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Abstract

Let A, B be unital algebras,M be an ðA;BÞ-bimodule and T ¼ A M
0 B

� �
be the corresponding unital triangular algebra

over a commutative unital ringR. In this paper, we study whether every R-linear map on T that leaves invariant every left

ideal of T is a left multiplier, and give some necessary or sufficient conditions for a triangular algebra to have this property.

We also give various examples illustrating limitations on extending some of the theory developed. We then apply our

established results to generalized triangular matrix algebras and block upper triangular matrix algebras. Moreover, we

introduce some algebras other than triangular algebras on which every R-linear map is a left multiplier.

Keywords Left multiplier � Local left multiplier � Left ideal preserving � Triangular algebra � Generalized triangular matrix

algebras � Block upper triangular matrix algebras

Mathematics Subject Classification 15A86 � 16S50 � 16D99 � 16S99

1 Introduction

Throughout this article, R will denote a commutative ring

with unity, and unless otherwise stated, all algebras are

associative over R with unity 1 and all modules are unital.

Let A be an algebra and X be a right A-module. Recall that

an R-linear map w : A ! X is a left multiplier if wðaÞ ¼
wð1Þa for all a 2 A. It is called a local left multiplier if for

any a 2 A there exists an element xa 2 X such that

wðaÞ ¼ xaa. Clearly, each left multiplier is a local left

multiplier. The converse is, in general, not true. Following

(Hadwin and Kerr 1997), we say that an R-linear map

w : A ! A is LIP (left ideal preserving) if wðJ Þ � J for

any left ideal J of A. It is then easily verified that the R-

linear map w : A ! A is LIP if and only if w is a local left

multiplier. So it is clear that any left multiplier w : A ! A
is LIP map, but the converse is not necessarily true. (Some

counterexamples will be given.) It is natural and interesting

to ask for what algebras any LIP map is a left multiplier, so

we are led to define SLIP algebras. The algebra A is SLIP

over R (In short, SLIP), if any LIP map on A is a left

multiplier. [The notion SLIP has already been used in

Hadwin and Kerr (1997).]

In the case that R is a field, to say that A is SLIP is the

same as saying that the algebra of left multipliers on A is

algebraically reflexive (Hadwin 1983). Reflexivity (alge-

braically or topologically) is an important part of operator

theory and has been studied in both ring theory and Banach

algebra theory by several authors. Johnson (1968) has

shown that if A is a semisimple Banach algebra with an

approximate identity and w : A ! A is a bounded operator

that leaves invariant all closed left ideals of A, then w is a

left multiplier of A. Hadwin and Li (2004) have shown that

Johnson’s theorem holds for all CSL algebras. In particular,

Hadwin, Li and their collaborators (The Hadwin Lunch

Bunch 1994; Hadwin and Kerr 1997; Hadwin and Li

2004, 2008; Li and Pan 2010) have investigated problems

of this type in the past twenty years for various reflexive

operator algebras. Recently, Katsoulis (2016) has studied

the reflexivity of left multipliers over certain operator

algebras. In the purely algebraic, Brešar and Šemrl (1993)

and Brešar (2007) have investigated local multipliers in

various other settings. Also, Hadwin and Kerr (1997) have

studied various SLIP algebras. The notion of SLIP alge-

bras (and reflexivity) are also studied in ring theory by

several authors in a number of papers; see Fuller et al.
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(1989, 1991, 1995), Hadwin and Kerr (1988, 1989), Sna-

shall (1992, 1993, 1994). On the other hand, recently there

has been a growing interest in the study of preserving linear

maps on triangular algebras, for example linear maps that

preserve zero products, Jordan products, commutativity,

etc. and derivable, Jordan derivable, Lie derivable maps at

zero point, etc; see, for instance, An and Hou (2009),

Benkovič and Eremita (2004), Liu and Zhang (2016),

Zhang et al. (2006), Zhao and Zhu (2010) and the refer-

ences therein. Motivated by the above investigations, we

will study whether a triangular algebra is SLIP, and give

some sufficient conditions under which a triangular algebra

is SLIP. Our results are then applied to generalized trian-

gular matrix algebras and block upper triangular matrix

algebras. Some other SLIP algebras are also studied.

The present article is organized as follows. In section 2,

some preliminaries including an introduction to triangular

algebras, generalized triangular matrix algebras and block

upper triangular matrix algebras are given. In section 3, we

firstly study the relation between zero product determined

algebras and SLIP algebras. By applying our results, we

establish characterizations of SLIP property for several

classes of algebras. Then by considering LIP maps on

triangular algebras, we obtain a necessary condition and

some sufficient conditions for a triangular algebra to be

SLIP. We also give some examples illustrating limitations

on extending some of the theory developed. In section 4,

we apply the results obtained in the previous section to

generalized triangular matrix algebras and block upper

triangular matrix algebras. Indeed, we prove that under

certain conditions the generalized triangular matrix alge-

bras are SLIP algebras, and we also apply the results to

block upper triangular matrix algebras.

