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Abstract

The finite distributed lag models include highly correlated variables, lagged and unlagged values of the same variables.
Some problems are faced for this model when applying the ordinary least squares method or econometric models such as
Almon models. Giiltay and Kagiranlar (J Math Stat 44:1215-1233, 2015) compared the performance of the alternative
biased estimators to the Almon estimator in terms of the mean square error. The primary aim of this study is to evaluate the
predictive performance of the alternative biased estimators to the Almon estimator according to the prediction mean square
error criterion under the target function. We use the Almon (Econometrica 178-196, 1965) data to illustrate our theoretical
results.
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1 Introduction Ypt1 o
Yp+2 B
y = . Y [3 = )
Consider the finite distributed lag model, :
_ _ yr ﬁp
yt_ﬂ(:xl+ﬁle—l+~-.+ﬁpxl—ﬁ+8t7 t=p+1,...T Xpp1 Xy X Ept1
_iﬁx i+ ¢ X ez Hprro 2 Ep+2
- Ui 4 = . . . . , &= .
i=0
(1) Xr  Xr—1 0 XT—p er
where ¢ is IN(0, 62). The coefficients f; are called lag Some kind of distributed lag models have been intro-
weights. Model in Eq. (1) can be written in the matrix ~ duced to be able to estimate the parameters using some
notation as prior information about the behavior of the f’s in (1) such

as the Almon models.Fisher (1937) initially introduced

y=Xp+e (2) nonstochastic smoothness prior information of the follow-
where ing type:
Bi=(p+1-iy 0<i<p 3
=0 i>p

where 7y is any unknown parameter.Then, Almon (1965)
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Equation (4) can be written in the matrix notation as
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1 0 0 0 Yo (k) = (W'W +KI)~ (W' + kbo) (n
I 1 1 1 ) . .
1 2 2 2 ! = Tija+ (L= Ti) i
A= s Y= 72
P : where by =7, and Ty = (W'W +kI)"'W'W. Thus,
1L pp*  p Y, AMRE of f in model (2) is f8,,(k) = A §,,(k).

areA: (p+1) x (r+ 1) matrixand y : (r+ 1) x 1 vector.
The ranks of matrices X and A are assumed to be (p +
1)<(T —p) and (r+1)<(p+ 1), respectively. If r<p,
then the rank of A is r + 1. We estimate f in (2), under the
nonstochastic prior information on f§ which is given by (5),
using Almon estimation method. By substituting (5) in (2),

y=XAy+e

6
=Wy+e, ()

e~ N(0,0°I)
is obtained. This model can be called a linear Almon dis-
tributed lag model.Then, the ordinary least squares (OLS)
estimator of y in model (6) is

Sa= (WW) "Wy = (AX XA)'AX'y. (7)
In this case,

BA = A“;A (8)

is the Almon estimator (AE) of f. ﬁA is the best linear
unbiased estimator (BLUE) (see, also Vinod and Ullah
(1981)).

In case of estimating model (1) by OLS, multi-
collinearity problem among the explanatory variables may
be occurred because there are p lags of the same variables
in the model. To overcome the multicollinearity problem,
the following alternative biased estimator to the AE for the
distributed lag model is introduced.

e Following Hoerl and Kennard’s (1970a) method for
defining ridge regression estimator, the Almon-ridge
estimator (ARE) of y in model (6) is defined as follows,

fi = (W'W + k)~ Wy

/ —1 41y (9)
— (A'SA +KI)'A'X'y,

k>0
where S = X’ X. Thus
Bk :A";k (10)

is the ARE for model (2), (see, Maddala (1974), Vinod
and Ullah (1981), Chanda and Maddala (1984) and Yeo
and Trivedi (1989)).Then, Giiltay and Kagiranlar (2015)
also introduced the following three other alternative
estimators to the AE for the distributed lag model in
order to overcome the multicollinearity problem.

e Following Swindel’s (1976) method, the Almon-mod-
ified ridge estimator (AMRE) of y in model (6) is
defined as follows,
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e Following Liu’s (1993) method for defining the
estimator which is called Liu estimator in Akdeniz
and Kaciranlar (1995), the Almon-Liu estimator (ALE)
of y in model (6) is defined as follows,

fa = (WW D™ (Wy+dj,)
= (A'SA+1)""(A'Xy + dj,)
= (A'SA+1)""(A'SA +dI) §,
=Fy),

(12)

where F; = (W'W +1)"' (W'W +dI). Thus, the ALE
of f is ﬁd = Aj,;. The comparison of j, with j, and the
selection of d are given in Kaciranlar (2010).

e Following Li and Yang’s (2012) method, the Almon-
modified Liu estimator (AMLE) of y in model (6) is
defined as follows,

Su(d) = (WW 1) (WW +dl) 4+ (1 —d) (WW+1) by
=Faja+ (I—Fa)ia
(13)
where by =7J,. Thus, AMLE of f in model (2) is
Bu(d) = A7, (d).

2 Prediction Mean Squared Error
under the Target Function

In this section, we will introduce the prediction mean
square error (PMSE) under the target function.

Generally predictions from a linear regression model are
made either for the actual values of the study variable or
for the average values at a time. However, situations may
occur in which one may be required to consider the pre-
dictions of both the actual and average values
simultaneously.

