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Abstract
The finite distributed lag models include highly correlated variables, lagged and unlagged values of the same variables.

Some problems are faced for this model when applying the ordinary least squares method or econometric models such as

Almon models. Gültay and Kaçıranlar (J Math Stat 44:1215–1233, 2015) compared the performance of the alternative

biased estimators to the Almon estimator in terms of the mean square error. The primary aim of this study is to evaluate the

predictive performance of the alternative biased estimators to the Almon estimator according to the prediction mean square

error criterion under the target function. We use the Almon (Econometrica 178–196, 1965) data to illustrate our theoretical

results.
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1 Introduction

Consider the finite distributed lag model,

yt ¼ b0xt þ b1xt�1 þ � � � þ bpxt�p þ et; t ¼ pþ 1; . . .; T

¼
Xp

i¼0

bixt�i þ et

ð1Þ

where et is INð0; r2Þ. The coefficients bi are called lag

weights. Model in Eq. (1) can be written in the matrix

notation as

y ¼ Xbþ e ð2Þ

where

y ¼

ypþ1

ypþ2

..

.

yT

2
6664

3
7775; b ¼

b0
b1
..
.

bp

2
6664

3
7775;

X ¼

xpþ1 xp � � � x1
xpþ2 xpþ1 � � � x2

..

. ..
. . .

. ..
.

xT xT�1 � � � xT�p

2

6664

3

7775; e ¼

epþ1

epþ2

..

.

eT

2

6664

3

7775:

Some kind of distributed lag models have been intro-

duced to be able to estimate the parameters using some

prior information about the behavior of the b’s in (1) such

as the Almon models.Fisher (1937) initially introduced

nonstochastic smoothness prior information of the follow-

ing type:

bi ¼ ðpþ 1� iÞc 0� i� p

¼ 0 i[ p
ð3Þ

where c is any unknown parameter.Then, Almon (1965)

proposed the polynomial lag weights of the rth degree

bi ¼ c0 þ c1iþ c2i
2 þ � � � þ cri

r p� r� 0: ð4Þ

Equation (4) can be written in the matrix notation as

b ¼ Ac ð5Þ

where
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Çukurova University, Adana, Turkey

123

Iran J Sci Technol Trans Sci (2020) 44:85–98
https://doi.org/10.1007/s40995-019-00792-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6733-7308
http://crossmark.crossref.org/dialog/?doi=10.1007/s40995-019-00792-4&amp;domain=pdf
https://doi.org/10.1007/s40995-019-00792-4


A ¼

1 0 0 � � � 0

1 1 1 � � � 1

1 2 22 � � � 2r

..

. ..
. ..

. . .
. ..

.

1 p p2 ..
.

p

2

666664

3

777775
; c ¼

c0
c1
c2
..
.

cr

2

666664

3

777775
:

are A : ðpþ 1Þ � ðr þ 1Þ matrix and c : ðr þ 1Þ � 1 vector.

The ranks of matrices X and A are assumed to be ðpþ
1Þ\ðT � pÞ and ðr þ 1Þ\ðpþ 1Þ, respectively. If r\p,

then the rank of A is r þ 1. We estimate b in (2), under the

nonstochastic prior information on b which is given by (5),

using Almon estimation method. By substituting (5) in (2),

y ¼ XAcþ e

¼ Wcþ e; e� Nð0; r2IÞ
ð6Þ

is obtained. This model can be called a linear Almon dis-

tributed lag model.Then, the ordinary least squares (OLS)

estimator of c in model (6) is

ĉA ¼ ðW 0WÞ�1
W 0 y ¼ ðA0X0 XAÞ�1

A0X0 y: ð7Þ

In this case,

b̂A ¼ AĉA ð8Þ

is the Almon estimator (AE) of b. b̂A is the best linear

unbiased estimator (BLUE) (see, also Vinod and Ullah

(1981)).

In case of estimating model (1) by OLS, multi-

collinearity problem among the explanatory variables may

be occurred because there are p lags of the same variables

in the model. To overcome the multicollinearity problem,

the following alternative biased estimator to the AE for the

distributed lag model is introduced.

• Following Hoerl and Kennard’s (1970a) method for

defining ridge regression estimator, the Almon-ridge

estimator (ARE) of c in model (6) is defined as follows,

ĉk ¼ ðW 0W þ kIÞ�1
W 0y

¼ ðA0 SAþ kIÞ�1
A0X0 y; k[ 0

ð9Þ

where S ¼ X0 X. Thus

b̂k ¼ Aĉk ð10Þ

is the ARE for model (2), (see, Maddala (1974), Vinod

and Ullah (1981), Chanda and Maddala (1984) and Yeo

and Trivedi (1989)).Then, Gültay and Kaçıranlar (2015)
also introduced the following three other alternative

estimators to the AE for the distributed lag model in

order to overcome the multicollinearity problem.

• Following Swindel’s (1976) method, the Almon-mod-

ified ridge estimator (AMRE) of c in model (6) is

defined as follows,

ĉmðkÞ ¼ ðW 0W þ kIÞ�1ðW 0yþ kb0Þ
¼ TkĉA þ ðI� TkÞ ĉk

ð11Þ

where b0 ¼ ĉk and Tk ¼ ðW 0W þ kIÞ�1
W 0W . Thus,

AMRE of b in model (2) is b̂mðkÞ ¼ A ĉmðkÞ.
• Following Liu’s (1993) method for defining the

estimator which is called Liu estimator in Akdeniz

and Kaciranlar (1995), the Almon-Liu estimator (ALE)

of c in model (6) is defined as follows,

ĉd ¼ ðW 0W þ IÞ�1ðW 0yþ dĉAÞ
¼ ðA0SAþ IÞ�1ðA0X0yþ dĉAÞ
¼ ðA0SAþ IÞ�1ðA0SAþ dIÞ ĉA
¼ Fd ĉA

ð12Þ

where Fd ¼ ðW 0W þ IÞ�1ðW 0W þ dIÞ . Thus, the ALE

of b is b̂d ¼ Aĉd. The comparison of ĉA with ĉd and the

selection of d are given in Kaçıranlar (2010).
• Following Li and Yang’s (2012) method, the Almon-

modified Liu estimator (AMLE) of c in model (6) is

defined as follows,

ĉmðdÞ ¼ ðW 0W þ IÞ�1ðW 0W þ dIÞ ĉA þ ð1� dÞ ðW 0W þ IÞ�1
b0

¼ Fd ĉA þ ðI� FdÞ ĉd
ð13Þ

where b0 ¼ ĉd. Thus, AMLE of b in model (2) is

b̂mðdÞ ¼ A ĉmðdÞ.