2 Preliminaries

Recall that a triangular algebra TriðA;M;BÞ is an algebra

of the form

TriðA;M;BÞ :¼
�

a m

0 b

� � ���� a 2 A; b 2 B; m 2 M
�

¼
A M
0 B

� �

under the usual matrix operations, where A and B are

unital algebras and M is an ðA;BÞ-bimodule. The most

important examples of triangular algebras are upper trian-

gular matrices over an algebra A, block upper triangular

matrix algebras, nest algebras over a real or complex Hil-

bert space H and generalized triangular matrix algebras.

Let A be an algebra. Recall that an idempotent e 2 A is

left semicentral if Ae ¼ eAe (Birkenmeier 1983). We use

SlðAÞ exclusively for the sets of all left semicentral

idempotents. As is well known (Chase 1961), a left semi-

central idempotent e induces a 2-by-2 triangular matrix

representation of A. In fact, A ffi TriðeAe; eAð1� eÞ;
ð1� eÞAð1� eÞÞ, where eAe and ð1� eÞAð1� eÞ are

algebras over R with the addition and multiplication of A,

but different unities (e and 1� e, respectively) and eAð1�
eÞ is a unital ðeAe; ð1� eÞAð1� eÞÞ-bimodule. If

SlðAÞ ¼ f0; 1g, then we say A is semicentral reduced. For

more information, we refer to Birkenmeier et al. (2000).

We say A has a generalized triangular matrix repre-

sentation if there exists an R-algebra isomorphism:

h : A !

A11 A12 � � � A1n

0 A22 � � � A2n

..

. ..
. . .

. ..
.

0 0 � � � Ann

0
BBBB@

1
CCCCA;

where each Aii is an algebra with unity and Aij is a

ðAii;AjjÞ-bimodule for i\j. An ordered set fe1; . . .; eng of

nonzero distinct idempotents in A is called a set of left

triangulating idempotents of A if all of the following

statements hold:

(i) e1 þ � � � þ en ¼ 1;

(ii) e1 2 SlðAÞ; and
(iii) ekþ1 2 SlðfkAfkÞ, where fk ¼ 1� ðe1 þ � � � þ ekÞ,

for 1� k� n� 1 (see Birkenmeier et al. 2000).

Proposition 2.1 (Birkenmeier et al. 2000, Proposition 1.3)

A has a set of left triangulating idempotents if and only if

A has a generalized triangular matrix representation.

In fact, by the above proposition if A has a set of left

triangulating idempotents fe1; . . .; eng, then we have the

following R-algebra isomorphism:

A ffi

e1Ae1 e1Ae2 � � � e1Aen

0 e2Ae2 � � � e2Aen

..

. ..
. . .

. ..
.

0 0 � � � enAen

0
BBBB@

1
CCCCA:

Conversely, if A has a generalized triangular matrix

representation

h : A !

A11 A12 � � � A1n

0 A22 � � � A2n

..

. ..
. . .

. ..
.

0 0 � � � Ann

0
BBBB@

1
CCCCA;

then fh�1ðE1Þ; . . .; h�1ðEnÞg is a set of left triangulating

idempotents of A, where Ek is the n-by-n matrix with the

unity of Ak in the (k, k)-position and 0 elsewhere.
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Remark 2.2 By the definition of a set of left triangulating

idempotents and Proposition 2.1, we see that if A has a set

of left triangulating idempotents fe1; . . .; eng, then

fe2; . . .; eng is a set of left triangulating idempotents of

fAf , where f ¼ 1� e1. Since e1 2 SlðAÞ, it follows that A
has a triangular matrix representation as

A ffi Triðe1Ae1; e1Af ; fAf Þ. In this case, we have the R-

algebra isomorphism:

fAf ffi
e2Ae2 � � � e2Aen

..

. . .
. ..

.

0 � � � enAen

0
BB@

1
CCA;

and the ðe1Ae1; fAf Þ-bimodule isomorphism:

e1Af ffi ðe1Ae2; . . .; e1AenÞ:

Also, fe1; . . .; en�1g is a set of left triangulating idempo-

tents of fAf , where f ¼ 1� en. By (Birkenmeier et al.

(2000, Lemma 1.2), ejAei ¼ f0g for all i\j� n. So f 2
SlðAÞ; and hence, A has a triangular matrix representation

as A ffi TriðfAf ; fAen; enAenÞ. In this case, we have theR-

algebra isomorphism:

fAf ffi
e1Ae1 � � � e1Aen�1

..

. . .
. ..

.

0 � � � en�1Aen�1

0
BB@

1
CCA;

and the ðfAf ; enAenÞ-bimodule isomorphism:

fAen ffi
e1Aen

..

.

en�1Aen

0
BB@

1
CCA:

Let Mk�mðAÞ denote the set of all k-by-m matrices over

A (we denote Mk�kðAÞ by MkðAÞ). Let N be the set of all

positive integers and let n 2 N. For each m 2 N with

m� n, we denote by �k ¼ ðk1; . . .; kmÞ 2 Nm an ordered m-

vector of positive integers with n ¼ k1 þ � � � þ km. The

block upper triangular matrix algebra B
�k
nðAÞ is a subal-

gebra of MnðAÞ of the form

B
�k
nðAÞ ffi

Mk1ðAÞ Mk1�k2ðAÞ � � � Mk1�kmðAÞ
0 Mk2ðAÞ � � � Mk2�kmðAÞ
..
. ..

. . .
. ..

.