If [3 denotes an estimator of f3, then the predictor for the
values of study variable is generally formulated as Y=X ff
which is used for predicting either the actual values y or the
average values E(y) = Xf at a time. When the situation
demands prediction of both the actual and average values
together, the target function is defined as follows,

T(y)=ty+(1-0EQy) =Y (14)
and use ¥ = Xp for predicting it where 0<r<1 is a

nonstochastic scalar specifying the weightage to be
assigned to the prediction of actual and average values of
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the study variable, see, Shalabh (1995). Toutenburg and
Shalabh (1996) analyzed the performance properties of
predictors arising from the methods of restricted regression
and mixed regression besides least squares according to the
target function. Then Toutenburg and Shalabh (2000)
improved predictions in linear regression models with
stochastic linear constraints in terms of the target function.
Also, Shalabh et al. (2009) introduced the extended bal-
anced loss function (EBLF) under the target function and
discussed the stein rule estimation. In addition, Chaturvedi
and Shalabh (2014) discussed the Bayesian estimation of
regression coefficients under EBLF.

Gunst and Mason (1979) compared OLS, principal
components and ridge regression estimators in terms of the
integrated MSE using models with two explanatory vari-
ables. Friedman and Montgomery (1985) adopted the
similar approach by focusing on the prediction of a new
response y based on PMSE under linear regression model.
They considered the predictive ability of the estimators
evaluated at a particular observation. Then Ozbey and
Kaciranlar (2015) also used the same criterion to evaluate
the predictive performance of the Liu estimator.

Now, from Eq. (14), the target function at the point x;, =
[1, x01, %02, - - -, Xo] is defined as follows:

Yo =tyo+ (1= 1) E(yo) (15)
where yo = x, + €.

Therefore, the predictive measure at the point x; =
[1, xo1, %02, - -
}’3 - .)307 (16)
where J, = x)p.

So, the PMSE which is a measure of the closeness of a

predictor to the response being predicted under the target
function is defined as follows:

PMSE = E(y; — )" (17)

. )C()k] is

Let J represents the PMSE. J is the sum of the variance (V)
and the squared bias (B):

J=V+B (18)
If y; is the value to be predicted, and Y, is the prediction of

that value, then the variance and the bias of the prediction
error are

V(o = o) = V(%) + V(o) (19)
and
Bias = E(y; — Jo)- (20)

3 Evaluations of Prediction Mean Squared
Errors Under the Target Function

In this section, we will obtain the PMSEs of AE, ARE,
ALE, AMRE and AMLE.For convenience, the canonical

form of (6)
y=Zo+e &~ N0, ) (21)

will be used where Z= WU, a=U'y and U is the
orthogonal matrix whose columns constitute the eigen-

vectors of W W. Then
Z'Z=UW WU = A =diag(, /2, ..., 1) (22)

where 11 > Ay >...> A1 > 0 are ordered eigenvalues of
W' W. The AE of o in (21) is

Ga=(22)"'2y=a"'7y. (23)

If zp is the orthonormalized point at which the prediction ¥,
is made. The variance of the prediction error of the AE is

Va(yo — o) = V(v) + Va()
=’ + V(zda)

r+1 22

2 .2 § 0i
=0 t + - |-

i=1 M

Note that, since the AE is unbiased, its PMSE is equal to its
prediction variance

Iy = Vy. (25)

(24)

The ARE of « in (21) is
G =(ZZ+k)"'Zy=(A+k)"'Z'y, k>0.  (26)
The variance of the prediction error of the ARE is

Vi(yo = ¥o) = V(v5) + Vi(¥o)
= + V(2 &)

r+l 2 1
Zo; i
202 [2+ 0i .
2
> a;
i=1 1

where a; = A; + k. The bias of the prediction error of the
ARE is

(27)

Biasy = E(yg — Yo) = 20 % — 2o E()
r+1 . 28
— k : Z{)lal ( )

-1 Y

so, the squared bias is

#2, ¢ Springer
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r+1 . 2
By = Bias? = k2 (Z “‘) . (29)

-1 i

By summing up the variance and the squared bias of the
ARE, we obtain

Ji= Vi + By
r+l 2 r+l 2 (30)
101 2 Zoi%i
1 k .
The ALE of o in (21) is

G = (ZZ+1)""(Z'y + dad)

4 (31)
=(A+1) (A+dhHa, 0<d<l
The variance of the prediction error of the ALE is
Va(yo = Jo) = V() + Va(o)
2.2 IS
=o't + V(z, oy
(20 %a) (32)

r-HZOzz
t +ZU)2

where b; = 4;+ 1 and ¢; = 4; + d. The bias of the pre-
diction error of the ALE is

Biasq = E(y; — Yo) = 2% — 20 E(da)
r+1
Zoi%; (33)
=(1-d) 5>
i=1
so, the squared bias is

r+1 2
Bd—Bm§—41—df<§:%?ﬁ. (34)
i=1 i

By summing up the variance and the squared bias of the

ARE, we obtain

Jis=Vi+ By

r+1
<p; Ci
(t +Z ib2>
The AMRE of o in (21) is
G (k) = (A + kD) (Z'y + ki)
= (A+ kD) Ady + k(A4 k)5 (36)
- [(A SR k(A + kD)7