2 Prediction Mean Squared Error
under the Target Function

In this section, we will introduce the prediction mean

square error (PMSE) under the target function.

Generally predictions from a linear regression model are

made either for the actual values of the study variable or

for the average values at a time. However, situations may

occur in which one may be required to consider the pre-

dictions of both the actual and average values

simultaneously.

If ~b denotes an estimator of b, then the predictor for the

values of study variable is generally formulated as Ŷ ¼ X~b
which is used for predicting either the actual values y or the

average values EðyÞ ¼ Xb at a time. When the situation

demands prediction of both the actual and average values

together, the target function is defined as follows,

TðyÞ ¼ t yþ ð1� tÞEðyÞ ¼ Y� ð14Þ

and use Ŷ ¼ X~b for predicting it where 0� t� 1 is a

nonstochastic scalar specifying the weightage to be

assigned to the prediction of actual and average values of
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the study variable, see, Shalabh (1995). Toutenburg and

Shalabh (1996) analyzed the performance properties of

predictors arising from the methods of restricted regression

and mixed regression besides least squares according to the

target function. Then Toutenburg and Shalabh (2000)

improved predictions in linear regression models with

stochastic linear constraints in terms of the target function.

Also, Shalabh et al. (2009) introduced the extended bal-

anced loss function (EBLF) under the target function and

discussed the stein rule estimation. In addition, Chaturvedi

and Shalabh (2014) discussed the Bayesian estimation of

regression coefficients under EBLF.

Gunst and Mason (1979) compared OLS, principal

components and ridge regression estimators in terms of the

integrated MSE using models with two explanatory vari-

ables. Friedman and Montgomery (1985) adopted the

similar approach by focusing on the prediction of a new

response y based on PMSE under linear regression model.

They considered the predictive ability of the estimators

evaluated at a particular observation. Then Özbey and

Kaçıranlar (2015) also used the same criterion to evaluate

the predictive performance of the Liu estimator.

Now, from Eq. (14), the target function at the point x00 ¼
½1; x01; x02; . . .; x0k	 is defined as follows:

y�0 ¼ t y0 þ ð1� tÞEðy0Þ ð15Þ

where y0 ¼ x00bþ e0.
Therefore, the predictive measure at the point x00 ¼

½1; x01; x02; . . .; x0k	 is
y�0 � ŷ0; ð16Þ

where ŷ0 ¼ x00
~b.

So, the PMSE which is a measure of the closeness of a

predictor to the response being predicted under the target

function is defined as follows:

PMSE ¼ Eðy�0 � ŷ0Þ2: ð17Þ

Let J represents the PMSE. J is the sum of the variance (V)

and the squared bias (B):

J ¼ V þ B ð18Þ

If y�0 is the value to be predicted, and ŷ0 is the prediction of

that value, then the variance and the bias of the prediction

error are

Vðy�0 � ŷ0Þ ¼ Vðy�0Þ þ Vðŷ0Þ ð19Þ

and

Bias ¼ Eðy�0 � ŷ0Þ: ð20Þ

3 Evaluations of Prediction Mean Squared
Errors Under the Target Function

In this section, we will obtain the PMSEs of AE, ARE,

ALE, AMRE and AMLE.For convenience, the canonical

form of (6)

y ¼ Zaþ e; e� Nð0; r2IÞ ð21Þ

will be used where Z ¼ WU, a ¼ U0c and U is the

orthogonal matrix whose columns constitute the eigen-

vectors of W 0 W . Then

Z 0 Z ¼ U0W 0 WU ¼ K ¼ diagðk1; k2; . . .; krþ1Þ ð22Þ

where k1 � k2 � . . .� krþ1 [ 0 are ordered eigenvalues of

W 0 W . The AE of a in (21) is

âA ¼ ðZ 0 ZÞ�1
Z 0 y ¼ K�1Z 0 y: ð23Þ

If z0 is the orthonormalized point at which the prediction ŷ0
is made. The variance of the prediction error of the AE is

VAðy�0 � ŷ0Þ ¼ Vðy�0Þ þ VAðŷ0Þ
¼ r2t2 þ Vðz00 âAÞ

¼ r2 t2 þ
Xrþ1

i¼1

z20i
ki

 !
:

ð24Þ

Note that, since the AE is unbiased, its PMSE is equal to its

prediction variance

JA ¼ VA: ð25Þ

The ARE of a in (21) is

âk ¼ ðZ 0 Z þ kIÞ�1
Z 0 y ¼ ðKþ kIÞ�1

Z 0 y; k� 0: ð26Þ

The variance of the prediction error of the ARE is

Vkðy�0 � ŷ0Þ ¼ Vðy�0Þ þ Vkðŷ0Þ
¼ r2t2 þ Vðz00 âkÞ

¼ r2 t2 þ
Xrþ1

i¼1

z20i ki
a2i

 !
:

ð27Þ

where ai ¼ ki þ k. The bias of the prediction error of the

ARE is

Biask ¼ Eðy�0 � ŷ0Þ ¼ z00 a� z00 EðâkÞ

¼ k
Xrþ1

i¼1

zoiai
ai

ð28Þ

so, the squared bias is
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Bk ¼ Bias2k ¼ k2
Xrþ1

i¼1

zoiai
ai

 !2

: ð29Þ

By summing up the variance and the squared bias of the

ARE, we obtain

Jk ¼ Vk þ Bk

¼ r2 1þ
Xrþ1

i¼1

z20i ki
a2i

 !
þ k2

Xrþ1

i¼1

zoiai
ai

 !2

:
ð30Þ

The ALE of a in (21) is

âd ¼ ðZ 0Z þ IÞ�1ðZ 0yþ dâÞ
¼ ðKþ IÞ�1ðKþ dIÞâ; 0\d\1

ð31Þ

The variance of the prediction error of the ALE is

Vdðy�0 � ŷ0Þ ¼ Vðy�0Þ þ Vdðŷ0Þ
¼ r2t2 þ Vðz00 âdÞ

¼ r2 t2 þ
Xrþ1

i¼1

z20i c
2
i

kib2i

 !
:

ð32Þ

where bi ¼ ki þ 1 and ci ¼ ki þ d. The bias of the pre-

diction error of the ALE is

Biasd ¼ Eðy�0 � ŷ0Þ ¼ z00 a� z00 EðâdÞ

¼ ð1� dÞ
Xrþ1

i¼1

zoiai
bi

ð33Þ

so, the squared bias is

Bd ¼ Bias2d ¼ ð1� dÞ2
Xrþ1

i¼1

zoiai
bi

 !2

: ð34Þ

By summing up the variance and the squared bias of the

ARE, we obtain

Jd ¼ Vd þ Bd

¼ r2 t2 þ
Xrþ1

i¼1

z20i c
2
i

kib2i

 !
þ ð1� dÞ2

Xrþ1

i¼1

zoiai
bi

 !2

:
ð35Þ

The AMRE of a in (21) is

âmðkÞ ¼ ðKþ kIÞ�1ðZ 0yþ kâkÞ
¼ ðKþ kIÞ�1KâA þ k ðKþ kIÞ�1âk

¼ ðKþ kIÞ�1 þ k ðKþ kIÞ�2
h i

Z 0 y:

ð36Þ

The variance of the prediction error of the AMRE is

Vmkðy�0 � ŷ0Þ ¼ Vðy�0Þ þ Vmkðŷ0Þ
¼ r2t2 þ Vðz00 âmðkÞÞ

¼ r2 t2 þ
Xrþ1

i¼1

z20i
kiðai þ kÞ2

a4i

 !
:

ð37Þ

The bias of the prediction error of the AMRE is

Biasmk ¼ Eðy�0 � ŷ0Þ ¼ z00 a� z00 EðâmðkÞÞ

¼ k2
Xrþ1

i¼1

zoiai
a2i

ð38Þ

so, the squared bias is

Bmk ¼ Bias2mk ¼ k4
Xrþ1

i¼1

zoiai
a2i

 !2

: ð39Þ

By summing up the variance and the squared bias of the

AMRE, we obtain

Jmk ¼ Vmk þ Bmk

¼ r2 t2 þ
Xrþ1

i¼1

z20i
kiðai þ kÞ2

a4i

 !
þ k4

Xrþ1

i¼1

zoiai
a2i

 !2

:

ð40Þ

The AMLE of a in (21) is

âmðkÞ ¼ ðKþ IÞ�1ðKþ dIÞ
h i

âA þ I � ðKþ IÞ�1ðKþ dIÞ
h i

âd

¼ Ld âA þ ðI � LdÞ âd
¼ ð2Ld � L2dÞ âA
¼ ð2Ld � L2dÞK�1Z 0 y:

ð41Þ

The variance of the prediction error of the AMLE is

Vmdðy�0 � ŷ0Þ ¼ Vðy�0Þ þ Vmdðŷ0Þ
¼ r2t2 þ Vðz00 âmðdÞÞ

¼ r2 t2 þ
Xrþ1

i¼1

z20i
c2i ðci � 2biÞ2

ki b4i

 !
:

ð42Þ

The bias of the prediction error of the AMLE is

Biasmd ¼ Eðy�0 � ŷ0Þ ¼ z00 a� z00 EðâmðdÞÞ

¼ ðd � 1Þ2
Xrþ1

i¼1

zoiai
b2i

ð43Þ

so, the squared bias is

Bmk ¼ Bias2mk ¼ ðd � 1Þ4
Xrþ1

i¼1

zoiai
b2i

 !2

: ð44Þ

By summing up the variance and the squared bias of the

AMLE, we obtain
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Jmd ¼ Vmd þ Bmd

¼ r2 t2 þ
Xrþ1

i¼1

z20i
c2i ðci � 2biÞ2

ki b4i

 !
þ ðd � 1Þ4

Xrþ1

i¼1

zoiai
b2i

 !2

:

ð45Þ

4 Superiority of the Biased Estimators
Under the PMSE Criterion with the Target
Function

Since AMRE and AMLE are biased alternatives to the AE in

the presence of multicollinearity, we will discuss the predic-

tive performance of the AMRE and AMLE. Following

Friedman and Montgomery’s (1985) and Özbey and

Kaçıranlar’s (2015) method for making comparisons among

estimators using the two-dimensional spaces, we will focus on

obtaining the ratio z202=z
2
01 to use it as the reference point in

our comparisons as well as a21 will be set to zero because

nonzero values of a21 increase only the intercept values for Jk,
Jd, Jmk and Jmd but leave the curve for JA unchanged. In the

following five subsections, we will compare the AMRE with

the AE and the ARE. Also, AMLE is compared to the AE and

the ALE. In addition to these, AMLE and AMRE are com-

pared in terms of PMSE criterion under the target function.

Furthermore, in the last subsection, we will give the method

for choosing the biasing parameters k and d for the above

mentioned estimators.

4.1 The Comparison of AMRE and AE

In this subsection, we will discuss the superiority of the

AMRE over the AE in terms of PMSE criterion under the

target function.

Theorem 1

1. If a22\
r2 2k22þ4kk2þk2ð Þ

k2 k2
, then Jmk\JA.

2. If a22 [
r2 2k22þ4kk2þk2ð Þ

k2 k2
, then Jmk\JA iff

z2
02

z2
01

\f1ða22Þ.
where

f1ða22Þ ¼
r2 1

k1
� k1ða1þkÞ2

a4
1

� �

r2k2ða2þkÞ2
a4
2

þ k4a2
2

a4
2

� r2
k2

� � : ð46Þ

Proof If the AMRE is superior to the AE in term of

PMSE criterion, we have Jmk\JA. That is, r2t2 þ

r2 k1ða1þkÞ2 z2
01

a4
1

þ k2ða2þkÞ2z2
02

a4
2

� �
þ k4a2

2
z2
02

a4
2

\r2t2 þ r2

z2
01

k1
þ z2

02

k2

� �
. Rearranging this inequality, we will obtain

z202
r2k2ða2 þ kÞ2

a42
þ k4a22

a42
� r2

k2

 !
\z201r

2 1

k1
� k1ða1 þ kÞ2

a41

 !
:

Here, z201, z
2
02 and r2 1

k1
� k1ða1þkÞ2

a4
1

� �
are positive, but the

sign of
r2k2ða2þkÞ2

a4
2

þ k4a2
2

a4
2

� r2
k2

� �
depends on the value of a22.