0 0 � � � MkmðAÞ

0
BBBB@

1
CCCCA:

Note that MnðAÞ is a special case of block upper triangular

matrix algebras. In particular, B
�k
nðAÞ ¼ MnðAÞ if and only

if �k ¼ ðk1Þ with k1 ¼ n.

The block upper triangular matrix algebra B
�k
nðAÞ has a

generalized triangular matrix representation with

fF1; . . .;Fmg as a set of left triangulating idempotents such

that F1 ¼
Pk1

i¼1 Ei and Fj ¼
Pkj

i¼1 Eiþk1þ���þkj�1
for

2� j�m, where Ei is the n-by-n matrix with the unity of A
in the (i, i)-position and 0 elsewhere. We have

FjB
�k
nðAÞFj ffi MkjðAÞ for any 1� j�m.

Let TnðAÞ be the algebra of all n-by-n upper triangular

matrices over A. Assume that �k ¼ ðk1; . . .; knÞ 2 Nn, if

kj ¼ 1 for any 1� j� n, then TnðAÞ ¼ B
�k
nðAÞ is a block

upper triangular matrix algebra. In fact, fE1; . . .;Eng is a

set of left triangulating idempotents of TnðAÞ, and A ffi
EjTnðAÞEj for each 1� j� n.

The following terminology is used throughout this arti-

cle. Let A be an algebra and M be a left A-module. Define

the left annihilator of M by l:annAM ¼
fa 2 A : aM ¼ f0gg. Also, we employ lowercase letters

to denote elements in algebras and modules in the abstract

setting, and uppercase letters to denote elements in trian-

gular matrix algebras. I stands for the identity element in

matrix algebras, and 1 denotes the unity of algebras in

general.

3 LIP Maps on Triangular Algebras

Throughout this section, TriðA;M;BÞ denotes a triangular
algebra, where A and B are algebras and M is an ðA;BÞ-
bimodule. In this section, we study the LIP maps on tri-

angular algebras and obtain a necessary condition and

some sufficient conditions for a triangular algebra to be

SLIP over R. Firstly, we investigate the relation between

zero product determined algebras and SLIP algebras.

The algebra A is called a zero product determined

algebra if for every R-module X and every R-bilinear

map / : A�A ! X , the following holds: If /ða; bÞ ¼ 0

whenever ab ¼ 0, then there exists an R-linear map L :

A2 ! X such that /ða; bÞ ¼ LðabÞ for all a; b 2 A. Note

that since A is unital, it follows that A2 ¼ A. The question

of characterizing linear maps through zero products, etc. on

algebras can be sometimes effectively solved by consid-

ering bilinear maps that preserve certain zero product

properties (for instance, see Ghahramani 2014 and the

references therein). For this reason, Bre�sar et al. in Brešar

et al. (2009) introduced the concept of zero product

determined algebras, which can be used to study the linear

maps preserving zero product and derivable maps at zero

point. We will see that the zero product determined alge-

bras are SLIP algebras and more is true. So by applying

this result, we characterize various SLIP algebras.

Theorem 3.1 Let A be a zero product determined algebra.

Then for any right A-module X , every local left multiplier

w : A ! X is a left multiplier.
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Proof Define / : A�A ! X by /ða; bÞ ¼ wðaÞb. So /
is an R-bilinear map. By the hypothesis for any a 2 A,

there exists an element xa 2 X such that wðaÞ ¼ xaa. So for

a; b 2 A with ab ¼ 0, we have

/ða; bÞ ¼ wðaÞb ¼ xaab ¼ 0:

Since A is a zero product determined algebra, it follows

that there exists an R-linear map L : A2 ! X such that

wðaÞb ¼ /ða; bÞ ¼ LðabÞ for all a; b 2 A. Therefore,

wðabÞ ¼ LðabÞ ¼ wðaÞb for all a; b 2 A, and hence, w is a

left multiplier. h

By the preceding theorem, it is clear that any zero

product determined algebra is SLIP. However, we will see

the converse of this statement is not necessarily true.

Bre�sar showed that an algebra generated by its idem-

potents is a zero product determined algebra (Bresar

2012, Theorem 4.1). Now, from Theorem 3.1 we have the

following theorem.

Theorem 3.2 Let A be an algebra which is generated by

its idempotents and X be a right A-module. If w : A ! X
is a local left multiplier, then w is a left multiplier. In

particular, A is SLIP over R.

In the following corollary, we provide some classes of

SLIP algebras generated by their idempotents.

Corollary 3.3 Let A be any of the following algebras. Then

for any right A-module X , every local left multiplier w :

A ! X is a left multiplier. Indeed, A is SLIP over R.

(i) A ¼ MnðBÞ, where B is an algebra and n� 2.

(ii) A is a simple algebra containing a non-trivial

idempotent.

(iii) A is an algebra containing an idempotent e such

that the ideals generated by e and 1� e, respec-

tively, are both equal to A.

Proof By Bresar (2007), the algebra A is generated by its

idempotents. The desired conclusion thus follows readily

from Theorem 3.2. h

It should be noted that Corollary 3.3(i) generalizes

(Hadwin and Kerr 1997, Theorem 3).

