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Abstract
For any C�-algebra A, we give a Banach �-algebra with approximate identity which Cð½�1; 1�;AÞ, the C�-algebra of all A-

valued continuous functions on [0, 1], is its C�-envelope. We show that Cð½�1; 1�;AÞ is �-isomorphic to a C�-subalgebra
of bounded continuous functions from self-adjoint elements of the closed unital ball of E to A� E for any unital C�-algebra
E. Furthermore, for any C�-algebra A and numerical semigroup S we give a pre-C�-algebra with completion Cð½0; 1�;AÞ
via Cauchy extensions of C�-algebras. It is also shown that the Dirichlet extension of A is �-isomorphic to Cð½0; 1�;AÞ.
Finally, we introduce the notion of M-Cauchy envelope of C�-algebras, where M is an at most countable commutative

monoid.
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1 Introduction and Preliminaries

For any C�-algebra A finding some pre-C�-algebras with

completion Cð½0; 1�;AÞ, the C�-algebra of all A-valued

continuous functions on [0, 1] is interesting. In fact, the

idea may be interpreted as recovering Cð½0; 1�;AÞ by some

pre-C�-algebras. One approach to this is given in Nourouzi

and Reza (2019) via a type of extension of C�-algebras
which are called Cauchy extensions. For the extension of

C�-algebras, we refer the reader to, e.g., Arveson (1977)

and Busby (1968). In this paper, starting with a C�-algebra
A we give some pre-C�-algebras with completion

Cð½0; 1�;AÞ through Cauchy and Dirichlet extensions of

C�-algebras. In the last section, we introduce M-Cauchy

envelope of C�-algebras, where M is an at most count-

able commutative monoid M.

We recall some definitions and results from Nourouzi

and Reza (2019) which will be needed.

Let A be a C�-algebra. We denote by A½Z� the set of all
formal power series FðZÞ ¼

P1
n¼0 anZ

n; where each an 2

A and
P1

n¼0 kank\1. Then, A½Z� becomes a complex

involutive algebra with the pointwise addition, scalar

multiplication and involution and with the Cauchy product

as multiplication. That is, for any formal power series

FðZÞ ¼
P1

n¼0 anZ
n and GðZÞ ¼

P1
n¼0 bnZ

n in the complex

involutive algebra A½Z� and scalar k 2 C we have

X1

n¼0

anZ
n þ

X1

n¼0

bnZ
n ¼

X1

n¼0

an þ bnð ÞZn;

k
X1

n¼0

anZ
n ¼

X1

n¼0

kanZ
n;

F�ðZÞ ¼
X1

n¼0

a�nZ
n;

FðZÞGðZÞ ¼
X1

n¼0

X

n¼pþq

apbq

 !

Zn:

Suppose that K is a subset of ½�1; 1� such that 0 is a limit

point of K. The norm k � kK defined by

Fk kK¼ sup
t2K

X1

n¼0

ant
n

�
�
�
�
�

�
�
�
�
�
;

for all FðZÞ ¼
P1

n¼0 anZ
n 2 A½Z� satisfies kFF�kK ¼

kFk2K . Note that ðA½Z�; �; k � kKÞ is a pre-C�-algebra which
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is not a C�-algebra. The completion ½A�K of ðA; �; k � kKÞ is
called the Cauchy extension of A which is �-isomorphic to

the set of all uniformly continuous functions from K to A
[Nourouzi and Reza 2019, Theorem 5 (iii)]. If K ¼ ½0; 1�,
then ½A�K ffi Cð½0; 1�;AÞ [Nourouzi and Reza 2019, Theo-

rem 5 (ii)]. Also, ðA½Z�; �; k � k1Þ is a Banach �-algebra
where

kFk1 ¼
X1

n¼0

kank

for all FðZÞ ¼
P1

n¼0 anZ
n 2 A½Z� [see (Nourouzi and Reza

2019, Proposition 1)].