Let’s define r2 1
k1
� k1ða1þkÞ2

a4
1

� �.
r2k2ða2þkÞ2

a4
2

þ k4a2
2

a4
2

� r2
k2

� �
as a

function of a22 and denote it by f1ða22Þ. The function f1ða22Þ
has a vertical asymptote at the point

r2k2ða2 þ kÞ2

a42
þ k4a22

a42
� r2

k2

 !
: ð47Þ

From this Equation, we get

a22 ¼
r2 2k22 þ 4kk2 þ k2
� �

k2 k2
: ð48Þ

Thus,

1. If

a22\
r2 2k22 þ 4kk2 þ k2
� �

k2 k2
ð49Þ

we get

z202
z201

[ f1ða22Þ: ð50Þ

Because z202=z
2
01 is always positive, and for the condi-

tion given in (49) f1ða22Þ is always negative, the AMRE

is uniformly superior to the AE.

2. If

a22 [
r2 2k22 þ 4kk2 þ k2
� �

k2 k2
ð51Þ

we get

z202
z201

\f1ða22Þ: ð52Þ

Because f1ða22Þ is positive for the condition given in

(51), the AMRE is uniformly superior to the AE when

(52) is valid. h

4.2 The Comparison of AMRE and ARE

In this subsection, we will discuss the superiority of the

AMRE over the ARE in terms of PMSE criterion under the

target function.

Theorem 2

a. If a22 [
r2 2k2þ3kð Þ
k k2þ2kð Þ , then Jmk\Jk.
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b. If a22\
r2 2k2þ3kð Þ
k k2þ2kð Þ , then Jmk\Jk iff

z2
02

z2
01

\f2ða22Þ:
where

f2ða22Þ ¼
r2 k1

a2
1

� k1ða1þkÞ2
a4
1

� �

r2k2ða2þkÞ2
a4
2

þ k4a2
2

a4
2

� r2k2
a2
2

� k2a2
2

a2
2

� � : ð53Þ

Proof If the AMRE is superior to the ARE in term of

PMSE criterion, we have Jmk\Jk. That is,

r2t2 þ r2
k1ða1 þ kÞ2 z201

a41
þ k2ða2 þ kÞ2z202

a42

 !

þ k4a22z
2
02

a42
\r2t2 þ r2

k1z201
a21

þ k2z202
a22

� �
þ k2a22

a22
:

Rearranging this inequality, we will obtainz202
r2k2ða2þkÞ2

a4
2

þ
�

k4a2
2

a4
2

� r2k2
a2
2

� k2a2
2

a2
2

Þ\z201r
2 k1

a2
1

� k1ða1þkÞ2
a4
1

� �
:

Here, z201, z202 are positive and r2 k1
a2
1

� k1ða1þkÞ2
a4
1

� �
is

always negative, but the sign of
r2k2ða2þkÞ2

a4
2

þ k4a2
2

a4
2

� r2k2
a2
2

� k2a2
2

a2
2

� �
depends on the value of

a22. Let’s define

r2 k1
a2
1

� k1ða1þkÞ2
a4
1

� �.
r2k2ða2þkÞ2

a4
2

þ k4a2
2

a4
2

� r2k2
a2
2

� k2a2
2

a2
2

� �
as a

function of a22 and denote it by f2ða22Þ. The function

f2ða22Þ has a vertical asymptote at the point

r2k2ða2 þ kÞ2

a42
þ k4a22

a42
� r2k2

a22
� k2a22

a22

 !
: ð54Þ

From this Equation, we get

a22 ¼
r2 2k2 þ 3kð Þ
k k2 þ 2kð Þ : ð55Þ

Thus,

1. If

a22 [
r2 2k2 þ 3kð Þ
k k2 þ 2kð Þ ð56Þ

we get

z202
z201

[ f2ða22Þ: ð57Þ

Because z202=z
2
01 is always positive, and for the condi-

tion given in (56) f2ða22Þ is always negative, the AMRE

is uniformly superior to the ARE.

2. If

a22\
r2 2k2 þ 3kð Þ
k k2 þ 2kð Þ ð58Þ

we get

z202
z201

\f2ða22Þ: ð59Þ

Because f2ða22Þ is positive for the condition given in

(58), the AMRE is uniformly superior to the AE when

(59) is valid. h

4.3 The Comparison of AMLE and AE

In this subsection, we will discuss the superiority of the

AMLE over the AE in terms of PMSE criterion under the

target function.

Theorem 3

a. If a22 [
r2 b2

2
ðb2

2
�4c2

2
Þþc3

2
ð4b2�c2Þð Þ

k2ðd�1Þ4 , then Jmd\JA for b21ðb21
�4c21Þ\c31ðc1 � 4b1Þ for b21ðb21 � 4c21Þ[ c31ðc1 � 4b1Þ
iff

z2
02

z2
01

\f3ða22Þ.

b. If a22\
r2 b2

2
ðb2

2
�4c2

2
Þþc3

2
ð4b2�c2Þð Þ

k2ðd�1Þ4 , then Jmd\JA for b21ðb21 �
4c21Þ[ c31ðc1 � 4b1Þ for b21ðb21 � 4c21Þ\c31ðc1 � 4b1Þ
iff

z2
02

z2
01

\f3ða22Þ.
where

f3ða22Þ ¼
r2 1

k1
� c2

1
ðc1�2b1Þ2

k1b41

� �

r2c2
2
ðc2�2b2Þ2

k2b42
þ ðd�1Þ4a2

2

b4
2

� r2
k2

� � : ð60Þ

Proof If the AMLE is superior to the AE in term of PMSE

criterion, we have Jmd\JA. That is,

r2t2 þ r2
c21ðc1 � 2b1Þ2z201

k1b41
þ c22ðc2 � 2b2Þ2z202

k2b42

 !

