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Abstract
Log-normal distribution is used widely in application fields such as economics and finance. This paper considers confi-

dence interval estimates for common signal-to-noise ratio of log-normal distributions based on generalized confidence

interval (GCI), adjusted method of variance estimates recovery, and computational approaches. A simulation study is

conducted to compare the performance of these confidence intervals. A Monte Carlo simulation is applied to report

coverage probability and average length of the confidence intervals. Based on the simulation study, for k ¼ 3, the GCI can

be used. For k ¼ 6, the results of GCI approach perform similarly to the results of computational approach. For k ¼ 10, the

computational approach can be considered as an alternative to estimate the confidence interval. A numerical example based

on real data is presented to illustrate the proposed approaches.

Keywords Average length � Coverage probability � Log-normal distribution �Monte Carlo simulation � Signal-to-noise ratio

1 Introduction

The log-normal distribution, which is related to the normal

distribution, has special characteristics which have led to

its use as a model in many applications, particularly for

analyzing biological, bioequivalence, medical, and envi-

ronmental data. For instance, the log-normal distribution

has been used to compare several drug formulations in

bioequivalence studies (Hannig et al. 2006; Schaarschmidt

2013) and has been used to estimate rainfall frequency in

climate sciences and hydrology (Cho et al. 2004; Ritzema

1994).

The coefficient of variation (CV) is the ratio of the

standard deviation to the mean that is a unit-free measure

of variability relative to the mean. It has been used to

analyze physical, biological, clinical, and medical data.

Various applications of the CV can be found in Miller and

Karson (1977), Doornbos and Dijkstra (1983), Tsim et al.

(1991), Vangel (1996), Gupta and Ma (1996), Fung and

Tsang (1998), Wong and Wu (2002), Tian (2005), Mah-

moudvand and Hassani (2009), Niwitpong (2013), Ng

(2014), Thangjai et al. (2016), Nam and Kwon (2017), and

Hasan and Krishnamoorthy (2017). For example, in climate

sciences and hydrology, the CV index has been used as a

statistical measure of variability in the ratio of plant water

demand to precipitation and to identify regions with highly

variable climates as potentially vulnerable to periodic

water stress and scarcity.

The signal-to-noise ratio (SNR), the reciprocal of the

CV, is the ratio of the mean to the standard deviation of a

single variable. It is an important measure in many appli-

cations, such as the signal strength relative to the back-

ground noise in analog and digital communications, to

explain the magnitude of the mean of a process compared

to variation in quality control, and for regression problems

in econometrics, is the ratio of the full variance and partial

variance of an explanatory variable. In the environment,

measurements can be disturbed by noise (Motchenbacher

and Connelly 1993), not only electronic noise but also

external events such as wind, vibrations, variation in
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temperature, etc. In other words, the SNR helps to reduce

the noise by controlling the environment. The SNR has

been used to measure the relationship between excess

return and the risk of financial assets in finance for port-

folio selection models (Holgersson et al. 2012; Soliman

et al. 2012). For convenient inference, it is to set up a

model for the data and estimate a single parameter that

determines the SNR of entire population.

The problem when estimating the SNR has received

considerable attention in the literature. Sharma and Krishna

(1994) studied an asymptotic sampling distribution of the

inverse coefficient of variation, while George and Kibria

(2011) presented an interval estimator for the SNR of a

Poisson distribution and later on improved the confidence

intervals for the SNR by inverting the confidence intervals

for the CV (George and Kibria 2012). Moreover, Albatineh

et al. (2014) developed the asymptotic sampling distribu-

tion of the SNR and then, in another study, introduced a

novel approach to construct the confidence interval for the

SNR based on an asymptotic sampling distribution (Al-

batineh et al. 2017). Recently, Thangjai and Niwitpong

(2019) presented the interval estimation for a single SNR

and the difference between the SNRs of two log-normal

distributions.

Under many circumstances, independent samples are

collected from different log-normal distributions with a

common SNR, which can be used to test the equality of

two or more SNRs (Gupta 2006), and indeed, the problem

of making statistical inference (estimation and hypothesis

testing: estimation is more accurate than hypothesis test-

ing) from the common SNR of log-normal distributions is

of interest in this study. We approach this by combining

the summary statistics of the samples to estimate the

common SNR. In addition, interval estimation can pro-

vide information on more than a point estimation. In the

literature, Niwitpong (2018) proposed confidence intervals

for the single SNR of a normal distribution, the difference

between the SNRs of two normal distributions, and the

common SNR of k normal distributions. In this paper, we

extend the idea to construct the confidence interval for a

common SNR of k log-normal distributions. The concept

of the generalized confidence interval (GCI) introduced

by Weerahandi (1993) is used to estimate the interval

estimator and has been widely applied to estimate the

confidence intervals for common parameters (Krish-

namoorthy and Lu 2003; Tian 2005; Tian and Wu 2007;

Thangjai et al. 2018). The concept of the adjusted

MOVER (method of variance estimates recovery)

approach based on MOVER, as introduced by Thangjai

et al. (2018), is also applied. The computational approach

is computed based on simulation and numerical compu-

tations using the maximum likelihood estimate (Pal et al.