2 C(½- 1; 1�;AÞ as Enveloping C*-algebra

It is worth mentioning that if ðUkÞk2K is an approximate

identity for C�-algebra A, then ðUkÞk2K is also an

approximate identity for ðA½Z�; k � k1Þ. Indeed, let FðZÞ ¼P1
n¼0 anZ

n 2 A½Z� and e[ 0 be given. There is a positive

integer N such that
P1

n¼Nþ1 2kank\e. For any k 2 K, we
have

kFðZÞ � UkFðZÞk ¼
X1

n¼0

kan � Ukank

¼
XN

n¼0

kan � Ukank

þ
X1

n¼Nþ1

kan � Ukank

�
XN

n¼0

kan � Ukank þ e:

Therefore,

lim
k

sup FðZÞ � UkFðZÞk k� e:

Since e[ 0 was arbitrary, we have

lim
k

FðZÞ � UkFðZÞk k ¼ 0:

Similarly, we get

lim
k

FðZÞ � FðZÞUkk k ¼ 0:

That is, ðUkÞk2K is also an approximate identity for

ðA½Z�; k � k1Þ.

Theorem 1 For any C�-algebra A, Cð½�1; 1�;AÞ is the

enveloping C�-algebra of ðA½Z�; �; k � k1Þ.

Proof We first show that (i): the C�-envelope C�ðA½Z�Þ of
ðA½Z�; k � k1Þ is not trivial and (ii): C�ðC½Z�Þ ffi C½�1; 1�.
To prove (i), let U be the universal representation of C�-

algebra CðJ;AÞ, where J ¼ ½�1; 1�. Then, U 	 i is a

faithful representation of Banach �-algebra ðA½Z�; k � k1Þ,
where i : A½Z�,!CðJ;AÞ is the inclusion map. Consider the

(nontrivial) universal representation p of ðA½Z�; k � k1Þ [see
(Dixmier 1977, 2.7.6)]. Let Rep denote the set of all rep-

resentations of A½Z�. We have

kFkJ � sup
x2Rep

kxðFÞk ¼ kpðFÞk:

This implies that p is faithful. Therefore, A½Z� equipped
with the norm k � k0 defined by kFk0 ¼ kpðFÞk for any

FðZÞ ¼
P1

n¼0 anZ
n 2 A½Z� is a pre-C�-algebra with com-

pletion C�ðA½Z�Þ.
To see (ii), since k � kJ �k � k0, one can consider B ¼

C�ðC½Z�Þ as a �-subalgebra of E ¼ C½�1; 1�. Let f 2 B. We

have rEðf Þ ¼ f ðJÞ ¼ rBðf Þ (r stands for the spectrum), and

therefore, rBðf Þ ¼ rEðf Þ, where rB and rE are the spectral

radii with respect to B and E, respectively. We have

kfk2J ¼ kf �fkJ ¼ rEðf �f Þ ¼ rBðf �f Þ ¼ kf �fk0 ¼ kfk02:

That is kfk0 ¼ kfkJ . This implies that C�ðC½Z�Þ ffi
C½�1; 1�.

Now, from (Grothendieck 1955, Theorem 2) we have

A½Z� ffi C½Z��̂cA;

where C½Z��̂cA is the projective tensor product of C½Z�
and A, i.e., the completion of the algebraic tensor product

C½Z� � A with respect to the norm

kukc ¼ inf
Xn

i¼1

kxikkyik : u ¼
Xn

i¼1

xi � yi 2 C½Z� � A
( )

:

On the other hand, by (Okayasu 1966, Theorem 3) we have

the isometric �-isomorphism

C�ðC½Z��̂cAÞ ffi C�ðC½Z�Þ�̂maxA:

Finally, we have

C�ðA½Z�Þ ffiC�ðC½Z��̂cAÞ
ffiC�ðC½Z�Þ�̂maxA
ffiC½�1; 1� � A ffi Cð½�1; 1�;AÞ:

h

Suppose that A and E are two unital C�-algebras. Let
SðEÞ be the set of all self-adjoint elements in the closed unit

ball of E. Define the �-homomorphism h : A½Z� !
CbðSðEÞ;A� EÞ by hðFÞðbÞ ¼

P1
n¼0 an � bn, where

b 2 SðEÞ, and Cb SðEÞ;A� Eð Þ is the set of all bounded

continuous functions from SðEÞ to A� E and � is the

minimal (maximal) tensor product.