þ ðd � 1Þ4a22
b42

\r2t2 þ r2
z201
k1

þ z202
k2

� �
:

Rearranging this inequality, we will obtain z202
r2c2

2
ðc2�2b2Þ2

k2b42
þ ðd�1Þ4a2

2

b4
2

� r2
k2

� �
\z201r

2 1
k1
� c2

1
ðc1�2b1Þ2

k1c41

� �
:

If both

r2c22ðc2 � 2b2Þ2

k2b42
þ ðd � 1Þ4a22

b42
� r2

k2
ð61Þ

and

1

k1
� c21ðc1 � 2b1Þ2

k1c41
ð62Þ

have the same signs, the condition for superiority of the

AMLE over the AE is
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z202
z201

\f3ða22Þ: ð63Þ

If (61) and (62) have opposite signs, the condition for

superiority of the AMLE over the AE is

z202
z201

[ f3ða22Þ: ð64Þ

It is obvious that if (61) and (62) have opposite signs, the

right hand side of (64) is negative, thus (64) always holds.

Consequently, at that region the AMLE is uniformly

superior to the AE. The condition for positiveness of (61)

can be written as

a22 [
r2 b22ðb22 � 4c22Þ þ c32ð4b2 � c2Þ
� �

k2ðd � 1Þ4
ð65Þ

and the condition for positiveness of (62) can be written as

b21ðb21 � 4c21Þ[ c31ðc1 � 4b1Þ: ð66Þ

Of course, the opposite conditions are needed for the

negativeness of (61) and (62). The vertical asymptote of

the hyperbola f3ða22Þ is at the point

a22 ¼
r2 b22ðb22 � 4c22Þ þ c32ð4b2 � c2Þ
� �

k2ðd � 1Þ4
: ð67Þ

h

4.4 The Comparison of AMLE and ALE

In this subsection, we will discuss the superiority of the

AMLE over the ALE in terms of PMSE criterion under the

target function.

Theorem 4

a. If a22 [
r2 c3

2
ð4b2�c2Þ�3b2

2
c2
2ð Þ

k2ðd�1Þ2 ðd�1Þ2�b2
2½ 	 , then Jmd\Jd for c1ð4b1 �

c1Þ\3b21 for c1ð4b1 � c1Þ[ 3b21 iff
z2
02

z2
01

\f4ða22Þ.

b. If a22\
r2 c3

2
ð4b2�c2Þ�3b2

2
c2
2ð Þ

k2ðd�1Þ2 ðd�1Þ2�b2
2½ 	 , then Jmd\Jd for c1ð4b1 �

c1Þ[ 3b21 for c1ð4b1 � c1Þ\3b21 iff
z2
02

z2
01

\f4ða22Þ.
where

f4ða22Þ ¼
r2 c2

1

k1b21
� c2

1
ðc1�2b1Þ2

k1c41

� �

r2c2
2
ðc2�2b2Þ2

k2b42
þ ðd�1Þ4a2

2

b4
2

� r2c2
2

k2b22
� ðd�1Þ2a2

2

b2
2

� � :

ð68Þ

Proof If the AMLE is superior to the ALE in term of

PMSE criterion, we have Jmd\Jd. That is,

r2t2 þ r2
c21ðc1 � 2b1Þ2z201

k1b41
þ c22ðc2 � 2b2Þ2z202

k2b42

 !

þ ðd � 1Þ4a22
b42

\r2t2 þ r2
c21z

2
01

k1b21
þ c22z

2
02

k2b22

� �
þ ðd � 1Þ2a22

b22

Rearranging this inequality, we will obtain

z202
r2c22ðc2 � 2b2Þ2

k2b42
þ ðd � 1Þ4a22

b42
� r2c22
k2b22

� ðd � 1Þ2a22
b22

 !

\z201r
2 c21

k1b22
� c21ðc1 � 2b1Þ2

k1b41

 !
:

If both

r2c22ðc2 � 2b2Þ2

k2b42
þ ðd � 1Þ4a22

b42
� r2c22
k2b22

� ðd � 1Þ2a22
b22

ð69Þ

and

c21
k1b22

� c21ðc1 � 2b1Þ2

k1b41
ð70Þ

have the same signs, the condition for superiority of the

AMLE over the ALE is

z202
z201

\f4ða22Þ: ð71Þ

If (69) and (70) have opposite signs, the condition for

superiority of the AMLE over the ALE is

z202
z201

[ f4ða22Þ: ð72Þ

It is obvious that if (69) and (70) have opposite signs, the

right hand side of (72) is negative, thus (72) always holds.

Consequently, at that region the AMLE is uniformly

superior to the ALE. The condition for positiveness of (69)

can be written as

a22 [
r2 c32ð4b2 � c2Þ � 3b22c

2
2

� �

k2ðd � 1Þ2 ðd � 1Þ2 � b22

h i ð73Þ

and the condition for positiveness of (70) can be written as

c1ð4b1 � c1Þ[ 3b21: ð74Þ

Of course, the opposite conditions are needed for the

negativeness of (69) and (70). The vertical asymptote of

the hyperbola f4ða22Þ is at the point

a22 ¼
r2 c32ð4b2 � c2Þ � 3b22c

2
2

� �

k2ðd � 1Þ2 ðd � 1Þ2 � b22

h i : ð75Þ

h
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4.5 The Comparison of AMLE and AMRE

In this subsection, we will discuss the superiority of the

AMLE over the AMRE in terms of PMSE criterion under

the target function.

Theorem 5

a. If a22 [
r2 b4

2
k22ða2þkÞ2�a4

2
c2
2
ð2b2�c2Þ2ð Þ

k2 ðd�1Þ4a4
2
�k4b4

2½ 	 , then Jmd\Jmk for

b41k
2
1ða1 þ kÞ2\a41c

2
1ð2b1 � c1Þ2 for b41k

2
1ða1 þ

kÞ2 [ a41c
2
1ð2b1 � c1Þ2 iff

z2
02

z2
01

\f5ða22Þ:

b. If a22\
r2 b4

2
k22ða2þkÞ2�a4

2
c2
2
ð2b2�c2Þ2ð Þ

k2 ðd�1Þ4a4
2
�k4b4

2½ 	 , then Jmd\Jmk for

b41k
2
1ða1 þ kÞ2 [ a41c

2
1ð2b1 � c1Þ2 for b41k

2
1ða1 þ

kÞ2\a41c
2
1ð2b1 � c1Þ2 iff

z2
02

z2
01

\f5ða22Þ:
where

f5ða22Þ ¼
r2 k1ða1þkÞ2

a4
1

� c2
1
ðc1�2b1Þ2

k1b41

� �

r2c2
2
ðc2�2b2Þ2

k2b42
þ ðd�1Þ4a2

2

b4
2

� r2k2ða2þkÞ2
a4
2

� k4a2
2

a4
2

� � :

ð76Þ

Proof If the AMLE is superior to the AMRE in term of

PMSE criterion, we have Jmd\Jmk. That is,

r2t2 þ r2
c2
1
ðc1�2b1Þ2z201

k1b41

�
þ c2

2
ðc2�2b2Þ2z202

k2b42
Þ þ ðd�1Þ4a2

2

b4
2

\r2t2 þ

r2 k1ða1þkÞ2
a4
1

þ k2ða2þkÞ2
a4
2

� �
þ k4a2

2

a4
2

: Rearranging this inequality,

we will obtain

z202
r2c22ðc2� 2b2Þ2

k2b42
þðd� 1Þ4a22

b42
�r2k2ða2þ kÞ2

a42
� k4a22

a42

 !