2007). The GCI, adjusted MOVER, and computational

approaches are used to construct confidence intervals for

the common SNR of log-normal distributions in this

study.

The organization of this paper is as follows. In Sect. 2,

the proposed confidence intervals for common SNR of log-

normal distributions are constructed. In Sect. 3, simulation

technique and results are presented. In Sect. 4, a numerical

example is presented. In Sect. 5, some concluding remarks

are presented.

2 Confidence Intervals for Common SNR

Let X ¼ X1;X2; . . .;Xnð Þ be an independently and identi-

cally distributed (i.i.d.) random sample of size n from

normal distributions with mean l and variance r2. The
SNR is l=r. Let Y ¼ Y1; Y2; . . .; Ynð Þ be i.i.d. random

sample of size n from log-normal distributions with

parameter lY and r2Y . The mean and variance of the ran-

dom variable Y are E Yð Þ ¼ exp lþ r2=2ð Þ and

Var Yð Þ ¼ exp r2ð Þ � 1ð Þ � exp 2lþ r2ð Þð Þ, respectively.

Hence, the random variable Y has SNR defined as

h ¼ E Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Yð Þ
p ¼ exp lþ r2=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp r2ð Þ � 1ð Þ � exp 2lþ r2ð Þð Þ
p

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp r2ð Þ � 1
p :

ð1Þ

Let �X ¼
Pn

i¼1 Xi=n and S2 ¼
Pn

i¼1 Xi � �Xð Þ2= n� 1ð Þ be

maximum likelihood estimators of l and r2, respectively.
The maximum likelihood estimator of h is given by

ĥ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp S2ð Þ � 1
p : ð2Þ

According to Thangjai et al. (2016) and Thangjai and

Niwitpong (2019), the variance of ĥ is given by

Var ĥ
� �

¼ r4 � exp 2r2ð Þ
2 n� 1ð Þ � exp r2ð Þ � 1ð Þ3

: ð3Þ

Consider k independent log-normal distributions with a

common SNR h. Let Yi ¼ Yi1; Yi2; . . .; Yinið Þ be a random

sample of size n from i-th log-normal distributions as fol-

lows: Xij ¼ logðYijÞ�Nðli; r2i Þ. From the i-th sample, the

maximum likelihood estimator of hi is given by

ĥi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp S2ið Þ � 1
p : ð4Þ

The variance of ĥi is

Var ĥi
� �

¼
r4i � exp 2r2i

� �

2 ni � 1ð Þ � exp r2ið Þ � 1ð Þ3
: ð5Þ
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According to Graybill and Deal (1959), the estimator of the

common SNR h, the weighted average of SNR ĥi based on

k individual samples, is defined by

ĥ ¼
X

k

i¼1

ĥi

V̂ar ĥi
� �

,

X

k

i¼1

1

V̂ar ĥi
� �; ð6Þ

where ĥi is defined as in Eq. (4) and V̂ar ĥi
� �

denotes the

estimator of Var ĥi
� �

which is defined in Eq. (5) with ri

replaced by si.

In this section, interval estimators for common SNR are

developed using the GCI, adjusted MOVER, and compu-

tational approaches.

2.1 GCI

The GCI uses generalized pivotal quantity (GPQ) to con-

struct the confidence interval. For more details about the

GPQ, see Weerahandi (1993). Let X ¼ X1;X2; . . .;Xnð Þ be
a random variable with probability density function

f Xjh; dð Þ, where h is parameter of interest and d is nuisance
parameter. Let x ¼ x1; x2; . . .; xnð Þ be an observed value of

X. The random quantity R X; x; h; dð Þ is called be GPQ if the

following two conditions are satisfied:

1. R X; x; h; dð Þ has a probability distribution that is free of

unknown parameters.

2. The observed value of R X; x; h; dð Þ, X ¼ x, does not

depend on nuisance parameters.

Let R a=2ð Þ and R 1� a=2ð Þ be the 100 a=2ð Þ-th and the

100 1� a=2ð Þ-th percentiles of R X; x; h; dð Þ. The

100 1� að Þ% two-sided GCI for the parameter of interest is

defined as ½R a=2ð Þ;R 1� a=2ð Þ�.
For the i-th sample, let �xi and s2i be the observed values

of sample mean �Xi and sample variance S2i , respectively.

The sample variance has a Chi-squared distribution with

ni � 1 degree of freedom defined as

S2i �
r2i v

2
ni�1

ni � 1ð Þ :
ð7Þ

From Eq. (7), the population variance can be obtained as

follows:

r2i �
ni � 1ð ÞS2i
v2ni�1

: ð8Þ

The GPQ for population variance r2i is defined as

Rr2
i
¼ ni � 1ð Þs2i

v2ni�1

: ð9Þ

The GPQ for the SNR h based on the i-th sample can be

written as

Rhi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp Rr2
i

� �

� 1

r ;
ð10Þ

where Rr2
i
is defined as in Eq. (9).