Let TriðA;M;BÞ be a triangular algebra. It is shown in

(Ghahramani 2013a, Theorem 2.1) that TriðA;M;BÞ is a

zero product determined algebra if and only if A and B are

zero product determined algebras. From this result and

Theorem 3.1, we have the following proposition.

Proposition 3.4 Let T ¼ TriðA;M;BÞ be a triangular

algebra.

(i) If A and B are zero product determined algebras,

and X is a right T -module, then every local left

multiplier w : T ! X is a left multiplier. There-

fore, T is SLIP over R.

(ii) If T is a zero product determined algebra, and X 1,

X2 are right A-module and right B-module,
respectively, then every local left multipliers w1 :

A ! X1 and w2 : B ! X2 are left multipliers. So

A and B are SLIP algebras.

In light of the above proposition, these questions are

naturally being raised: If the triangular algebra

TriðA;M;BÞ is SLIP over R, is it necessarily true that

TriðA;M;BÞ is a zero product determined algebra? If the

triangular algebra TriðA;M;BÞ is SLIP over R, are both

of A and B, SLIP over R? If for any right A-module X 1

and right B-module X 2, every local left multipliers w1 :

A ! X 1 and w2 : B ! X2 are left multipliers, is

TriðA;M;BÞ SLIP over R? We will see that if

TriðA;M;BÞ is SLIP, A is not necessarily SLIP and so

we obtain classes of SLIP triangular algebras which are not

zero product determined algebras. Also we show that if A
is SLIP and for any right B-module X , every local left

multiplier w : B ! X is a left multiplier, then

TriðA;M;BÞ is SLIP. These results extends Proposi-

tion 3.4(i) as SLIP algebras are not necessarily zero pro-

duct determined algebras.

In the following lemma, we describe the structure of

LIP maps on triangular algebras.

Lemma 3.5 Let T ¼ TriðA;M;BÞ be a triangular alge-

bra and w : T ! T be a LIP map. Then there are R-

linear maps a : A ! A, s : M ! M, b1 : B ! M and

b2 : B ! B such that

w
a m

0 b

� �� �
¼

aðaÞ b1ðbÞ þ sðmÞ
0 b2ðbÞ

� �
;

where a and b2 are LIP maps, b1 is a local left multiplier

and sðamÞ ¼ aðaÞm for all a 2 A and m 2 M.

Proof Since
A 0

0 0

� �
,

0 M
0 0

� �
and

0 M
0 B

� �
are

left ideals of T , using the hypothesis, for all a 2 A; b 2
B;m 2 M we have

w
a 0

0 0

� �� �
¼

aðaÞ 0

0 0

� �
; w

0 m

0 0

� �� �
¼

0 sðmÞ
0 0

� �

and

w
0 0

0 b

� �� �
¼

0 b1ðbÞ
0 b2ðbÞ

� �
;

where a : A ! A, s : M ! M, b1 : B ! M and b2 :
B ! B are R-linear maps. The mapping w is a local left

multiplier, since it is a LIP map. Thus, for

T ¼ a 0

0 b

� �
2 T , there is an element XT ¼
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aT mT

0 bT

� �
2 T such that wðTÞ ¼ XTT ¼ aTa mTb

0 bTb

� �
.

Hence, aðaÞ ¼ aTa, b1ðbÞ ¼ mTb and b2ðbÞ ¼ bTb for all

a 2 A; b 2 B, proving that these maps are local left mul-

tiplier. Let a 2 A, m 2 M, and put T ¼ a am

0 0

� �
,

S ¼ 0 � m

0 1

� �
. We have TS ¼ 0 and there is an element

XT 2 T such that wðTÞ ¼ XTT . Thus,

aðaÞ sðamÞ
0 0

� �
0 � m

0 1

� �
¼ wðTÞS ¼ XTTS ¼ 0:

Therefore, sðamÞ ¼ aðaÞm for all a 2 A;m 2 M. h

In the next theorem, we obtain a necessary condition for

triangular algebra TriðA;M;BÞ to be SLIP over R.

Theorem 3.6 Let T ¼ TriðA;M;BÞ be SLIP over R.

Then B is SLIP over R and every local left multiplier from

B into M is a left multiplier.

Proof Suppose that b1 : B ! M and b2 : B ! B are local

left multipliers and define the R-linear map w : T ! T by

w
a m

0 b

� �� �
¼ 0 b1ðbÞ

0 b2ðbÞ

� �
: For each b 2 B, there are

elements cb 2 B and nb 2 M such that b1ðbÞ ¼ nbb and

b2ðbÞ ¼ cbb. Now for any T ¼ a m

0 b

� �
2 T , let

XT ¼ 0 nb
0 cb

� �
. We have

wðTÞ ¼
0 nbb

0 cbb

� �
¼ XTT :

Hence, w is a LIP map, and by the hypothesis, it is a left

multiplier; i.e., wðTÞ ¼ wðIÞT for all T 2 T . So for all

b 2 B we see that

0 b1ðbÞ
0 b2ðbÞ

� �
¼ w

0 0

0 b

� �� �

¼
0 b1ð1Þ
0 b2ð1Þ

� �
0 0

0 b

� �
¼

0 b1ð1Þb
0 b2ð1Þb

� �
;

where 1 is the unity of B. Thus, b1 and b2 are left multi-

pliers. h

By invoking the above theorem, we get a necessary

condition for an idempotent element in an SLIP algebra to

be left semicentral.

