, \pi, \mathbb{N}] = [\mathcal{A}]_K$;

(iii) Let $\mathbb{N}^* = \{1, 2, 3, ...\}$ be the monoid of natural numbers with multiplication as operation. Suppose that π is the representation of $(\mathcal{A}, \mathbb{N}^*)[Z]$ with norm

$$\|\pi(F)\| = \sup_{t \in [0,1]} \left\| \sum_{n=1}^{\infty} a_n n^{\alpha(t)} \right\|$$

for any $F(Z) = \sum_{n=1}^{\infty} a_n n^{-Z}$ in $(\mathcal{A}, \mathbb{N}^*)[Z]$. Then, $[\mathcal{A}, \pi, \mathbb{N}^*] \cong C([0, 1], \mathcal{A})$ by Theorem 4;

(iv) Let G be a discrete group such that $a^2 = e$ for any $a \in G$. Then, $[\mathcal{A}, G] \cong \mathcal{A} \rtimes_t G$ where t is the trivial action on G.

Theorem 5 For any at most countable commutative monoid M, there exists a discrete group G and a functor $M : C^* \text{-}alg \rightarrow G\text{-}C^*\text{-}alg.$

Proof Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a *-homomorphism of C*-algebras. The map

$$ilde{arphi}: (\mathcal{A}, M)[Z]
ightarrow (\mathcal{B}, M)[Z]$$

defined by

$$\tilde{\varphi}\left(\sum_{s\in M}a_sZ^s\right)=\sum_{s\in M}\varphi(a_s)Z^s$$

induces a *-homomorphism $\hat{\varphi} : [\mathcal{A}, M] \to [\mathcal{B}, M]$. That is [-, M] is a functor on the category of C*-algebras. Let $f : M \to M$ be an automorphism of monoids. The map $\tilde{f} : (\mathcal{A}, M)[Z] \to (\mathcal{A}, M)[Z]$ defined by $\sum_{s \in M} a_s Z^s \mapsto \sum_{s \in M} a_{f(s)} Z^{f(s)}$ induces the automorphism $\hat{f} : [\mathcal{A}, M] \to [\mathcal{A}, M]$ of C*-algebras. Consider the group Aut $(M) = G^{op}$, where G^{op} is the opposite group of G. Consider G as a discrete group. The map

$$\lambda_{\mathcal{A}}: G \to \operatorname{Aut}\left([\mathcal{A}, M]\right)$$

defined by

$$\lambda_{\mathcal{A}}(g) = \hat{g}_{\mathcal{A}} : [\mathcal{A}, M] \to [\mathcal{A}, M]$$

is a homomorphism of groups and λ_A is an action of G on $[\mathcal{A}, M]$. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a *-homomorphism of C*-algebras. Since

$$\tilde{g}_{\mathcal{B}} \circ \tilde{\varphi} = \tilde{\varphi} \circ \tilde{g}_{\mathcal{A}} \quad (g \in G)$$

we have

$$\lambda_{\mathcal{B}}(g) \circ \hat{\varphi} = \hat{\varphi} \circ \lambda_{\mathcal{A}}(g) \quad (g \in G)$$

and $\hat{\varphi}$ is a *G*-equivariant map. Therefore, $M = [-, M] : \mathbb{C}^*$ - alg $\rightarrow G$ - \mathbb{C}^* -alg is the desired functor.

Acknowledgements The authors would like to thank the referees for giving constructive comments which helped to improve the quality of the paper.

References

- Apostol TM (1976) Introduction to analytic number theory. Undergraduate texts in mathematics. Springer, New York
- Arveson W (1977) Notes on extensions of C^{*} -algebras. Duke Math J 44(2):329–355
- Busby RC (1968) Double centralizers and extensions of C* -algebras. Trans Am Math Soc 132:79–99
- Dixmier J (1977) C*-algebras. Translated from the French by Francis Jellett. North-Holland Mathematical Library, vol 15. North-Holland Publishing Co., Amsterdam
- Grothendieck A (1955) Produits tensoriels topologiques et espaces nucléaires (French), vol 16. American Mathematical Society: Providence

- Murphy GJ (1990) C^* -algebras and operator theory. Academic Press Inc, Boston
- Nourouzi K, Reza A (2019) Functors induced by Cauchy extension of C*-algebras. Sahand Commun Math Anal 14(1):27–53
- Okayasu T (1966) On the tensor products of C*-algebras. Tohoku Math J 2(18):325–331
- Pedersen GK (1979) C*-algebras and their automorphism groups. London mathematical society monographs, 14. Academic Press, Inc., New York
- Rosales JC, García-Sánchez PA, García-García JI, Branco MB (2006) Numerical semigroups with maximal embedding dimension. Focus on commutative rings research. Nova Science Publishers, New York, pp 47–53
- Williams DP (2007) Crossed products of C*-algebras. Mathematical surveys and monographs, 134. American Mathematical Society, Providence