_ap (rifz%oc,> . (35)

i=1

The variance of the prediction error of the AMRE is

22, Q) Springer

Vi (%5 = Yo) = V() + Vi (o)
=+ V() ozm(k))
r+1 2 (37)
(f + Z 20i ) ‘
The bias of the prediction error of the AMRE is
Bias,x = E(yy — Yo) = 2 % — 29 E(dn(k))
(38)

r+1
z ()l al

so, the squared bias is
r+1 2
B, = Bias?, = k* aLhaly I 39
k lasmk (; 61,2 ) ( )

By summing up the variance and the squared bias of the
AMRE, we obtain

Jmk = mG + Bmk

r+l K)? il 2
t +Zz0, = HE (DO
a; = @

The AMLE of « in (21) is
() = [(A+ D7 (A+dD)] a4+ [T = (A+ 1) (4 + 1) dg

:LdOA(A-f— ([—Ld)&d

= (2Lg — L3) da

=L —L)A'Zy.

(41)
The variance of the prediction error of the AMLE is
de(y(*) - )70) = V(y(*J) + de(ﬁo)
= 2P + V(2 3(d))

e
(t + Z e )
The bias of the prediction error of the AMLE is
Bias,.s = E(yg — Yo) = 20 % — 2 E(6(d))
(43)

r+1
Zoi i
—(d—1 2 0i%i
(d—1) ;:1 W

so, the squared bias is

r+1 2
. Zoi%i
By = Bias),; = (d — * (Z b? ) : (44)

i=1 i

By summing up the variance and the squared bias of the
AMLE, we obtain
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Jma = Vina + Bma

rl 2 2 r+l 2
_ o2 > ¢ (ci —2by) 4 Zoi%%
=0 (l‘ +ZZOiT +(d—l) Z b .

i=1

4 Superiority of the Biased Estimators
Under the PMSE Criterion with the Target
Function

Since AMRE and AMLE are biased alternatives to the AE in
the presence of multicollinearity, we will discuss the predic-
tive performance of the AMRE and AMLE. Following
Friedman and Montgomery’s (1985) and Ozbey and
Kagiranlar’s (2015) method for making comparisons among
estimators using the two-dimensional spaces, we will focus on
obtaining the ratio z2,/z3, to use it as the reference point in
our comparisons as well as of will be set to zero because
nonzero values of o increase only the intercept values for Jj,
Ja, I and J g but leave the curve for J4 unchanged. In the
following five subsections, we will compare the AMRE with
the AE and the ARE. Also, AMLE is compared to the AE and
the ALE. In addition to these, AMLE and AMRE are com-
pared in terms of PMSE criterion under the target function.
Furthermore, in the last subsection, we will give the method
for choosing the biasing parameters k and d for the above
mentioned estimators.

4.1 The Comparison of AMRE and AE

In this subsection, we will discuss the superiority of the
AMRE over the AE in terms of PMSE criterion under the
target function.

Theorem 1
Loaf < ZOEEE) o <.
2 i > SO e <y iff %<f1(oc§).
where
o2 (%1 _ ).I(a;jk)z)
fl(a%) = (62/12<a2+k)2 +@ B 0_2) . (46)
4 Td T4

Proof 1If the AMRE is superior to the AE in term of

PMSE criterion, we have J,x<J4. That is, ¢%f> +

2 (ay+k)* 2 Jalar+k)*22 kro2z?
0-2 ("( 'a4) o1 4 2 2a4) 202 4 a24 02 <O’2t2 4 o2
1 2 2

72 2 . . . . . .
(% + %’) Rearranging this inequality, we will obtain

21 2 4.2 2 2
+k k 1 A +k
(TR ) < ()

a a

1 (a1 +k)° -
Here, 73, 25, and o° (Ail - "(“6%)) are positive, but the
1

. 2a(a k) | K 52
sign of (7” 2(:42 sy —afz - ‘/’—2) depends on the value of oc%.
2 2 -
] k 2 29 k 2 ko2 5
Let’s define o2 (# — hilarth) )/(‘T fola k) K% 2 a5a
A1 a; ay a, A2

function of 3 and denote it by fi(e3). The function f;(e3)
has a vertical asymptote at the point

2)L k 2 k4 2 2
(w S ff_> | )
as a

From this Equation, we get

o 02(205 + 4kiy + K2)

o5 = e . (48)
Thus,
1. If
0% (275 + 4kir + k?)
oc% < e (49)
we get
Z 2
= > fi(%). (50)
201

Because z3,/73, is always positive, and for the condi-
tion given in (49) f (e3) is always negative, the AMRE
is uniformly superior to the AE.

2. If

27 (273 + 4kiz + &)
: Ja k2

(51)

we get

Zgz 2

0 <fi(3). (52)
201

Because fi(¢3) is positive for the condition given in
(51), the AMRE is uniformly superior to the AE when
(52) is valid. O

4.2 The Comparison of AMRE and ARE

In this subsection, we will discuss the superiority of the
AMRE over the ARE in terms of PMSE criterion under the
target function.

Theorem 2

2 6% (2, 43k
a. Uaz > W’ then Jmk <Jk.