Corollary 3.7 Suppose A is a SLIP algebra.

(i) If e 2 A is a non-trivial left semicentral idempo-

tent, then ð1� eÞAð1� eÞ is SLIP over R.

(ii) If for any non-trivial idempotent e 2 A, ð1�
eÞAð1� eÞ is not SLIP over R, then A is

semicentral reduced.

In the following results, we give some sufficient con-

ditions for a triangular algebra to be SLIP over R.

Theorem 3.8 Let T ¼ TriðA;M;BÞ be a triangular

algebra. Let l:annAM ¼ f0g, B be SLIP overR and every

local left multiplier from B into M be a left multiplier.

Then T is SLIP over R.

Proof Suppose that w : T ! T is a LIP map. By

Lemma 3.5

w
a m

0 b

� �� �
¼

aðaÞ b1ðbÞ þ sðmÞ
0 b2ðbÞ

� �
;

where b1 : B ! M and b2 : B ! B are local left multi-

pliers and sðamÞ ¼ aðaÞm for all a 2 A and m 2 M. By

the hypothesis,

b1ðbÞ ¼ b1ð1Þb; b2ðbÞ ¼ b2ð1Þb ðb 2 BÞ:

For every a; a0 2 A and m 2 M; we have

sðaa0mÞ ¼ aðaa0Þm:

On the other hand,

sðaa0mÞ ¼ aðaÞa0m:

Comparing the two above equalities and noting that

l:annAM ¼ f0g, we arrive at aðaa0Þ ¼ aðaÞa0. So

aðaÞ ¼ að1Þa; sðmÞ ¼ að1Þm ða 2 A;m 2 MÞ:

From these equations, we deduce that for all T 2 T :

wðTÞ ¼ wðIÞT :

h

Let X be an R-module. It is obvious that each R-linear

local left multiplier from R into X is a left multiplier. So

from Theorem 3.8, we have the next corollary.

Corollary 3.9 Let A be an algebra over R. Then

TriðA;A;RÞ is SLIP over R.

Let M be a right B-module. Denote by EndBðMÞ, the
algebra of all B-module endomorphisms of M. Let

A :¼ EndBðMÞ. Then M is an ðA;BÞ-bimodule equipped

with /Dm :¼ /ðmÞ (m 2 M;/ 2 A) such that

l:annAM ¼ f0g. So by Theorems 3.6 and 3.8, we obtain

the following corollary.

Corollary 3.10 Let M be a right B-module. Then

TriðEndBðMÞ;M;BÞ is SLIP over R if and only if B is

SLIP over R and every local left multiplier from B into M
is a left multiplier.
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In the following theorem, we do not require the condi-

tion l:annAM ¼ f0g.

Theorem 3.11 Let T ¼ TriðA;M;BÞ be a triangular

algebra. Assume that A and B are SLIP algebras and

every local left multiplier from B into M is a left multi-

plier. Then T is SLIP over R.

Proof Suppose that w : T ! T is a LIP map. By

Lemma 3.5,

w
a m

0 b

� �� �
¼

aðaÞ b1ðbÞ þ sðmÞ
0 b2ðbÞ

� �
;

where a : A ! A and b2 : B ! B are LIP maps, b1 : B !
M is a local left multiplier and s : M ! M satisfies

sðamÞ ¼ aðaÞm for all a 2 A and m 2 M. By the

hypothesis,

aðaÞ ¼ að1Þa; b1ðbÞ ¼ b1ð1Þb;
b2ðbÞ ¼ b2ð1Þb and sðmÞ ¼ að1Þm;

for all a 2 A; b 2 B;m 2 M, concluding that

wðTÞ ¼ wðIÞT ;

for all T 2 T . h

Now we give some examples illustrating limitations on

extending some of the theory developed. The examples

show that the classes of triangular algebras satisfying the

conditions of Theorem 3.8 are different from those satis-

fying the assumptions of Theorem 3.11. Thus, we firstly

need to provide some algebras which are not SLIP.

Remark 3.12 Every division SLIP algebra A is a field.

Consider the arbitrary elements a; b 2 A and define the R-

linear map wbðaÞ ¼ ab. Since A is a division algebra, it

follows that wb is a LIP map. So by the hypothesis that A
is SLIP, we have ab ¼ wbðaÞ ¼ wbð1Þa ¼ ba. Hence, A is

commutative.

From Remark 3.12, one concludes that the quaternion

algebra HðRÞ over the real field R is not SLIP. In the

following example, a non-division algebra is presented

which is not SLIP. This example is given in Katsoulis

(2016, Example 2.4).

Example 3.13 Let F be a field. Then

U :¼
�

k l

0 k

� � ���� k; l 2 F

�

is an algebra over F which is not SLIP.

Now by Corollary 3.9 and above examples, we can

obtain an SLIP triangular algebra TriðA;M;BÞ in which

A is not SLIP. Hence, TriðA;M;BÞ is not a zero product

determined algebra [by Theorem 3.1 and (Ghahramani

2013a, Theorem 2.1)].

Example 3.14 Let T be either TriðHðRÞ;HðRÞ;RÞ or

TriðU;U; FÞ where U is the algebra described in Exam-

ple 3.13. Then by Corollary 3.9, T is SLIP, whereas HðRÞ
and U are not SLIP algebras.