The GPQ for the common SNR h is a weighted average

of the GPQ Rhi based on k individual sample as

Rh ¼
X

k

i¼1

Rhi

R
VarðĥiÞ

,

X

k

i¼1

1

R
VarðĥiÞ

; ð11Þ

where

R
Var ĥið Þ ¼

R2
r2
i

� exp 2Rr2
i

� �

2 ni � 1ð Þ � exp Rr2
i

� �

� 1
� �3

: ð12Þ

In other words, R
Var ĥið Þ is Var ĥi

� �

with r2i replaced by s2i .

It is easy to verify that Rh is GPQ for h. Therefore, the
100 1� að Þ% two-sided confidence interval for the com-

mon SNR of several log-normal distributions based on the

GCI approach is given by

CIGCI ¼ ½LGCI;UGCI� ¼ ½Rh a=2ð Þ;Rh 1� a=2ð Þ�; ð13Þ

where Rh a=2ð Þ and Rh 1� a=2ð Þ denote the 100 a=2ð Þ-th
and 100 1� a=2ð Þ-th percentiles of Rh, respectively.

The following algorithm is useful in constructing the

GCI for h.
Algorithm 1.

For a given �xi and s2i based on the i-th sample, where

i ¼ 1; 2; . . .; k
For g ¼ 1 to m

Generate v2ni�1 from Chi-squared distribution with ni � 1

degrees of freedom

Compute Rr2
i
from Eq. (9)

Compute Rhi from Eq. (10)

Compute R
Var ĥið Þ from Eq. (12)

Compute Rh from Eq. (11)

End g loop

Compute Rh a=2ð Þ and Rh 1� a=2ð Þ

2.2 Adjusted MOVER Confidence Interval

The MOVER approach discussed by Donner and Zou

(2012) involves the sum of two parameters. Let h1 and h2
be the parameters of interest. Also, let ĥ1 and ĥ2 be the

estimators of h1 and h2, respectively. The lower and upper

limits of confidence interval for sum of two parameters

h1 þ h2 are defined as L12 and U12, respectively. Here, the

central limit theorem and assumption of independence

between the point estimators ĥ1 and ĥ2 are used to con-

struct interval estimator. The lower limit L12 is obtained by
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L12 ¼ ĥ1 þ ĥ2 � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĥ1
� �

þ Var ĥ2
� �

r

; ð14Þ

where za=2 is the 100 a=2ð Þ-th percentile of the standard

normal distribution.

Now, confidence limits for hi are separated as ½li; ui�,
where i ¼ 1; 2. Therefore, ½l1; u1� contains the parameter

values for h1 and ½l2; u2� contains the parameter values for

h2. Since the lower limit L12 must be closer to l1 þ l2 than

to ĥ1 þ ĥ2. For i ¼ 1; 2, the variance estimates for ĥi at
hi ¼ li based on the central limit theorem can be written as

V̂ar ĥli
� �

¼
ĥi � li

� �2

z2a=2
: ð15Þ

Substituting back into Eq. (14) yields

L12 ¼ ĥ1 þ ĥ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĥ1 � l1

� �2

þ ĥ2 � l2

� �2
r

: ð16Þ

And similarly, the upper limit U12 must be closer to u1 þ u2

than to ĥ1 þ ĥ2. For i ¼ 1; 2, the variance estimates for ĥi at
hi ¼ ui based on the central limit theorem can be written as

V̂ar ĥui
� �

¼
ui � ĥi

� �2

z2a=2
: ð17Þ

Hence, the upper limit U12 is obtained by

U12 ¼ ĥ1 þ ĥ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u1 � ĥ1
� �2

þ u2 � ĥ2
� �2

r

: ð18Þ

From Eqs. (15) and (17), the variance estimates for ĥi at
hi ¼ li and hi ¼ ui are the average variance between these

two variances given by

V̂ar ĥi
� �

¼
V̂ar ĥli

� �

þ V̂ar ĥui
� �

2

¼ 1

2

ĥi � li

� �2

z2a=2
þ

ui � ĥi
� �2

z2a=2

0

B

@

1

C

A

:

ð19Þ

As documented by Graybill and Deal (1959), the common

SNR h is weighted average of the SNR ĥi based on k

individual samples. The common SNR is obtained by

ĥ ¼
X

k

i¼1

ĥi

V̂ar ĥi
� �

,

X

k

i¼1

1

V̂ar ĥi
� �; ð20Þ

where ĥi is defined as in Eq. (4) and V̂ar ĥi
� �

is defined as

in Eq. (19).