52, €\ Springer
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b. If 03 < SEEK, then Jyu <Jy iff 3 % B <fo(a))-
where
o2 o Ji(ai+k)?
f(ad) = @ (53)
2\ Chalarth) | K8 o2 KB
@ TdT e a8

Proof 1If the AMRE is superior to the ARE in term of
PMSE criterion, we have J,,; <Ji. That is,

A (an +k) @, Falar + k),

02[2 + 02 —+ T
al a
k*o2z2 Mze Izl ko
2802 A%y | 2%y
+— TR <l (TR P 2 :
a aj a; a
k
Rearranging this inequality, we will obtainz? "” Sha(ay+k)® +
02
k40(2 29 k2“2 y) k
Koo o K%y 2 o2k l(ali+
& ) <wo ( l
2 2 2 l 1
2 s 2( 4 _ Jilaitk) :
Here, 73, z3, are positive and o (a_f_T is
always negative, but the sign of
2, k? | kod 2 K22
(M 4T —72) depends on the value of
@ @ @ a3
3. Let’s define
2 (i Ala+k)? Phalath)’ | K3 g2, Ko
(-2 4 TaTea) ™o

function of o3 and denote it by f>(23). The function
f>(03) has a vertical asymptote at the point

2lo(ar + k) k2 o2l k2B
] 9
a a a a
From this Equation, we get
2
s O (2/12 + 3k)
== - 55
2 ks + 26) (53)
Thus,
1. If
2
) ag (2)»2 + 3k)
—_— 56
%7 ka + 2K) (56)
we get
2
2 > f(). (57)
o

Because z%z /z%1 is always positive, and for the condi-
tion given in (56) f>(o3) is always negative, the AMRE
is uniformly superior to the ARE.

2. If

2 0'2(222 + 3k)

oy < m (58)

we get

22, Q) Springer

2
02 <f(3). (59)
&
Because f>(a3) is positive for the condition given in
(58), the AMRE is uniformly superior to the AE when
(59) is valid. O

4.3 The Comparison of AMLE and AE

In this subsection, we will discuss the superiority of the
AMLE over the AE in terms of PMSE criterion under the
target function.

Theorem 3
2 (D2 (b2 —4¢2)+-c3 (4by—c»
a. Ifog% > (bz(bz 14(2[1)42)24(417_ _>), then de<JA fOl" b%(b%
(d—
—4cd) <ci(cr — 4by) for b3(B? —4c) > ci(cr — 4by)
i <f(o3).
“01
2 (b2 (B2 —4c2) L3 e
b. Iffx%< (bz(bz )4(;)+1)24(4b2 2))’ then Ja <J4 for b%(b% _
2 (d—
40%) > c?(cl —4by) for b%(b% — 4c%) <c?(c1 — 4by)
2
where
20 _np N2
. o2 (% _ c%(ci]}jbl) )
flo) = 1 (60)

chg(c‘szbz)z + (d71)4a¢§ 2 ’
bl b P

Proof 1If the AMLE is superior to the AE in term of PMSE
criterion, we have J,,; <J4. That is,
—2by) Z(2)2
Job}

22 + g2 Cl(Cl 2b)z(2)1 Cz(
/L]h‘lt

d—1)*2
+7( 4)“ < + o> Z°1+Z°2 )
b4 P

Rearranging  this inequality, we will obtain 27,

a°c5(c2—2by d—1)*a2 P c2(e;—2b; 2
( (Mb4 I blg) 2—£)<z%162(ﬁ— 1(;”6? >>.
If both
>3(ca —2b))°  (d—1)'s3 o? (61)
/lgb‘z‘ b‘z‘ Ao
and
1 Aep —2by)?
7761(6‘1 - 1) (62)

)»1 /l]Cl

have the same signs, the condition for superiority of the
AMLE over the AE is
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2 2 22 2 22

02 £y (). 63) 22462 - 24171) Q , ole2 — 241?2) 2

201 A1b] /2b5

If (61) and (62) have opposite signs, the condition for " (d—1)"3 <P 4 iz, n 37, n (d—1)%c2
superiority of the AMLE over the AE is b3 bt b3 b3

2
2 > (). (64)
201

It is obvious that if (61) and (62) have opposite signs, the
right hand side of (64) is negative, thus (64) always holds.
Consequently, at that region the AMLE is uniformly
superior to the AE. The condition for positiveness of (61)
can be written as

2> a2 (b%(b% — 403) + c%(4bz — cz))
g Ja(d — 1)}

(65)

and the condition for positiveness of (62) can be written as
bi(bT — 4cl) > ci(cy — 4by). (66)

Of course, the opposite conditions are needed for the
negativeness of (61) and (62). The vertical asymptote of
the hyperbola f;(23) is at the point
2 7> (b3(b3 — 4c3) + c3(4by — 2))
: Ja(d—1)* '

(67)
O
4.4 The Comparison of AMLE and ALE

In this subsection, we will discuss the superiority of the
AMLE over the ALE in terms of PMSE criterion under the
target function.

Theorem 4

o? (C% (4b2762)73b§€%)
2

2
a. If oy > iz(d—l)“[(d—l)z—hg]’

then Jyq<Jy for ci(4by —

2
c1) <3b? for ¢1(4by — ¢1) > 3b2 lﬁ”% <fa(03).