\ z201r
2 k1ða1þ kÞ2

a41
� c21ðc1� 2b1Þ2

k1b41

 !
:

If both

r2c22ðc2 � 2b2Þ2

k2b42
þ ðd � 1Þ4a22

b42
� r2k2ða2 þ kÞ2

a42
� k4a22

a42

ð77Þ

and

k1ða1 þ kÞ2

a41
� c21ðc1 � 2b1Þ2

k1b41
ð78Þ

have the same signs, the condition for superiority of the

AMLE over the AMRE is

z202
z201

\f4ða22Þ: ð79Þ

If (77) and (78) have opposite signs, the condition for

superiority of the AMLE over the AMRE is

z202
z201

[ f4ða22Þ: ð80Þ

It is obvious that if (77) and (78) have opposite signs, the

right hand side of (80) is negative, thus (80) always holds.

Consequently, at that region the AMLE is uniformly

superior to the AMRE. The condition for positiveness of

(77) can be written as

a22 [
r2 b42k

2
2ða2 þ kÞ2 � a42c

2
2ð2b2 � c2Þ2

� �

k2 ðd � 1Þ4a42 � k4b42

h i ð81Þ

and the condition for positiveness of (78) can be written as

b41k
2
1ða1 þ kÞ2 [ a41c

2
1ð2b1 � c1Þ2: ð82Þ

Of course, the opposite conditions are needed for the

negativeness of (77) and (78). The vertical asymptote of

the hyperbola f4ða22Þ is at the point

a22 ¼
r2 b42k

2
2ða2 þ kÞ2 � a42c

2
2ð2b2 � c2Þ2

� �

k2 ðd � 1Þ4a42 � k4b42

h i : ð83Þ

h

4.6 The Method for Choosing the Biasing
Parameters k and d in the Above Mentioned
Estimators

Now, a very important issue in the study of ridge regression

is how to find an appropriate biasing parameter k. Hoerl

and Kennard (1970a, b), Hoerl et al. (1975) and Lawless

and Wang (1976) suggested the following ridge parame-

ters, that we can estimate for model (21), respectively;

k̂HK ¼ r̂2
Prþ1

i¼1 â
2
i

; ð84Þ

k̂HKB ¼ ðr þ 1Þr̂2
Prþ1

i¼1 â
2
i

; ð85Þ

k̂LW ¼ ðr þ 1Þ r̂2
Prþ1

i¼1 kiâ
2
i

ð86Þ

where â and r̂2 are the OLS estimates of a and r2,
respectively. On the other hand Liu (1993) gave the some

estimates of d by analogy with the estimate of k in ridge

estimate. Two of these estimates are defined as for model

(21):
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d̂mm ¼ 1� r̂2
Xrþ1

i¼1

1

kiðki þ 1Þ

,
Xrþ1

i¼1

â2i
ðki þ 1Þ2

" #
; ð87Þ

d̂CL ¼ 1� r̂2
Xrþ1

i¼1

1

ki þ 1

,
Xrþ1

i¼1

kiâ2i
ðki þ 1Þ2

" #
: ð88Þ

5 An Illustrative Example with Almon Data

To illustrate our theoretical results, we now consider a

dataset due to Almon (1965). These data was taken in the

years 1953–1967 using quarterly data where independent

variable is appropriations and dependent variable is

expenditures. Gültay and Kaçıranlar (2015) found the fol-

lowing results:

a. The eigenvalues of W 0 W : ð2:9359; 0:0634; 0:0007Þ,
b. The Almon estimates of c : ðĉAÞ0 ¼ ð�0:0052;

0:0320; 0:0962Þ,
c. The estimates of r2 : r̂2 ¼ 0:0164.

The 3� 3 matrix U is the matrix of normalized eigen-

vectors, K is a 3� 3 diagonal matrix of eigenvalues of

W 0 W such that W 0 W ¼ UKU0. Then, Z ¼ WU and a ¼
U0c so that y ¼ Wcþ e ¼ Zaþ e where

Z 0Z ¼ K ¼
2:9359 0 0

0 0:0634 0

0 0 0:0007

0
@

1
A: ð89Þ

In orthogonal coordinates, the OLS-estimator of the

regression coefficients obtained is

â ¼ K�1Z 0y ¼ ½0:5580; �1:0754; 1:2297	0: ð90Þ

Also, kHKB ¼ 0:0165 and dCL ¼ 0:712 are obtained by

Gültay and Kaçıranlar (2015).
Now, we will illustrate our theoretical results using the

given results above.

Firstly, let us consider the predictive performances of

AMRE and AE.

• If k1 ¼ 2:9359, k2 ¼ 0:0634, from (46), we get

f1ða22Þ ¼
0:0000003489

0:001818648 a22 � 0:02159
ð91Þ

which is a hyperbola with a vertical asymptote at

a22 ffi 11:8727: ð92Þ

Because both z202=z
2
01 and a22 are positive, we are inter-

ested only in the points which lie in quadrant I. Figure 1

illustrates this situation. For values of a22 smaller than

11.8727, the AMRE is uniformly superior to the AE.

For larger values of a22, there is a trade-off between

these two estimators. If the value of the ratio z202=z
2
01 is

smaller than the value of f1ða22Þ, then the AMRE is

superior to the AE, otherwise the AE is superior to the

AMRE. As Friedman and Montgomery (1985) and

Özbey and Kaçıranlar (2015) pointed out, the ratio

z202=z
2
01 defines the subspace of observation to be

predicted.