According to Krishnamoorthy and Oral (2017), the

lower and upper limits of the confidence interval for the

common SNR h are given by

LAM ¼ ĥ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k

i¼1

ĥi � li

� �2

V̂ar ĥli
� �� �2

,

X

k

i¼1

1

V̂ar ĥli
� �� �2

v

u

u

u

u

t

ð21Þ

and

UAM ¼ ĥþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k

i¼1

ui � ĥi
� �2

V̂ar ĥui
� �� �2

,

X

k

i¼1

1

V̂ar ĥui
� �� �2

v

u

u

u

u

t

;

ð22Þ

where ĥ is defined as in Eq. (20).

According to Casella and Berger (2002), it is well

known that the confidence interval for the SNR is given by

½li; ui� ¼ ĥi � t1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĥi
� �

r

; ĥi þ t1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĥi
� �

r

� �

;

ð23Þ

where t1�a=2 is the 100 1� a=2ð Þ-th percentile of a Stu-

dent’s t distribution, ĥi is defined as in Eq. (4) with Si

replaced by si, and Var ĥi
� �

is defined as in Eq. (5) with ri

replaced by si.

Therefore, the 100 1� að Þ% two-sided confidence

interval for the common SNR of several log-normal dis-

tributions based on the adjusted MOVER approach is given

by

CIAM ¼ ½LAM;UAM�; ð24Þ

where LAM is defined as in Eq. (21), UAM is defined as in

Eq. (22), and li and ui are defined as in Eq. (23).

2.3 Computational Confidence Interval

The computational approach introduced by Pal et al.

(2007) uses the maximum likelihood estimates. To apply

our proposed approach, the common SNR based on max-

imum likelihood estimator is obtained by

ĥML ¼
X

k

i¼1

ĥi

V̂arðĥiÞ

,

X

k

i¼1

1

V̂arðĥiÞ
; ð25Þ

where ĥi is defined as in Eq. (4) and V̂arðĥiÞ is defined as in

Eq. (5) with ri replaced by si.

The restricted maximum likelihood estimates (RMLEs)

of parameters are used to obtain the computational approach.

The maximum likelihood estimates of li, r
2
i ; and h under

h1 ¼ h2 ¼ . . . ¼ hk ¼ h provide the RMLEs of these

parameters. The RMLE of li is defined as l̂iðRMLÞ ¼ �Xi. The

RMLE of r2i is defined as r̂
2
iðRMLÞ ¼ S2i . And the RMLE of h

is defined as ĥiðRMLÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp S2
iðRMLÞ

� �

� 1

r

.
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Let XiðRMLÞ ¼ Xi1ðRMLÞ;Xi2ðRMLÞ; . . .;XiniðRMLÞ
� �

be arti-

ficial sample of size ni from normal distributions with mean

l̂iðRMLÞ and variance r̂2iðRMLÞ. For i-th artificial sample, let

�XiðRMLÞ and S2iðRMLÞ be the mean and variance of the log-

transformed sample from a log-normal distribution. Let

�xiðRMLÞ and s2iðRMLÞ be the observed values of �XiðRMLÞ and

S2iðRMLÞ, respectively. The common SNR based on k indi-

vidual samples is obtained by

ĥRML ¼
X

k

i¼1

ĥiðRMLÞ

V̂arðĥiðRMLÞÞ

,

X

k

i¼1

1

V̂arðĥiðRMLÞÞ
; ð26Þ

where ĥiðRMLÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp S2
iðRMLÞ

� �

� 1

r

with SiðRMLÞ

replaced by siðRMLÞ and V̂arðĥiðRMLÞÞ is defined as in Eq. (5)

with ri replaced by siðRMLÞ.

Therefore, the 100 1� að Þ% two-sided confidence

interval for the common SNR of several log-normal dis-

tributions based on the computational approach is given by

CICA ¼ ½LCA;UCA� ¼ ½ĥRML a=2ð Þ; ĥRML 1� a=2ð Þ�; ð27Þ

where ĥRML a=2ð Þ and ĥRML 1� a=2ð Þ denote the 100 a=2ð Þ-
th and 100 1� a=2ð Þ-th percentiles of ĥRML, respectively.

The following algorithm is useful in constructing com-

putational confidence interval for h.

Algorithm 2.

For a given �xi and s2i based on the i-th sample, where

i ¼ 1; 2; . . .; k, and h

Compute l̂iðRMLÞ ¼ �Xi and r̂2iðRMLÞ ¼ S2i

For g ¼ 1 to m

Generate xijðRMLÞ from N l̂iðRMLÞ; r̂
2
iðRMLÞ

� �

Compute �xiðRMLÞ and s2iðRMLÞ

Compute ĥRML from Eq. (26)

End g loop

Compute ĥRML a=2ð Þ and ĥRML 1� a=2ð Þ from Eq. (27)