Corollary 1 The C�-algebra Cð½�1; 1�;AÞ is �-isomorphic
to Im ~h, where ~h is the extension of h.
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Proof By Theorem 1 we have

khðFÞk ¼ sup
b2SðEÞ

X1

n¼0

an � bn

�
�
�
�
�

�
�
�
�
�

� sup
t2J

X1

n¼0

ant
n

�
�
�
�
�

�
�
�
�
�

¼ Fk kJ
¼ Fk k0

On the other hand, since k1 2 SðEÞ for �1� k� 1, we

have kFkJ �khðFÞk. Therefore, khðFÞk ¼ kFkJ and the

extension

~h : Cð½�1; 1�;AÞ ! CbðSðEÞ;A� EÞ

is an isometry. h

3 Numerical Semigroups and Cauchy
Extensions

A numerical semigroup is a submonoid of the additive

monoid N ¼ f0; 1; 2; 3; . . .g such that the greatest common

divisor of its nonzero elements is equal to one. A sub-

monoid S 
 N is a numerical semigroup if and only if

N n S is a finite set. Let S be a nontrivial submonoid of N

and 0 6¼ d be the greatest common divisor of the elements

of S. The function r : S ! N defined by rðsÞ ¼ s=d is

bijective homomorphism between S and Im r. This means

that every nontrivial submonoid of N is isomorphic to a

numerical semigroup. If S is a numerical semigroup, then

dS ¼ ds : s 2 Sf g is a nontrivial submonoid of N for any

integer d[ 0 [see Rosales et al. (2006)].

Let A be a C�-algebra and S a submonoid of N. Then,

the set A; Sð Þ½Z� consisting of all power series of the form

FðZÞ ¼
P

s2S asZ
s belonging to A½Z� equipped with the

norm

kFðZÞkK ¼ sup
t2K

kFðtÞk:

is a sub-pre-C�-algebra of A½Z�, where K is a subset of

[0, 1] with 0 as limit point. The completion ½A; S�K of

A; Sð Þ½Z� is a C�-algebra which is in fact, (S, K)-Cauchy

extension of A. In particular, ½A�K ¼ ½A;N�K :

Theorem 2 If S is a numerical semigroup and I ¼ ½0; 1�
,then ½A; S�I ffi ½A�I .

Proof Put

Am ¼ FðZÞ ¼
X1

n¼0

anZ
n 2 A½Z� : a0 ¼ a1 ¼ � � � ¼ am�1 ¼ 0

( )

;

where m� 1 is an integer. Since S is a numerical semi-

group, there exists an integer m� 1 such that

Am � ðA; SÞ½Z�. The completion Âm of Am is equal to Â1.

In fact, we have

ata ¼ lim
N!1

XN

n¼0

at2að1� taÞn;

for a ¼ 1; 2; 3; . . . and any a 2 A and t 2 I. This shows that

a1t þ a2t
2 þ � � � þ am�1t

m�1 2 Âm;

for any element a1; a2; . . .; am�1 of A. Therefore, Â1 ¼ Âm

from which we have Â1 � ½A; S�I . Since 0 2 S, we have

A � ½A; S�I , and therefore, A½Z� 
 ½A; S�I : Now by

[Nourouzi and Reza 2019, Theorem 5 (ii), (i)] we have

½A; S�I ffi ½A�I ffi Cð½0; 1�;AÞ. h

A subset K of real numbers is said to be d-regular if

Kd ¼ xd : x 2 K
� �

¼ ½0; 1�; where d[ 0 is an even inte-

ger. For example, the set

K ¼
ffiffiffi
xd

p
: x 2 Q; 0� x� 1

� �
[ �

ffiffiffi
xd

p
: x 2 R�Q; 0� x� 1

� �

is a d-regular set for any even integer d[ 1.