In the above example, T satisfies the conditions of

Theorem 3.8 but not those of Theorem 3.11. This example

shows also that the converse of Theorem 3.11 is not nec-

essarily true.

In the following, we give an example showing that the

converse of Theorem 3.8 is not necessarily valid.

Example 3.15 Assume that A is a zero product determined

algebra. By (Ghahramani (2013b, Proposition 2.8), A�A
is a zero product determined algebra. The usual right

multiplication of A and the following left multiplication

make A into an ððA � AÞ;AÞ-bimodule:

ða; bÞx :¼ ax ða; b; x 2 AÞ:

By Proposition 3.4(i), T ¼ TriðA �A;A;AÞ is SLIP,

while l:annA�AA ¼ f0g � A 6¼ f0g.

In Example 3.15, T satisfies their conditions of Theo-

rem 3.11 but does not satisfy the conditions of

Theorem 3.8.

In the following example, we show that the conditions

on A in Theorems 3.8 and 3.11 cannot be dropped.

Example 3.16 Let A and B be algebras such that A is a

zero product determined algebra and B is not SLIP. By the

following module actions, we turn A into an ððA � BÞ;AÞ-
bimodule:

ða; bÞx :¼ ax ða; x 2 A; b 2 BÞ;

and the right multiplication is the usual multiplication ofA.

We show that the triangular algebra T ¼ TriðA � B;A;AÞ
is not SLIP. Since B is not SLIP, there is a local left

multiplier q : B ! B which is not a left multiplier. So for

any b 2 B there exists an element cb 2 B such that

qðbÞ ¼ cbb. Define the R-linear map w : T ! T by

w
ða1; bÞ a2

0 a3

� �� �
¼

ð0; qðbÞÞ 0

0 0

� �
:

For any T ¼ ða1; bÞ a2
0 a3

� �
2 T , there is XT ¼

ð0; cbÞ 0

0 0

� �
such that

wðTÞ ¼ XTT :

So w is a LIP map which is not a left multiplier. If

otherwise, wðTÞ ¼ wðIÞT for all T 2 T , concluding that q
is a left multiplier and this is a contradiction. In this

example, l:annA�BA ¼ f0g � B 6¼ f0g, and by Hadwin

and Kerr (1997, Lemma 5), A� B is not SLIP.
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In the above example, A can be assumed to be any of

the stated algebras in Corollary 3.3 and B to be either the

quaternion algebra HðRÞ or the algebra U as mentioned in

Example 3.13.

4 Applications to Generalized Triangular
Matrix Algebras and Block Upper
Triangular Matrix Algebras

In this section, we apply our results obtained in the pre-

vious section to generalized triangular matrix algebras and

block upper triangular matrix algebras.

Theorem 4.1 Let A be an algebra having a generalized

triangular matrix representation

A ¼

A11 A12 � � � A1n

0 A22 � � � A2n

..

. ..
. . .

. ..
.

0 0 � � � Ann

0
BBBB@

1
CCCCA;

where each Aii is an algebra with unity and Aij is a

ðAi;AjÞ-bimodule for i\j. If every local left multiplier

from Aii (1� i� n) into Aki (1� k� i) is a left multiplier,

then A is SLIP over R.

Proof We denote the elements ofAij by aij, 1i for the unity

ofAii and aijEij for the n-by-n matrix with aij 2 Aij at (i, j)-

entry and 0 in all other entries. Note that Ei denotes the

matrix 1iEii, and fE1; . . .;Eng is a set of left triangulating

idempotents of A (by Proposition 2.1).

The proof is by induction on n. If n ¼ 1, then A ¼ A11

and the result is obvious in this case.

Let n� 2 and assume that for each algebra that has a set

of left triangulating idempotents with n� 1 elements, the

result is true.

Let fE1; . . .;Eng be a set of left triangulating idempo-

tents of A. By Remark 2.2, A ffi TriðE1AE1;E1AF;FAFÞ
and fE2; . . .;Eng is a set of left triangulating idempotents

of FAF, where F ¼ I � E1 ¼
Pn

i¼2 Ei is the unity of FAF.

Also we have the R-algebra isomorphisms:

E1AE1 ffi A11; FAF ffi
A22 � � � A2n

..

. . .
. ..

.

0 � � � Ann

0
BB@

1
CCA;

and the ðA11;FAFÞ-bimodule isomorphism:

E1AF ffi ðA12; . . .;A1nÞ:

By the hypothesis, A11 is SLIP over R. Also, by the

induction hypothesis FAF is SLIP over R. Let w :

FAF ! E1AF be a local left multiplier. We show that w is

a left multiplier.

Since w is an R-linear map, there exist R-linear maps

/k
ij : Aij ! A1k such that

wðaijEijÞ ¼
Xn
k¼2

/k
ijðaijÞE1k;

where 2� i� j� n and 2� k� n.

We complete the proof by checking some steps.