3 Simulation Studies

A simulation study was performed to evaluate the coverage

probabilities and average lengths of the three confidence

intervals using the R statistical program. The SNR of log-

normal distribution does not depend on parameter l but it

depends on parameter r only. Although Fung and Tsang

(1998), Tian (2005), and Ng (2014) suggested that the CV

rarely exceeds 0.50 (r ¼ 0.4724 and SNR ¼ 1.9999) for

most medical and biological studies, this research followed

George and Kibria (2012); in the simulation study, the

sample cases were k ¼ 3, 6, and 10. Clearly, the value of

SNR in Eq. (1) depends only on the shape parameter r. For
simulation purposes, set the population means l1 ¼ l2 ¼
. . . ¼ lk ¼ l ¼ 1 (arbitrary), and in order to get SNR h ¼
10, 3.33, 2, 1, we must set r ¼ 0.0998, 0.2938, 0.4724,

0.8326, respectively. The population standard deviations

r1; r2; . . .; rk and the sample sizes n1; n2; . . .; nk were given

in the following tables. For each set of parameters, 5,000

random samples were generated. For the GCI and com-

putational approaches, 1000Rh’s and 1000ĥRML’s were

obtained for each of the random samples. For 100ð1� aÞ%
confidence interval, the coverage probability of the confi-

dence interval would equal to c� za=2

ffiffiffiffiffiffiffiffiffiffi

cð1�cÞ
M

q

, where c is

the nominal confidence level and M is a number of simu-

lation runs. Therefore, the 95% confidence interval would

have the coverage probability in a range of between

[0.9440,0.9560], with the shortest average length is

preferable.

The following algorithm is used to evaluate the coverage

probabilities and average lengths of three confidence

intervals:

Algorithm 3.

For a given ðn1; n2; . . .; nkÞ, ðl1; l2; . . .; lkÞ,
ðr1; r2; . . .; rkÞ, and h
For h ¼ 1 to M

Generate xij from Nðli; r2i Þ, where i ¼ 1; 2; . . .; k,

j ¼ 1; 2; . . .; ni
Calculate �xi and s2i
Construct the confidence interval based on the GCI

approach ½LGCIðhÞ;UGCIðhÞ�
Construct the confidence interval based on the adjusted

MOVER approach ½LAMðhÞ;UAMðhÞ�
Construct the confidence interval based on the compu-

tational approach ½LCAðhÞ;UCAðhÞ�
Record whether or not all the values of h fall in their

corresponding confidence intervals

Compute the length of interval UðhÞ � LðhÞ
End h loop

Compute the coverage probability and average length for

each confidence interval

The results in terms of the coverage probabilities and

average lengths for k ¼ 3, 6, and 10 sample cases are given

in Tables 1, 2, and 3, respectively. The results of k ¼ 3 are

presented in Table 1, in which it can be seen that the GCI

approach was preferable in terms of the coverage proba-

bility, whereas the coverage probabilities of the computa-

tional approach were close to the nominal confidence level

of 0.95 when the sample sizes were large. Moreover, the

coverage probabilities of the adjusted MOVER approach

were less than the nominal confidence level of 0.95. From
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Table 2, for k ¼ 6, the coverage probabilities of the GCI

approach were less than the nominal confidence level of

0.95 as the sample sizes were small and became closer to

the nominal confidence level of 0.95 as the sample sizes

were large. The coverage probabilities of the adjusted

MOVER approach were less than the nominal confidence

Table 1 Coverage probabilities

(CP) and average lengths (AL)

of 95% two-sided confidence

intervals for the common SNR

of several log-normal

distributions: 3 sample cases

n(3)* rð3Þ* CIGCI CIAM CICA

CP AL CP AL CP AL

10(3) 0.10,0.29,0.47 0.9550 2.3030 0.9262 2.0781 0.9312 2.5368

0.29,0.47,0.83 0.9550 1.3864 0.9384 1.2463 0.9268 1.4664

10,20,30 0.10,0.29,0.47 0.9564 1.1999 0.9310 1.0887 0.9450 1.2505

0.29,0.47,0.83 0.9490 0.7326 0.9252 0.6699 0.9438 0.7619

30(3) 0.10,0.29,0.47 0.9516 1.2582 0.8852 1.0128 0.9438 1.2958

0.29,0.47,0.83 0.9468 0.7444 0.8930 0.6098 0.9382 0.7613

50(3) 0.10,0.29,0.47 0.9428 0.9643 0.8760 0.7592 0.9436 0.9808

0.29,0.47,0.83 0.9476 0.5695 0.8886 0.4579 0.9436 0.5782

30,50,100 0.10,0.29,0.47 0.9508 0.6545 0.9184 0.5778 0.9492 0.6642

0.29,0.47,0.83 0.9500 0.4003 0.9158 0.3550 0.9498 0.4065

50,100,200 0.10,0.29,0.47 0.9506 0.4581 0.9148 0.4038 0.9494 0.4619

0.29,0.47,0.83 0.9482 0.2812 0.9156 0.2485 0.9514 0.2834

100(3) 0.10,0.29,0.47 0.9426 0.6779 0.8650 0.5261 0.9438 0.6836

0.29,0.47,0.83 0.9478 0.4001 0.8824 0.3169 0.9480 0.4030

200(3) 0.10,0.29,0.47 0.9512 0.4785 0.8688 0.3683 0.9500 0.4802

0.29,0.47,0.83 0.9452 0.2822 0.8702 0.2218 0.9404 0.2832

*nð3Þ ¼ ðn1; n2; n3Þ and rð3Þ ¼ ðr1;r2;r3Þ
Bold values indicate that the coverage probability is greater than or close to the nominal confidence level of