Theorem 3 If K is a d-regular set and S is a numerical

semigroup, then ½A; dS�K ffi Cð½0; 1�;AÞ for any C�-algebra

A.

Proof Let mnð Þ1n¼0 be an enumeration of the elements of

S. If

FðZÞ ¼
X1

n¼0

anZ
dmn 2 A; dSð Þ½Z�;

then

kFðZÞkK ¼ sup
t2K

X1

n¼0

ant
dmn

�
�
�
�
�

�
�
�
�
�

¼ sup
t2½0;1�

X1

n¼0

ant
mn

�
�
�
�
�

�
�
�
�
�
¼ FdðZÞ
�
�

�
�
½0;1�;

where FdðZÞ ¼
P1

n¼0 anZ
mn 2 ðA; SÞ½Z�. Note that F 7!Fd

is a bijective isometric �-homomorphism between

ðA; dSÞ½Z� and ðA; SÞ½Z�. Therefore, by Theorem 2,

½A; dS�K ffi Cð½0; 1�;AÞ. h

4 Dirichlet Extension of C*-algebras

Let A\Z[ be the set of all formal Dirichlet series
P1

n¼1 ann
�Z , where A is a C�-algebra and each an 2 A

with
P1

n¼1 ank k\1. Then, A\Z[ is a �-algebra with

the pointwise addition, scalar multiplication and involution

and the Dirichlet product. That is,
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X1

n¼1

ann
�Z þ

X1

n¼1

bnn
�Z ¼

X1

n¼1

an þ bnð Þn�Z ;

k
X1

n¼1

ann
�Z ¼

X1

n¼1

kann
�Z ;

X1

n¼1

ann
�Z

 !�

¼
X1

n¼1

a�nn
�Z ;

X1

n¼1

ann
�Z

 !
X1

n¼1

bnn
�Z

 !

¼
X1

n¼1

X

n¼pq

apbq

 !

n�Z ;

where
P1

n¼1 ann
�Z ;
P1

n¼1 bnn
�Z 2 A\Z[, and k 2 C. If

A1 ¼
X1

n¼1

ann
�Z 2 A\Z[ : a1 ¼ 0

( )

;

then A1 is an ideal of A\Z[. Since 1þ 4�Z has an

inverse

X1

n¼1

ð�1Þnþ1
4�ðn�1ÞZ ;

then �1 is a spectral value of 2�Zð Þ2, and therefore, there is
no complete C�-norm on A\Z[. We need the following

proposition [see (Apostol 1976, Theorem 11.3)].

Proposition 1 Suppose that A is a C�-algebra and

FðZÞ ¼
X1

n¼1

ann
�Z 2 A\Z[ :

If smð Þ1m¼1 is a sequence of real numbers such that sm !
þ1 and

X1

n¼1

ann
�sm ¼ 0

for all m, then an ¼ 0 for all n.

Define k � kD by

FðZÞk kD¼ sup
t2½0;1�

�FðtÞk k;

where FðZÞ ¼
P1

n¼1 ann
�Z 2 A\Z[; aðtÞ ¼ 1� 1=t and

�FðtÞ ¼
P1

n¼1 ann
aðtÞ is a continuous function on [0, 1] with

�Fð0Þ ¼ a1. Note that k � kD is clearly a seminorm on

A\Z[ and if Fk kD¼ 0, then F ¼ 0 by Proposition 1.

Therefore, k � kD is a norm on A\Z[. Furthermore,

FGk kD � Fk kD Gk kD
FF�k kD¼ Fk k2D;

for all F;G 2 A\Z[. Then, A\Z[ ; k � kDð Þ is a pre-

C�-algebra and we call the completion \A[ D of

A\Z[ the Dirichlet extension of A.