2 (c3(4by—c2)—3b3c3)
Ja(d=1)[(d-1)"-b3]’

c1) > 32 for ¢ (4b) — 1) <3b% iff T <fy(oB).
01

b. If i3< then Jyuq<Jy for ci(4by —

where
02( cf _ c%(cl —2b1)2)
f4(°‘2) = hhy ha
2 02(%(0272b2)2 + (d71)4ac§ _ ac? _ (dfl)zozg
Jab3 b3 Job3 b2

(68)

Proof 1If the AMLE is superior to the ALE in term of
PMSE criterion, we have J,,; <J;. That is,

Rearranging this inequality, we will obtain

) (azcg(cz —2b,)*  (d—1)"d 2
202 -

w—waa

Job} b4 Jab: b
2 2 2
2y of ¢i  ciler —2by)
< — .

“? </11b§ P
If both
23 (cy — 2by)*  (d —1)*a2 B o’c3 _(@- 1%} (69)

Jobj b3 Job3 b3
and

ct 3 A(cr —2by)* (70)

)\.1 b% )\.1 b‘lt

have the same signs, the condition for superiority of the
AMLE over the ALE is

2

Z

2 <ful@). (71)
201

If (69) and (70) have opposite signs, the condition for
superiority of the AMLE over the ALE is

2
0 s f(d). (72)
201

It is obvious that if (69) and (70) have opposite signs, the
right hand side of (72) is negative, thus (72) always holds.
Consequently, at that region the AMLE is uniformly
superior to the ALE. The condition for positiveness of (69)
can be written as

2 a*(c3(4by — ¢2) — 3b3c3)
Ja(d=1[(d = 1) - b3]

(73)

and the condition for positiveness of (70) can be written as
c1(4by —c1) > 3b7. (74)

Of course, the opposite conditions are needed for the
negativeness of (69) and (70). The vertical asymptote of
the hyperbola fi(o3) is at the point

02 (c3(4by — ¢2) — 3b3c3)
Jold — 1) [(d 12 b%}

0 = (75)

O
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4.5 The Comparison of AMLE and AMRE

In this subsection, we will discuss the superiority of the
AMLE over the AMRE in terms of PMSE criterion under
the target function.

Theorem 5

o’ (bgﬂ.g (a2+k>27[l§(7§(2h27(‘2)2)
Ja[(d—1)"a3—k*b3]
b2 (ar + k) <alE(2by — 1) for

2
k) > atc(2b) — ¢))? iff 2 <f5(05).

a. If o> . then Jyq<Jw for

b‘l‘i% (Cll —+

a2 (b‘z‘ig (ar+k)? —a$cl(2b, 702)2)
Ja[(d—1)"at—k*b3]

b2 (ay + k) > al(2by — ¢1)*  for
2_ 42 2 i 2
k)" <ajci(2by —c1) lﬁ”% <f5(03)-

where

b. If ot%< , then Jyg<Jur for

b?;t% (Cl] +

o2 (Frlath)® Ae1=2by)
7 bt
_ 0'2).2(1124»]()2 _ kAng) :

4 4
a 112

a

1

022 (c2—2by)’ n (d—1)*a?
7ab} b

2

fs(03) =

2

(76)

Proof 1If the AMLE is superior to the AMRE in term of

PMSE criterion, we have J,;s<J,x. That is,
(c1—2by)?22 2(cy—2b,)222 d—1)"a2
o?f 4 2 (MG Gl Play) | W5 g2y
119 29 2

y 2 2 4.2
2 (,vl(aljk) + iz<ajjk) ) + ku—i‘ Rearranging this inequality,
2

(l] >

we will obtain

5 (O'ZC% (¢ —2by)*

0 b} i 4 a
< 22 0_2 /11 ((11 —|—k)2 _ C%(Cl — 2b1)2
01 Cl? ilb? '
If both
23 (cy — 2by)*  (d —1)*e B o2y (az + k) B ko3
Jobj b3 a a3
(77)
and
) k)2 2(cy —2by)?
1(an j ) B C'(CIA : 1) (78)
a; /L]bl

have the same signs, the condition for superiority of the
AMLE over the AMRE is

52, €\ Springer

02 £, (). (79)

If (77) and (78) have opposite signs, the condition for
superiority of the AMLE over the AMRE is

Zp 2

R > fi(o). (80)
201

It is obvious that if (77) and (78) have opposite signs, the
right hand side of (80) is negative, thus (80) always holds.
Consequently, at that region the AMLE is uniformly
superior to the AMRE. The condition for positiveness of
(77) can be written as

o? (béi%(az +k)* — a3 (2b, — C2)2)

% > ,
o (d = 1)'ad — kb

(81)

and the condition for positiveness of (78) can be written as
b2 (a) 4+ k) > a2 (2b) — 1)’ (82)

Of course, the opposite conditions are needed for the
negativeness of (77) and (78). The vertical asymptote of
the hyperbola f;(3) is at the point

, o? (béﬂé(az + k) — adck(2b, — C2)2)
oy = . (83)
’ 1o (d — 1)as — ]

O

4.6 The Method for Choosing the Biasing
Parameters k and d in the Above Mentioned
Estimators

Now, a very important issue in the study of ridge regression
is how to find an appropriate biasing parameter k. Hoerl
and Kennard (1970a, b), Hoerl et al. (1975) and Lawless
and Wang (1976) suggested the following ridge parame-
ters, that we can estimate for model (21), respectively;

N G2

kg = ———, 84
AL -
. _(r+ 1)6?

kHKB - my (85)
- (r+1)é?