0.95

Table 2 Coverage probabilities

(CP) and average lengths (AL)

of 95% two-sided confidence

intervals for the common SNR

of several log-normal

distributions: 6 sample cases

n(6)* rð6Þ* CIGCI CIAM CICA

CP AL CP AL CP AL

10(6) 0.10(2),0.29(2),0.47(2) 0.9320 1.7398 0.9262 1.4416 0.9592 1.7472

0.10,0.29(2),0.47(2),0.83 0.9356 1.3430 0.9034 1.0533 0.9468 1.3300

10(2),20(2),30(2) 0.10(2),0.29(2),0.47(2) 0.9360 0.8754 0.9132 0.7644 0.9538 0.8767

0.10,0.29(2),0.47(2),0.83 0.9446 0.6960 0.8912 0.5674 0.9526 0.7082

30(6) 0.10(2),0.29(2),0.47(2) 0.9458 0.9176 0.8812 0.7119 0.9510 0.9131

0.10,0.29(2),0.47(2),0.83 0.9428 0.7042 0.8646 0.5199 0.9492 0.7079

50(6) 0.10(2),0.29(2),0.47(2) 0.9464 0.6967 0.8760 0.5363 0.9458 0.6940

0.10,0.29(2),0.47(2),0.83 0.9508 0.5377 0.8600 0.3917 0.9538 0.5392

30(2),50(2),100(2) 0.10(2),0.29(2),0.47(2) 0.9446 0.4684 0.9116 0.4077 0.9496 0.4685

0.10,0.29(2),0.47(2),0.83 0.9488 0.3796 0.8840 0.3022 0.9532 0.3825

50(2),100(2),200(2) 0.10(2),0.29(2),0.47(2) 0.9434 0.3260 0.9086 0.2851 0.9440 0.3261

0.10,0.29(2),0.47(2),0.83 0.9500 0.2667 0.8850 0.2116 0.9504 0.2677

100(6) 0.10(2),0.29(2),0.47(2) 0.9480 0.4853 0.8730 0.3716 0.9472 0.4839

0.10,0.29(2),0.47(2),0.83 0.9478 0.3762 0.8420 0.2711 0.9488 0.3775

200(6) 0.10(2),0.29(2),0.47(2) 0.9510 0.3402 0.8680 0.2601 0.9512 0.3394

0.10,0.29(2),0.47(2),0.83 0.9452 0.2651 0.8310 0.1899 0.9456 0.2653

*nðkÞ ¼ ðn1; n2; . . .; nkÞ and rðkÞ ¼ ðr1;r2; . . .; rkÞ
Bold values indicate that the coverage probability is greater than or close to the nominal confidence level of

0.95
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level of 0.95 for all sample sizes. The coverage probabil-

ities of the computational approach were close to the

nominal confidence level of 0.95 for all sample sizes. The

GCI approach performed as well as the computational

approach in terms of the coverage probability when the

sample sizes were large; otherwise, the average lengths of

the computational approach were little wider than those of

the GCI approach. From Table 3, for k ¼ 10, the compu-

tational approach provided much better interval estimates

than the other approaches in terms of the coverage proba-

bility. The coverage probabilities of the GCI and adjusted

MOVER approaches were less than the nominal confidence

level of 0.95.

For the sake of saving space, we do not show the sim-

ulation results for k ¼ 20 and 30 as the results are similarly

to the results for k ¼ 10 sample cases when the coverage

probability of the GCI approach is far below the nominal

confidence level of 0.95 and thus the GCI approach is not

recommended for k ¼ 10, 20 and 30 cases.

4 Empirical Application

The proposed approaches are applied to a real daily rainfall

data in this section. The data set is given by Thangjai et al.

(2019) on the daily rainfall data on 17 July 2018. The data

are divided into three regions: central, eastern, and south-

ern regions. For central region, the summary statistics are

n1 ¼ 22, �x1 ¼ 1.1642, �y1 ¼ 8.8273, sX1
¼ 1.6073, and

sY1 ¼ 15.8404. For eastern region, the summary statistics

are n2 ¼ 15, �x2 ¼ 2.5592, �y2 ¼ 44.6467, sX2
¼ 1.8549, and

sY2 ¼ 71.9642. For southern region, the summary statistics

are n3 ¼ 28, �x3 ¼ 3.0854, �y3 ¼ 26.9321, sX3
¼ 0.6373, and

sY3 ¼ 19.5774. Thangjai et al. (2019) indicated that three

datasets come from log-normal distributions. The common

SNR of log-normal distributions was 0.3761. The 95%

two-sided confidence intervals for the common SNR of

log-normal distributions were constructed using the GCI,

adjusted MOVER, computational approaches. The 95%

GCI is [0.0301, 0.5691] with a length of interval of 0.5390.