Step 1 /k
ii ¼ 0 for all 2� i; k� n with i 6¼ k. For each

aii 2 Aii (2� i� n), let T ¼ aiiEi. Since w is a local left

multiplier, there exists XT 2 E1AF such that

wðTÞ ¼ XTT . Now TðF � EiÞ ¼ 0; and hence,

wðTÞðF � EiÞ ¼ 0. So

0 ¼
Xn
k¼2

/k
iiðaiiÞE1k

 !
ðF � EiÞ ¼

Xn
k¼2

/k
iiðaiiÞE1k � /i

iiðaiiÞE1i:

Therefore, for all 2� i; k� n with i 6¼ k, we have

/k
ii ¼ 0.

Step 2 /k
ij ¼ 0 for all 2� i\j� n , 2� k� n with j 6¼ k.

For each aij 2 Aij ð2� i\j� nÞ, let T ¼ aijEij. For any

2� k� n with j 6¼ k, we have TEk ¼ 0. So by a similar

argument as in Step 1, wðTÞEk ¼ 0. Hence,

0 ¼
Xn
l¼2

/l
ijðaijÞE1l

 !
Ek ¼ /k

ijðaijÞE1k:

The result now follows from the above equation.

Step 3 / j
ijðaijÞE1j ¼ /i

iið1iÞE1iaijEij for all 2� i\j� n

and aij 2 Aij: We have ðEi þ aijEijÞð�aijEij þ EjÞ ¼ 0

for all aij 2 Aij. So wðEi þ aijEijÞð�aijEij þ EjÞ ¼ 0. By

Steps 1, 2, we see that wðEiÞ ¼ /i
iið1iÞE1i and

wðaijEijÞ ¼ / j
ijðaijÞE1j. Thus,

ð/i
iið1iÞE1i þ / j

ijðaijÞE1jÞð�aijEij þ EjÞ ¼ 0;

and hence,

/ j
ijðaijÞE1j ¼ /i

iið1iÞE1iaijEij:

Step 4 /i
iiðaiiÞE1i ¼ /i

iið1iÞE1iaiiEi for all 2� i� n and

aii 2 Aii: For each aii 2 Aii (2� i� n), let T ¼ aiiEi.

Since w is a local left multiplier, there exists XT ¼Pn
k¼2 x1kE1k such that wðTÞ ¼ XTT . So by Step 1,

/i
iiðaiiÞE1i ¼ x1iaiiE1i;

and hence, /i
ii is a local left multiplier. By the

hypothesis, /i
iiðaiiÞ ¼ /i

iið1iÞaii; and hence,

/i
iiðaiiÞE1i ¼ /i

iið1iÞE1iaiiEi:

From Steps 1–4, it follows that wðTÞ ¼ wðFÞT for all

T 2 FAF. So w is a left multiplier.
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We now apply Theorem 3.11 to deduce that A is SLIP

over R. h

As we will see in Theorems 4.2 and 4.3, being Akk

(1� k� n� 1) SLIP algebras is not necessary condition

for A to be SLIP.

Theorem 4.2 Suppose that the algebra A has the gener-

alized triangular matrix representation

A ¼

A11 A12 � � � A1n

0 A22 � � � A2n

..

. ..
. . .

. ..
.

0 0 � � � Ann

0
BBBB@

1
CCCCA:

Suppose further that any local left multiplier from Aii

(2� i� n) into Aki (1� k� i) is a left multiplier and

l:annA11
A1k ¼ f0g for some 2� k� n. Then A is SLIP

over R.

Proof Let A have a set of left triangulating idempotents

fE1; . . .;Eng. By Remark 2.2, A ffi TriðE1AE1;E1AF;

FAFÞ and fE2; . . .;Eng is a set of left triangulating

idempotents of FAF, where F ¼ I � E1. By the hypothe-

sis, the algebra

FAF ffi
A22 � � � A2n

..

. . .
. ..

.

0 � � � Ann

0
BB@

1
CCA

satisfies the conditions of Theorem 4.1, and hence, it is

SLIP. A similar proof to that of Theorem 4.1 shows that

every local left multiplier from FAF into E1AF is a left

multiplier. Since l:annA11
A1k ¼ f0g for some 2� k� n, it

follows that l:annA11
E1AF ¼ f0g. Therefore, A is SLIP,

by Theorem 3.8. h

Theorem 4.3 Let A have a set of left triangulating idem-

potents fE1; . . .;Eng with the generalized triangular matrix

representation

A ¼

A11 A12 � � � A1n

0 A22 � � � A2n

..

. ..
. . .

. ..
.

0 0 � � � Ann

0
BBBB@

1
CCCCA:

Suppose that l:annFAFFAEn ¼ f0g, where F ¼ I � En and

any local left multiplier from Ann into Akn (1� k� n) is a

left multiplier. Then A is SLIP over R.

Proof We use the same notations as those in the proof of

Theorem 4.1. Let F ¼ I � En. By Remark 2.2,

A ffi TriðFAF;FAEn;EnAEnÞ. In this case, En is the unity

of Ann and we have the R-algebra isomorphism:

EnAEn ffi Ann;

and the ðFAF;AnnÞ-bimodule isomorphism:

FAEn ffi
A1n

..

.

An�1;n

0
BB@

1
CCA:

By the hypothesis, Ann is SLIP. Let w : Ann ! FAEn be a

local left multiplier. We show that w is a left multiplier.