In the following theorem, if f 2 C½0; 1� and a 2 A, by

the notation fa we mean an A-valued continuous function

defined by ðfaÞðtÞ ¼ f ðtÞa, for any t 2 ½0; 1�.

Theorem 4 Let A be a C�-algebra. Then, \A[ D ffi
Cð½0; 1�;AÞ.

Proof First note that any F ¼
P1

n¼1 ann
�Z 2 A\Z[

induces a continuous function �F : ½0; 1� ! A as

�FðtÞ ¼
X1

n¼1

ann
aðtÞ;

where aðtÞ ¼ 1� 1=t and �Fð0Þ ¼ a1. Let

~A ¼ �F : F ¼
X1

n¼1

ann
�Z 2 A\Z[

( )

:

For any a 2 A and �F 2 ~C we have �Fa 2 ~A; where

ð �FaÞðtÞ ¼
X1

n¼1

knan
aðtÞ ðt 2 ½0; 1�Þ:

Note that ~C is a self-adjoint algebra of complex functions

on [0, 1] which separates the points of [0, 1] and never

vanishes on it. By the Stone–Weierstrass theorem ~C is

dense in C([0, 1]). Let f 2 Cð½0; 1�Þ. Consider a sequence

ðFmÞ1m¼1 in C\Z[ such that �Fm ! f in k � kD. Since each
�Fma 2 ~A ffi A\Z[ and �Fma ! fa in ð\A[ D; k � kDÞ,
by (Murphy 1990, Lemma 6.4.16) the closed linear span of

ffb : f 2 C\Z[ ; b 2 Ag is equal to Cð½0; 1�;AÞ. That is
\A[ D ffi Cð½0; 1�;AÞ. h

5 M-Cauchy Envelope of C*-algebras

In this section, we replace the subsemigroups of N in

Sect. 3 by an at most countable commutative monoid

M and use the idea of Sect. 2 to obtain new C�-algebras.
In fact, by the idea given here we generalize Sects. 2, 3

and 4.

We began with some notations of crossed product of C�-
algebras [see e.g., Pedersen (1979) and Williams (2007)].

Let G be a discrete group and A a C�-algebra. A G-C�-
algebra ðA; kAÞ is a group homomorphism

kA : G ! Aut ðAÞ. We denote by AokAG the crossed

product of A by G. The �-homomorphism u : A ! B of

C�-algebras is called G-equivariant (or kA–kB-equivariant)
homomorphism if

kBðgÞ 	 u ¼ u 	 kAðgÞ ðg 2 GÞ:

The class G-C�-algebras and G-equivariant homomor-

phisms form a category which is denoted by G-C�-alg. We

also denote by C�-alg the category of C�-algebras and �-
homomorphisms.
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Let A, S and d be a C�-algebra, a numerical semigroup

and a positive integer, respectively. If K is a subset of

½�1; 1� with 0 as limit point then by an argument similar to

that of given in Theorem 3, the pre-C�-algebra ðA; dSÞ½Z�
with the norm k � kK is isometric �-isomorphism to the pre-

C�-algebra ðA; SÞ½Z� with the norm k � kKd
. Therefore, an

argument similar to that of given in Theorem 2 gives that

½A; dS�K ffi ½A�Kd
. In particular, we have ½A; dS�I ffi ½A�I ,

where I ¼ ½0; 1�:
Let A be a C�-algebra and M an at most count-

able commutative monoid with unit e. Put

ðA;MÞ½Z� ¼ FðZÞ ¼
X

s2M
asZ

s :
X

s2M
kask\1

( )

and define addition, scalar multiplication and involution

component-wise on ðA;MÞ½Z�. Product is defined by

FðZÞGðZÞ ¼
X

s2M

X

s¼pq

apbq

 !

Zs;

for any FðZÞ ¼
P

s2M asZ
s and GðZÞ ¼

P
s2M bsZ

s in

ðA;MÞ½Z�. Define a norm on ðA;MÞ½Z� by

kFðZÞk1 ¼
X

s2M
kask FðZÞ ¼

X

s2M
asZ

s 2 ðA;MÞ½Z�
 !