• If k1 ¼ 2:9359, k2 ¼ 0:0007, from (46), we get

f1ða22Þ ¼
0:0000003489

0:84688022 a22 � 23:2796
: ð93Þ

• If k1 ¼ 0:0634, k2 ¼ 0:0007, from (46), we get

f1ða22Þ ¼
0:021592274

0:84688022 a22 � 23:2796
ð94Þ

which are the hyperbolas with the same vertical

asymptote at

a22 ffi 27:48866: ð95Þ

Figures 2 and 3 illustrate this situation, respectively.

For values of a22 smaller than 27.48866, the AMRE is

uniformly superior to the AE. For larger values of a22,

Fig. 1 The predictive performances of AMRE and AE for the first

case

Fig. 2 The predictive performances of AMRE and AE for the second

case

Iran J Sci Technol Trans Sci (2020) 44:85–98 93

123



there is a trade-off between these two estimators. If the

value of the ratio z202=z
2
01 is smaller than the value of

f1ða22Þ, then the AMRE is superior to the AE, otherwise

the AE is superior to the AMRE.

Therefore, we conclude that the intersection region

among all the three defined hyperbolas which have the

same side in Eqs. (91), (93) and (94) where the AMRE is

uniformly superior to AE is the defined hyperbola in

Eq. (91) with a vertical asymptote at a22 ffi 11:8727. Since

â2 ffi �1:0754 and â22 ffi 1:156485 which is lower than the

vertical asymptote a22 ffi 11:8727. That means, whatever the

value of z201 and z202, AMRE is always uniformly superior to

the AE.

Secondly, let us consider the predictive performances of

AMRE and ARE

• If k1 ¼ 2:9359, k2 ¼ 0:0634, from (53), we get

f2ða22Þ ¼
0:0000619135

0:04083 a22 � 0:074213
ð96Þ

which is a hyperbola with a vertical asymptote at

a22 ffi 1:817754: ð97Þ

Figure 4 illustrates this situation. For values of a22
smaller than 1.817754, the AMRE is uniformly superior

to the ARE. For larger values of a22, there is a trade-off

between these two estimators. If the value of the ratio

z202=z
2
01 is smaller than the value of f2ða22Þ, then the

AMRE is superior to the ARE, otherwise the ARE is

superior to the AMRE.

• If k1 ¼ 2:9359, k2 ¼ 0:0007, from (53), we get

f2ða22Þ ¼
0:0000619135

0:07338 a22 � 0:110161
ð98Þ

• If k1 ¼ 0:0634, k2 ¼ 0:0007, from (53), we get

f2ða22Þ ¼
0:07421339

0:07338 a22 � 0:110161
ð99Þ

which are the hyperbolas with the same vertical

asymptote at

a22 ffi 1:501232: ð100Þ

Figures 5 and 6 illustrate this situation, respectively.

For values of a22 smaller than 1.501232, the AMRE is

uniformly superior to the ARE. For larger values of a22,
there is a trade-off between these two estimators. If the

value of the ratio z202=z
2
01 is smaller than the value of

f2ða22Þ, then the AMRE is superior to the ARE, other-

wise the ARE is superior to the AMRE.

Therefore, we conclude that the intersection region

among all the three defined hyperbolas which have the

same side in Eqs. (96), (98) and (99) where the AMRE is

uniformaly superior to ARE is the defined hyperbola in

Eq. (98) with a vertical asymptote at a22 ffi 1:501232. Since

â2 ffi 1:2297 and â22 ffi 1:512162 which is not lower than

the vertical asymptote a22 ffi 1:501232. That means, if the

Fig. 3 The predictive performances of AMRE and AE for the third

case

Fig. 4 The predictive performances of AMRE and ARE for the first

case

Fig. 5 The predictive performances of AMRE and ARE for the

second case
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value of z201 is closer to the value of z202, AMRE is uni-

formly superior to the ARE, otherwise ARE is better than

AMRE.

Thirdly, let us consider the predictive performances of

AMLE and AE.

• If k1 ¼ 2:9359, k2 ¼ 0:0634, from (60), we get

f3ða22Þ ¼
0:0000597

0:00538 a22 � 0:03656
ð101Þ

which is a hyperbola with a vertical asymptote at

a22 ffi 6:794634: ð102Þ

Figure 7 illustrates this situation. For values of a22
smaller than 6.794634, the AMLE is uniformly superior

to the AE. For larger values of a22, there is a trade-off

between these two estimators. If the value of the ratio

z202=z
2
01 is smaller than the value of f3ða22Þ, then the

AMLE is superior to the AE, otherwise the AE is

superior to the AMLE.

• If k1 ¼ 2:9359, k2 ¼ 0:0007, from (60), we get

f3ða22Þ ¼
0:0000597

0:00686 a22 � 3:7204
: ð103Þ

• If k1 ¼ 0:0634, k2 ¼ 0:0007, from (60), we get

f3ða22Þ ¼
0:036555

0:00686 a22 � 3:7204
ð104Þ

which are the hyperbolas with the same vertical

asymptote at

a22 ffi 542:288: ð105Þ

Figures 8 and 9 illustrate this situation, respectively. For

values of a22 smaller than 542.288, the AMLE is uniformly

superior to the AE. For larger values of a22, there is a trade-
off between these two estimators. If the value of the ratio

z202=z
2
01 is smaller than the value of f3ða22Þ, then the AMLE

is superior to the AE, otherwise the AE is superior to the

AMLE.

Therefore, we conclude that the intersection region

among all the three defined hyperbolas which have the

Fig. 6 The predictive performances of AMRE and ARE for the third

case

Fig. 7 The predictive performances of AMLE and AE for the first

case

Fig. 8 The predictive performances of AMLE and AE for the second

case

Fig. 9 The predictive performances of AMLE and AE for the third

case
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same side in Eqs. (101), (103) and (104) where the AMLE

is uniformaly superior to AE is the defined hyperbola in

Eq. (101) with a vertical asymptote at a22 ffi 6:794634.

Since â2 ffi �1:0754 and â22 ffi 1:156485 which is lower

than the vertical asymptote a22 ffi 6:794634. That means,

whatever the value of z201 and z202, AMLE is always uni-

formly superior to the AE.

Fourthly, let us consider the predictive performances of

AMLE and ALE.