Since w is an R-linear map, there exist R-linear maps

/k
n : Ann ! Akn (1� k� n� 1) such that

wðannEnÞ ¼
Xn�1

k¼1

/k
nðannÞEkn:

For each ann 2 Ann, put T ¼ annEn. Since w is a local left

multiplier, there is XT ¼
Pn�1

k¼1 xknEkn 2 FAEn such that

wðTÞ ¼ XTT . So

Xn�1

k¼1

/k
nðannÞEkn ¼

Xn�1

k¼1

xknannEkn;

and hence, any /k
n is a local left multiplier. By the

hypothesis, each /k
n (1� k� n� 1) satisfies

/k
nðannÞ ¼ /k

nð1nÞann ðann 2 AnnÞ:

So

wðannEnÞ ¼
Xn�1

k¼1

/k
nð1nÞannEkn ¼ wðEnÞannEn;

for all ann 2 Ann. So w is a left multiplier. Now from

hypothesis and Theorem 3.8, it follows that A is SLIP. h

The following proposition shows that being EnAEn an

SLIP algebra is a necessary condition for A with a set of

left triangulating idempotents fE1; . . .;Eng to be an SLIP

algebra.

Proposition 4.4 Let A be SLIP over R with a set of left

triangulating idempotents fE1; . . .;Eng. Then EnAEn is

SLIP over R.

Proof Let F ¼ I � En. By Remark 2.2, A ffi TriðFAF;

FAEn;EnAEnÞ. Now, from Theorem 3.6, it follows that

EnAEn is SLIP over R. h

In continuation, we apply our results to block upper

triangular matrix algebras. In order to prove Theorem 4.6,

we need the following lemma.

Lemma 4.5 Let A be SLIP over R and Mr�sðAÞ be the

right A-module of the set of all r-by-s matrices over A.

Then any local left multiplier from A into Mr�sðAÞ is a left

multiplier.
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Proof We use the same notations as those in the proof of

Theorem 4.1. Let w : A ! Mr�sðAÞ be a local left multi-

plier. Then there exist R-linear maps /ij : A ! AEij

(1� i� r; 1� j� s) such that

wðaÞ ¼
Xr
i¼1

Xs
j¼1

/ijðaÞEij:

Since w is a local left multiplier, it is easily checked that

each /ij is a local left multiplier. So by the hypothesis and

the fact that AEij ffi A (as right A-modules), we have

/ijðaÞ ¼ /ijð1ÞaEij;

for all 1� i� r; 1� j� s. Thus, wðaÞ ¼ wð1Þa for all

a 2 A; i.e., w is a left multiplier. h

Theorem 4.6 Let B
�k
nðAÞ ðn� 1Þ be a block upper trian-

gular matrix algebra, where �k ¼ ðk1; . . .; kmÞ 2 Nm. Then

(i) if km � 2, then B
�k
nðAÞ ðn� 2Þ is SLIP over R.

(ii) if km ¼ 1, then B
�k
nðAÞ is SLIP over R if and only if

A is SLIP over R.

Proof Let fF1; . . .;Fmg be a set of left triangulating

idempotents of B
�k
nðAÞ such that F1 ¼

Pk1
i¼1 Ei and Fj ¼Pkj

i¼1 Eiþk1þ���þkj�1
for 2� j�m. Suppose that F ¼ I � Fm

and l ¼ k1 þ ::: þ km�1. Then FB
�k
nðAÞF is a subalgebra of

MlðAÞ and FB
�k
nðAÞFm ffi Ml�kmðAÞ. Since

l:annMlðAÞMl�kmðAÞ ¼ f0g, it follows that

l:annFB�k
nðAÞFFB

�k
nðAÞFm ¼ f0g.

(i) We have FmB
�k
nðAÞFm ffi MkmðAÞ (km � 2). By Corol-

lary 3.3(i), any local left multiplier from FmB
�k
nðAÞFm into

any right FmB
�k
nðAÞFm-module is a left multiplier. We

deduce from Theorem 4.3 that A is SLIP over R.

(ii) Let B
�k
nðAÞ be SLIP over R. By Proposition 4.4,

FmB
�k
nðAÞFm ffi MkmðAÞ ¼ A (since km ¼ 1) is SLIP over

R.

Conversely, assume that A is SLIP over R. We have

FB
�k
nðAÞFm ffi Ml�1ðAÞ. (In this case, Fm ¼ En.) Now by

Lemma 4.5, each of Theorems 3.8 and 4.3 implies that

B
�k
nðAÞ is SLIP over R. h

The n-by-n upper triangular matrices TnðAÞ (n� 1) are

the block upper triangular matrix algebra B
�k
nðAÞ, whenever

�k ¼ ðk1; . . .; knÞ 2 Nn with kj ¼ 1 for any 1� j� n.

Therefore, by Theorem 4.6, we obtain the following

corollary.

Corollary 4.7 The algebra of upper triangular matrices

TnðAÞ (n� 1) is SLIP over R if and only if A is SLIP over

R.

Since eachR-linear local left multiplier fromR into any

right R-module X is a left multiplier, in view of Theo-

rem 4.6, the next corollary is immediate.

Corollary 4.8 The block upper triangular matrix algebra

B
�k
nðRÞ is SLIP over R for every n� 1. Particularly, TnðRÞ

(n� 1) is SLIP over R.
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