:

Then ðA;MÞ½Z� is a Banach �-algebra with approximate

identity. We denote by ½A;M� the C�-envelope of

ðA;MÞ½Z�. We call ½A;M� the M-Cauchy envelope of A.

Suppose that the map i : A ! ðA;MÞ½Z� is defined by

a 7!FðZÞ ¼ aZe and the map p : ðA;MÞ½Z� ! A is defined

by
P

s2M asZ
s 7!
P

s2M as. Since p 	 i ¼ idA, we have

p̂ 	 î ¼ idA, and therefore, î is an embedding of A in

½A;M�. Let p be a nontrivial representation of ðA;MÞ½Z�.
We denote by ½A; p;M� the completion of ðA;MÞ½Z�= ker p
with norm

kxþ ker pk ¼ kpðxÞk:

In particular, if p is the universal representation, then

½A; p;M� ¼ ½A;M�. The Banach �-algebra ðA;MÞ½Z� is

called �-semisimple if there is a representation p of

ðA;MÞ½Z� with ker p ¼ 0.

Example 1 In the following all Banach �-algebras are

assumed to be �-semisimple.

(i) If M ¼ N, then, by Theorem 1, ½A;M� ffi
Cð½0; 1�;AÞ;

(ii) Let p be the representation of ðA;NÞ½Z� with norm

kpðFÞk ¼ sup
t2K

X1

n¼0

ant
n

�
�
�
�
�

�
�
�
�
�

for any FðZÞ ¼
P1

n¼0 anZ
n in ðA;NÞ½Z�. Then,

½A; p;N� ¼ ½A�K ;
(iii) Let N� ¼ f1; 2; 3; . . .g be the monoid of natural

numbers with multiplication as operation. Suppose

that p is the representation of ðA;N�Þ½Z� with

norm

kpðFÞk ¼ sup
t2½0;1�

X1

n¼1

ann
aðtÞ

�
�
�
�
�

�
�
�
�
�

for any FðZÞ ¼
P1

n¼1 ann
�Z in ðA;N�Þ½Z�. Then,

½A; p;N�� ffi Cð½0; 1�;AÞ by Theorem 4;

(iv) Let G be a discrete group such that a2 ¼ e for any

a 2 G. Then, ½A;G� ffi Ao tG where t is the trivial

action on G.

Theorem 5 For any at most countable commutative

monoid M, there exists a discrete group G and a functor

M : C �-alg ! G-C �-alg.

Proof Let u : A ! B be a �-homomorphism of C�-alge-
bras. The map

~u : ðA;MÞ½Z� ! ðB;MÞ½Z�

defined by

~u
X

s2M
asZ

s

 !

¼
X

s2M
uðasÞZs

induces a �-homomorphism û : ½A;M� ! ½B;M�. That is
½�;M� is a functor on the category of C�-algebras. Let

f : M ! M be an automorphism of monoids. The map ~f :

ðA;MÞ½Z� ! ðA;MÞ½Z� defined by
P

s2M asZ
s 7!

P
s2M af ðsÞZ

f ðsÞ induces the automorphism f̂ : ½A;M� !
½A;M� of C�-algebras. Consider the group Aut ðMÞ ¼ Gop,

where Gop is the opposite group of G. Consider G as a

discrete group. The map

kA : G ! Aut ð½A;M�Þ

defined by

kAðgÞ ¼ ĝA : ½A;M� ! ½A;M�

is a homomorphism of groups and kA is an action of G on

½A;M�. Let u : A ! B be a �-homomorphism of C�-al-
gebras. Since

~gB 	 ~u ¼ ~u 	 ~gA ðg 2 GÞ

we have

kBðgÞ 	 û ¼ û 	 kAðgÞ ðg 2 GÞ

and û is a G-equivariant map. Therefore, M ¼ ½�;M� : C�-
alg ! G-C�-alg is the desired functor. h
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