The 95% adjusted MOVER confidence interval is [0.2137,

0.5561] with a length of interval of 0.3424. The 95%

computational confidence interval is [0.1032, 0.6327] with

a length of interval of 0.5295. The results indicate that all

of the confidence intervals contain the true common SNRs,

but the length of adjusted MOVER confidence interval was

shorter than the lengths of the GCI and computational

confidence interval. Therefore, these results confirm our

simulation study in the previous section in term of length

for k ¼ 3. In simulation, the adjusted MOVER confidence

interval is the shortest average lengths, but the coverage

probabilities are less than the nominal confidence level of

0.95. Furthermore, the coverage probability and length in

this example are computed by using only one sample,

whereas the coverage probability and average length in the

simulation are computed by using 5,000 random samples.

Table 3 Coverage probabilities (CP) and average lengths (AL) of 95% two-sided confidence intervals for the common SNR of several log-

normal distributions: 10 sample cases

n(10)* rð10Þ* CIGCI CIAM CICA

CP AL CP AL CP AL

10(10) 0.10(2),0.29(3),0.47(3),0.83(2) 0.8984 1.1265 0.9014 0.7921 0.9576 1.0197

0.10(5),0.83(5) 0.9218 0.9287 0.9510 0.6731 0.9672 0.7795

10(3),20(4),30(3) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9308 0.5350 0.8836 0.4269 0.9540 0.5325

0.10(5),0.83(5) 0.9394 0.4125 0.9468 0.3637 0.9600 0.3944

30(10) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9314 0.5431 0.8556 0.3930 0.9496 0.5352

0.10(5),0.83(5) 0.9358 0.4021 0.9160 0.3327 0.9528 0.3899

50(10) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9408 0.4104 0.8568 0.2960 0.9510 0.4075

0.10(5),0.83(5) 0.9448 0.2999 0.9152 0.2511 0.9586 0.2952

(0(3),50(4),100(3) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9450 0.2858 0.8810 0.2284 0.9502 0.2863

0.10(5),0.83(5) 0.9460 0.2153 0.9386 0.1964 0.9544 0.2125

50(3),100(4),200(3) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9470 0.1999 0.8768 0.1597 0.9514 0.1999

0.10(5),0.83(5) 0.9488 0.1489 0.9352 0.1373 0.9524 0.1481

100(10) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9420 0.2861 0.8362 0.2053 0.9490 0.2850

0.10(5),0.83(5) 0.9456 0.2068 0.9068 0.1740 0.9542 0.2051

200(10) 0.10(2),0.29(3),0.47(3),0.83(2) 0.9490 0.2005 0.8384 0.1438 0.9470 0.2002

0.10(5),0.83(5) 0.9460 0.1445 0.9026 0.1219 0.9472 0.1439

*nðkÞ ¼ ðn1; n2; . . .; nkÞ and rðkÞ ¼ ðr1;r2; . . .; rkÞ
Bold values indicate that the coverage probability is greater than or close to the nominal confidence level of 0.95
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Therefore, the adjusted MOVER confidence interval is not

recommended to construct the confidence intervals for

common SNR.

5 Discussion and Conclusions

Thangjai and Niwitpong (2019) proposed confidence

intervals for the single SNR of a log-normal distribution

and for the difference between SNRs of two log-normal

distributions. In this paper, we extend the work of Thangjai

and Niwitpong (2019) to construct confidence intervals for

the common SNR of k log-normal distributions. The study

was carried out to examine the performance of confidence

intervals based on the GCI, adjusted MOVER, and com-

putational approaches. The simulation study results indi-

cate that the GCI approach was better than the other

approaches for k ¼ 3. Additionally, the computational

approach can be used when the sample sizes were large.

For k ¼ 6 and k ¼ 10, the computational approach was

preferable for all sample sizes. The GCI approach was

preferable when the sample sizes were large.
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Appendix

R code for outputs in Tables 1, 2, and 3

CI.SNRLN ¼ function(M,m,k,n(k),mean,sqrt.var(k)){

ni ¼ rep(0,k); s ¼ rep(0,k); xbar ¼ rep(0,k);

mu.hat.RML ¼ rep(0,k)

sigma.hat.RML ¼ rep(0,k); Rtheta.GCI ¼ rep(0,m)

theta.CA ¼ rep(0,m); CP.GCI ¼ rep(0,M); CP.AM ¼
rep(0,M)

CP.CA ¼ rep(0,M); Length.GCI ¼ rep(0,M); Leng-

th.AM ¼ rep(0,M)