S 0

where & and 6% are the OLS estimates of o and o2,

respectively. On the other hand Liu (1993) gave the some
estimates of d by analogy with the estimate of k in ridge
estimate. Two of these estimates are defined as for model
21):
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l ’ 08 - B=J,<Jy,
r+1 r+1 ) |
- 1 A0 0.7
dop = 1—¢67 — . 88
o a[;ii“/gwwz 53 O
i= i= A B
05
04 -
. . 0.3
5 An lllustrative Example with Almon Data a5
To illustrate our theoretical results, we now consider a 01 1 x\"“‘--—«--‘_‘__ 2
0 —= &

dataset due to Almon (1965). These data was taken in the
years 1953—1967 using quarterly data where independent
variable is appropriations and dependent variable is
expenditures. Giiltay and Kagiranlar (2015) found the fol-
lowing results:

a. The eigenvalues of W W : (2.9359, 0.0634, 0.0007),
The Almon estimates of 7: (§,) = (—0.0052,
0.0320, 0.0962),

c. The estimates of 6% : 62 = 0.0164.

The 3 x 3 matrix U is the matrix of normalized eigen-
vectors, A is a 3 x 3 diagonal matrix of eigenvalues of
W' W such that W W = UAU’. Then, Z = WU and o =
U'y so that y = Wy + & = Zo + ¢ where

29359 0 0
ZZ=A=| 0 00634 0 |. (89)
0 0  0.0007

In orthogonal coordinates, the OLS-estimator of the
regression coefficients obtained is

4= A""7Z'y =[0.5580, —1.0754, 1.2297]". (90)

Also, kpgp = 0.0165 and dcp, = 0.712 are obtained by
Giiltay and Kaciranlar (2015).

Now, we will illustrate our theoretical results using the
given results above.

Firstly, let us consider the predictive performances of
AMRE and AE.

o If 4y =2.9359, 4, = 0.0634, from (46), we get

0.0000003489
2
file) 0.001818648 o2 — 0.02159 O

which is a hyperbola with a vertical asymptote at

o} =~ 11.8727. (92)

Because both z3,/73, and o3 are positive, we are inter-
ested only in the points which lie in quadrant I. Figure 1
illustrates this situation. For values of o3 smaller than
11.8727, the AMRE is uniformly superior to the AE.
For larger values of oc%, there is a trade-off between
these two estimators. If the value of the ratio z3,/z3, is

0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 1 The predictive performances of AMRE and AE for the first
case

smaller than the value of fi(e3), then the AMRE is
superior to the AE, otherwise the AE is superior to the
AMRE. As Friedman and Montgomery (1985) and
Ozbey and Kagiranlar (2015) pointed out, the ratio
73,/73, defines the subspace of observation to be
predicted.

o If 41 =2.9359, 4, = 0.0007, from (46), we get

0.0000003489

2y = . 93
fi(22) 0.84688022 03 — 23.2796 (93)
e If 41 =0.0634, 4, = 0.0007, from (46), we get
0.021592274
fi(93) (94)

084688022 a2 — 23.2796

which are the hyperbolas with the same vertical
asymptote at

o = 27.48866. (95)

Figures 2 and 3 illustrate this situation, respectively.
For values of oc% smaller than 27.48866, the AMRE is
uniformly superior to the AE. For larger values of o2,

& fl(a::) \
0.45 ‘ A=J,, <J,
0.4 \ B=J,<J,

0.35 \

0.05 ~——
0

‘ —
0 5 10 15 20 25 30 35 40 45 S0 55 60

Fig. 2 The predictive performances of AMRE and AE for the second
case
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0.7 i (ad)
0.63 \ A=J,, <J,

| =
056 \ B=J,<Ju
0.49 t

042 \
0.35 = \ B
0.28
0.21
0.14
0.07

0

~—

, — ——
0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 3 The predictive performances of AMRE and AE for the third
case

there is a trade-off between these two estimators. If the
value of the ratio z3,/z3, is smaller than the value of
f1(03), then the AMRE is superior to the AE, otherwise
the AE is superior to the AMRE.

Therefore, we conclude that the intersection region
among all the three defined hyperbolas which have the
same side in Eqgs. (91), (93) and (94) where the AMRE is
uniformly superior to AE is the defined hyperbola in
Eq. (91) with a vertical asymptote at o3 = 11.8727. Since
Gp = —1.0754 and 63 = 1.156485 which is lower than the
vertical asymptote o3 = 11.8727. That means, whatever the

value of zg , and zgz, AMRE is always uniformly superior to
the AE.

Secondly, let us consider the predictive performances of
AMRE and ARE
o If 1; =2.9359, 4, = 0.0634, from (53), we get
0.0000619135
2y _
falon) = 0.04083 o3 — 0.074213

(96)

which is a hyperbola with a vertical asymptote at

o} = 1.817754. (97)

Figure 4 illustrates this situation. For values of o3
smaller than 1.817754, the AMRE is uniformly superior
to the ARE. For larger values of oc%, there is a trade-off
between these two estimators. If the value of the ratio
73,/73, is smaller than the value of f>(o3), then the
AMRE is superior to the ARE, otherwise the ARE is
superior to the AMRE.

o If 41 =2.9359, 4, = 0.0007, from (53), we get
0.0000619135
2\
%) = 5673382 — 0.110161

(98)

e If 41 =0.0634, 4, = 0.0007, from (53), we get

i @ Springer

1 fl (all) ‘
o \ A= Ty 2l

\ B=J, «d
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0.6 \

05 A \ B
04

03
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0 : —=
0 05 1 15 2 25 3 35 4 45

Fig. 4 The predictive performances of AMRE and ARE for the first
case

o) = 007421339
220 70.07338 2 — 0.110161

(99)

which are the hyperbolas with the same vertical
asymptote at

o} = 1.501232. (100)

Figures 5 and 6 illustrate this situation, respectively.
For values of oc% smaller than 1.501232, the AMRE is
uniformly superior to the ARE. For larger values of o3,
there is a trade-off between these two estimators. If the
value of the ratio z3,/z3, is smaller than the value of
f>(23), then the AMRE is superior to the ARE, other-
wise the ARE is superior to the AMRE.

Therefore, we conclude that the intersection region
among all the three defined hyperbolas which have the
same side in Egs. (96), (98) and (99) where the AMRE is
uniformaly superior to ARE is the defined hyperbola in
Eq. (98) with a vertical asymptote at o3 = 1.501232. Since
Gp 2 1.2297 and &3 = 1.512162 which is not lower than
the vertical asymptote o3 = 1.501232. That means, if the

045 -
04

0.35 \
0.3 \

0.25 4 B
0.2

A=J, <J;
B=J, <J

o3 (@) \

01
0.05 T~

0 A " . — a::
0O 05 1 15 2 25 3 35 4 45 5

Fig. 5 The predictive performances of AMRE and ARE for the
second case



Iran J Sci Technol Trans Sci (2020) 44:85-98

95
0.7 2

L (ad) _ ) 0.0000597

EhE A= Ty <J, = . 103
063 i $50%2) = 500686 2 — 3.7204 (103)
0.56 - B=J,<J,
0.49 - o If /; =0.0634, 4, = 0.0007, from (60), we get
0.42 ’ 0.036555

= 104
035 4 B ) = 500686 42 — 3.7204 (104)
028 which are the hyperbolas with the same vertical
. asymptote at
0.14
o _\ o5 = 542.288. (105)
o - A e @

0 05 1 15 2 25 3 35 4 45 5

Fig. 6 The predictive performances of AMRE and ARE for the third
case

value of z%l is closer to the value of zgz, AMRE is uni-

formly superior to the ARE, otherwise ARE is better than
AMRE.

Thirdly, let us consider the predictive performances of
AMLE and AE.
o If /) =2.9359, 4, = 0.0634, from (60), we get
0.0000597
2 =
(%) = 500538 2 — 0.03656

(101)

which is a hyperbola with a vertical asymptote at

o2 = 6.794634. (102)

Figure 7 illustrates this situation. For values of o3
smaller than 6.794634, the AMLE is uniformly superior
to the AE. For larger values of oc%, there is a trade-off
between these two estimators. If the value of the ratio
z3,/73, is smaller than the value of f3(o3), then the
AMLE is superior to the AE, otherwise the AE is
superior to the AMLE.
o If 41 =2.9359, 4, = 0.0007, from (60), we get

! f;(af) 7 7
0.9 A=J,; <J,
08 B=J,<Jy
0.7
0.6
05 A B

04
0.3
0.2
01

e ——— 2
o - —=

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Fig. 7 The predictive performances of AMLE and AE for the first
case

Figures 8 and 9 illustrate this situation, respectively. For
values of Ot% smaller than 542.288, the AMLE is uniformly
superior to the AE. For larger values of oc%, there is a trade-
off between these two estimators. If the value of the ratio
23,/73, is smaller than the value of f3(o3), then the AMLE

is superior to the AE, otherwise the AE is superior to the
AMLE.

Therefore, we conclude that the intersection region
among all the three defined hyperbolas which have the

%3 (@)

045
04
0.35

0.3
A

0.05

0 + T
0 120

720 840

600

240 360 480

Fig. 8 The predictive performances of AMLE and AE for the second
case
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Fig. 9 The predictive performances of AMLE and AE for the third
case
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same side in Egs. (101), (103) and (104) where the AMLE
is uniformaly superior to AE is the defined hyperbola in
Eq. (101) with a vertical asymptote at oc% =~ 6.794634.
Since 8 = —1.0754 and &3 = 1.156485 which is lower
than the vertical asymptote o3 = 6.794634. That means,
whatever the value of z3; and z3,, AMLE is always uni-
formly superior to the AE.

Fourthly, let us consider the predictive performances of
AMLE and ALE.

o If 4y =2.9359, 4, = 0.0634, from (68), we get
0.00073

2y

1(%2) = 506797 22 — 0.08459

(106)

which is a hyperbola with a vertical asymptote at

o} = 1.24447. (107)

Figure 10 illustrates this situation. For values of o3
smaller than 1.24447, the AMLE is uniformly superior
to the ALE. For larger values of o3, there is a trade-off
between these two estimators. If the value of the ratio
75,/75, is smaller than the value of fi(o3), then the
AMLE is superior to the ALE, otherwise the ALE is
superior to the AMLE.
o If 41 =2.9359, 4, = 0.0007, from (68), we get

) 0.00073

- . 108
J(%2) = 567597 02 — 7.8245 (108)
o If 1; =0.0634, 4, = 0.0007, from (68), we get
0.08458
fa(23) (109)

7 0.07597 o3 — 7.8245

which are the hyperbolas with the same vertical
asymptote at

o5 = 102.998 (110)