Length.CA ¼ rep(0,M); alpha ¼ 0.05; z.alpha ¼
qnorm(1-(alpha/2))

sqrt.var ¼ c(sqrt.var(k)); theta(k) ¼ 1/sqrt(exp(sqrt.-

var(k)^2)-1)

var.theta(k) ¼ ((sqrt.var(k)^4)�(exp(2�(sqrt.-
var(k)^2))))/(2�(n(k)-1)

�(((exp(sqrt.var(k)^2))-1)^3))
theta.p ¼ c(theta(k)); var.theta.p ¼ c(var.theta(k))

theta ¼ (sum(theta.p/var.theta.p))/(sum(1/var.theta.p))

for(i in 1:M){

x(k) ¼ rnorm(n(k),mean,sqrt.var(k)); xbar.(k) ¼ mean

(x(k))

s.(k) ¼ sd(x(k)); ni ¼ c(n(k)); xbar ¼ c(xbar.(k)); s ¼
c(s.(k))

thetahat ¼ 1/sqrt((exp(s^2))-1)

var.thetahat ¼ ((s^4)�(exp(2�(s^2))))/(2�(ni-1)�(((exp
(s^2))-1)^3))

frac1 ¼ sum(thetahat/var.thetahat); frac2 ¼ sum(1/var.

thetahat)

thetahat.large ¼ frac1/frac2

for(j in 1:m){

V ¼ rchisq(k,ni-1); Rsig.sqrt ¼ ((ni-1)�(s^2))/V
Rvar ¼ ((Rsig.sqrt^2)�(exp(2�(Rsig.sqrt))))/(2�(ni-1)�

(((exp(Rsig.sqrt))-1)^3)); Rtheta¼ 1/sqrt((exp(Rsig.sqrt))-1)

Rtheta.GCI[j] ¼ sum(Rtheta/Rvar)/sum(1/Rvar)}

L.CI1 ¼ quantile(Rtheta.GCI,0.025,type=8)

U.CI1 ¼ quantile(Rtheta.GCI,0.975,type=8)

CP.GCI[i] ¼ ifelse(L.CI1\theta&&theta\U.CI1,1,0)

Length.GCI[i] ¼ U.CI1-L.CI1

t.x ¼ qt((1-alpha/2),(ni-1)); l1 ¼ (1/sqrt((exp(s^2))-1))-
(t.x�sqrt(var.thetahat))

u1 ¼ (1/sqrt((exp(s^2))-1))?(t.x�sqrt(var.thetahat)); z ¼
qnorm(alpha/2)

var.l ¼ ((thetahat-l1)^2)/(z^2); var.u ¼ ((u1-theta-

hat)^2)/(z^2)
var.t ¼ (var.l?var.u)/2; thetahat.w ¼ (sum(thetahat/(-

var.t)))/(sum(1/(var.t)))

L.CI2 ¼ thetahat.w-(z.alpha�sqrt(1/(sum(1/var.l))))

U.CI2 ¼ thetahat.w?(z.alpha�sqrt(1/(sum(1/var.u))))

CP.AM[i] ¼ ifelse(L.CI2\theta&&theta\U.CI2,1,0)

Length.AM[i] ¼ U.CI2-L.CI2

mu.hat.RML ¼ xbar; mu.hat.RML(k) ¼ mu.hat.RML

[[k]]

sigma.hat.RML ¼ s; sigma.hat.RML(k) ¼ sigma.hat.

RML[[k]]

for(j in 1:m){

x.RML(k) ¼
rnorm(n(k),mu.hat.RML(k),sigma.hat.RML(k))

xbar.RML.(k) ¼ mean(x.RML(k)); s.RML.(k) ¼ sd(x.

RML(k))

xbar.RML ¼ c(xbar.RML.(k)); s.RML ¼ c(s.RML.(k))

thetahat.RML ¼ 1/sqrt((exp(s.RML^2))-1)

var.RML ¼ ((s.RML^4)�(exp(2�(s.RML^2))))/(2�(ni-
1)�(((exp(s.RML^2))-1)^3))

frac1.RML ¼ sum(thetahat.RML/var.RML); frac2.RML

¼ sum(1/var.RML)

theta.CA[j] ¼ frac1.RML/frac2.RML }

L.CI3 ¼ quantile(theta.CA,0.025,type=8)

U.CI3 ¼ quantile(theta.CA,0.975,type=8)

CP.CA[i] ¼ ifelse(L.CI3\theta&&theta\U.CI3,1,0)

Length.CA[i] ¼ U.CI3-L.CI3}

106 Iran J Sci Technol Trans Sci (2020) 44:99–107

123



cat(‘‘CP|GCI¼’’, mean(CP.GCI),‘‘Length|GCI¼’’, mean

(Length.GCI),‘‘n n’’)

cat(‘‘CP|AM¼’’, mean(CP.AM),‘‘Length|AM¼’’, mean

(Length.AM),‘‘n n’’)

cat(‘‘CP|CA¼’’, mean(CP.CA),‘‘Length|CA¼’’, mean(-

Length.CA),‘‘n n’’)}
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