0.9 A=J,,;<J;

08 B=J,<J,,

L filad) \

0.7 1 \
0.6 \
0.5 4 B
04
0.3
0.2 1
01 ~——
o - m—

0 05 1 15 2 25 3 35 4 45 5

Fig. 10 The predictive performances of AMLE and ALE for the first
case

i @ Springer

05 2
o
045 Ja(@) t A=J,,<J,

04 4 B= J_,‘,- < J,__,.-
035

03
0.25 : B

0.2

01
0.05 R
— O,

0 . . v . . . . . -
0 30 60 90 120 150 180 210 240 270 300

Fig. 11 The predictive performances of AMLE and ALE for the
second case
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Fig. 12 The predictive performances of AMLE and ALE for the third
case

Figures 11 and 12 illustrate this situation, respectively.
For values of oc% smaller than 102.998, the AMLE is uni-
formly superior to the ALE. For larger values of oc%, there is
a trade-off between these two estimators. If the value of the
ratio z3,/z3, is smaller than the value of fi(o3), then the
AMLE is superior to the ALE, otherwise the AE is superior
to the AMLE.

Therefore, we conclude that the intersection region
among all the three defined hyperbolas which have the
same side in Egs. (106), (108) and (109) where the AMLE
is uniformaly superior to ALE is the defined hyperbola in
Eq. (106) with a vertical asymptote at o3 = 1.24447. Since
Gy 2 1.2297 and 43 = 1.512162 which is not lower than
the vertical asymptote oc% =~ 1.24447. That means, if the
value of z3, is closer to the value of z3,, AMLE is uni-
formly superior to the ALE, otherwise ALE is better than
AMLE.

Finally, let us consider the predictive performances of
AMLE and AMRE.

o If 41 =2.9359, 4, = 0.0634, from (76), we get
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Fig. 13 The predictive performances of AMLE and AMRE for the

first case

f(od) = 00000593
20 70.00356 22 — 0.01496

(111)

which is a hyperbola with a vertical asymptote at

o} = 4.20146. (112)

Figure 13 illustrates this situation. For values of o3
smaller than 4.20146, the AMLE is uniformly superior
to the AMRE. For larger values of oc%, there is a trade-
off between these two estimators. If the value of the
ratio z3,/z3, is smaller than the value of f5(23), then the
AMLE is superior to the AMRE, otherwise the AMRE
is superior to the AMLE.
o If 4y =2.9359, 4, = 0.0007, from (76), we get

0.0000593

2) = . 113
50%) = 1555923 — 0.84002 2 (113)
e If 41 =0.0634, 4, = 0.0007, from (76), we get
0.014963
2 = 114
%) = 1555923 —0.84002 2 (114)

which are the hyperbolas with the same vertical
asymptote at

o} = 23.2843. (115)

Figures 14 and 15 illustrate this situation, respectively.
For values of oc% larger than 23.2843, the AMLE is
uniformly superior to the AMRE. For smaller values of
oc%, there is a trade-off between these two estimators. If
the value of the ratio z3,/z3, is smaller than the value of
f5(03), then the AMLE is superior to the AMRE,
otherwise the AMRE estimator is superior to the
AMLE.

Therefore, we conclude that the intersection region
among all the three defined hyperbolas which have dif-
ferent sides in Egs. (111), (113) and (114) where the

AGA) '
0.45 |l Am Ty <y
0.4 , B=
0.35 |

03 /
0.25 /

0.2 /
0.15

01 /

0.05 R

0 == %

0 4 8 12 16 20 24 28 32 36 40

Fig. 14 The predictive performances of AMLE and AMRE for the
second case
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Fig. 15 The predictive performances of AMLE and AMRE for the
third case

AMLE is uniformaly superior to AMRE is the intersection
region between the defined hyperbolas which have differ-
ent sides in Eqgs. (111) and (113) where the AMLE is
uniformaly superior to AMRE over o3 axis and o3 from 0 to
23.2843. Since @ = 1.2297 and 43 = 1.512162 for
Eq. (111) and @, = 1.2297 and o?% =~ 1.512162 for
Egs. (113) and (114) which lie in the interval 0 and
23.2843 values of o3. That means, if the value of zj; is so
closer to the value of z3,, AMLE is uniformly superior to
the AMRE, otherwise AMRE is better than AMLE.

6 Conclusions

This paper investigates the predictive performance of the
AMRE compared to the AE and the ARE as well as the
AMLE compared to the AE, ALE and AMRE. The com-
parisons of these estimators are in terms of the PMSE
under the target function at a specific point in two-di-
mensional regressor variable spaces. In this context, the
PMSE under the target function of the AMRE and AMLE

i @ Springer
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estimators are developed and five theorems are given. The
theoretical consequences are illustrated by a numerical
example with Almon data, and the regions are assigned for
superiority of the given estimators. For some values of oc%,
there are trade-offs between the relative effectiveness of
the estimators. The AE is effective only when the value of
o} is small compared to AMRE and AMLE. The effec-
tiveness of these techniques is also affected by the location
of the prediction point. Hence, the choice of the estimator
may depend on the location of the point to be predicted. In
the numerical example, a region is established where the
AMRE and AMLE estimators are uniformly superior to the
above mentioned estimators. This implies that it is theo-
retically possible to determine such a region.
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