• If k1 ¼ 2:9359, k2 ¼ 0:0634, from (68), we get

f4ða22Þ ¼
0:00073

0:06797 a22 � 0:08459
ð106Þ

which is a hyperbola with a vertical asymptote at

a22 ffi 1:24447: ð107Þ

Figure 10 illustrates this situation. For values of a22
smaller than 1.24447, the AMLE is uniformly superior

to the ALE. For larger values of a22, there is a trade-off

between these two estimators. If the value of the ratio

z202=z
2
01 is smaller than the value of f4ða22Þ, then the

AMLE is superior to the ALE, otherwise the ALE is

superior to the AMLE.

• If k1 ¼ 2:9359, k2 ¼ 0:0007, from (68), we get

f4ða22Þ ¼
0:00073

0:07597 a22 � 7:8245
: ð108Þ

• If k1 ¼ 0:0634, k2 ¼ 0:0007, from (68), we get

f4ða22Þ ¼
0:08458

0:07597 a22 � 7:8245
ð109Þ

which are the hyperbolas with the same vertical

asymptote at

a22 ffi 102:998 ð110Þ

Figures 11 and 12 illustrate this situation, respectively.

For values of a22 smaller than 102.998, the AMLE is uni-

formly superior to the ALE. For larger values of a22, there is
a trade-off between these two estimators. If the value of the

ratio z202=z
2
01 is smaller than the value of f4ða22Þ, then the

AMLE is superior to the ALE, otherwise the AE is superior

to the AMLE.

Therefore, we conclude that the intersection region

among all the three defined hyperbolas which have the

same side in Eqs. (106), (108) and (109) where the AMLE

is uniformaly superior to ALE is the defined hyperbola in

Eq. (106) with a vertical asymptote at a22 ffi 1:24447. Since

â2 ffi 1:2297 and â22 ffi 1:512162 which is not lower than

the vertical asymptote a22 ffi 1:24447. That means, if the

value of z201 is closer to the value of z202, AMLE is uni-

formly superior to the ALE, otherwise ALE is better than

AMLE.

Finally, let us consider the predictive performances of

AMLE and AMRE.

• If k1 ¼ 2:9359, k2 ¼ 0:0634, from (76), we get
Fig. 10 The predictive performances of AMLE and ALE for the first

case

Fig. 11 The predictive performances of AMLE and ALE for the

second case

Fig. 12 The predictive performances of AMLE and ALE for the third

case
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f5ða22Þ ¼
0:0000593

0:00356 a22 � 0:01496
ð111Þ

which is a hyperbola with a vertical asymptote at

a22 ffi 4:20146: ð112Þ

Figure 13 illustrates this situation. For values of a22
smaller than 4.20146, the AMLE is uniformly superior

to the AMRE. For larger values of a22, there is a trade-

off between these two estimators. If the value of the

ratio z202=z
2
01 is smaller than the value of f5ða22Þ, then the

AMLE is superior to the AMRE, otherwise the AMRE

is superior to the AMLE.

• If k1 ¼ 2:9359, k2 ¼ 0:0007, from (76), we get

f5ða22Þ ¼
0:0000593

19:55923� 0:84002 a22
: ð113Þ

• If k1 ¼ 0:0634, k2 ¼ 0:0007, from (76), we get

f5ða22Þ ¼
0:014963

19:55923� 0:84002 a22
ð114Þ

which are the hyperbolas with the same vertical

asymptote at

a22 ffi 23:2843: ð115Þ

Figures 14 and 15 illustrate this situation, respectively.

For values of a22 larger than 23.2843, the AMLE is

uniformly superior to the AMRE. For smaller values of

a22, there is a trade-off between these two estimators. If

the value of the ratio z202=z
2
01 is smaller than the value of

f5ða22Þ, then the AMLE is superior to the AMRE,

otherwise the AMRE estimator is superior to the

AMLE.

Therefore, we conclude that the intersection region

among all the three defined hyperbolas which have dif-

ferent sides in Eqs. (111), (113) and (114) where the

AMLE is uniformaly superior to AMRE is the intersection

region between the defined hyperbolas which have differ-

ent sides in Eqs. (111) and (113) where the AMLE is

uniformaly superior to AMRE over a22 axis and a
2
2 from 0 to

23.2843. Since â2 ffi 1:2297 and â22 ffi 1:512162 for

Eq. (111) and â2 ffi 1:2297 and â22 ffi 1:512162 for

Eqs. (113) and (114) which lie in the interval 0 and

23.2843 values of a22. That means, if the value of z201 is so

closer to the value of z202, AMLE is uniformly superior to

the AMRE, otherwise AMRE is better than AMLE.

6 Conclusions

This paper investigates the predictive performance of the

AMRE compared to the AE and the ARE as well as the

AMLE compared to the AE, ALE and AMRE. The com-

parisons of these estimators are in terms of the PMSE

under the target function at a specific point in two-di-

mensional regressor variable spaces. In this context, the

PMSE under the target function of the AMRE and AMLE

Fig. 13 The predictive performances of AMLE and AMRE for the

first case

Fig. 14 The predictive performances of AMLE and AMRE for the

second case

Fig. 15 The predictive performances of AMLE and AMRE for the

third case
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estimators are developed and five theorems are given. The

theoretical consequences are illustrated by a numerical

example with Almon data, and the regions are assigned for

superiority of the given estimators. For some values of a22,
there are trade-offs between the relative effectiveness of

the estimators. The AE is effective only when the value of

a22 is small compared to AMRE and AMLE. The effec-

tiveness of these techniques is also affected by the location

of the prediction point. Hence, the choice of the estimator

may depend on the location of the point to be predicted. In

the numerical example, a region is established where the

AMRE and AMLE estimators are uniformly superior to the

above mentioned estimators. This implies that it is theo-

retically possible to determine such a region.

References

Akdeniz F, Kacıranlar S (1995) On the almost unbiased generalized

Liu estimator and unbiased estimation of the bias and MSE.

Commun Stat Theory Methods 24:1789–1797

Almon S (1965) The distributed lag between capital appropriations

and expenditures. Econometrica 33(1):178–196

Chanda AK, Maddala GS (1984) Ridge estimators for distributed lag

models. Commun Stat Theory Methods 13:217–225

Chaturvedi A, Shalabh (2014) Bayesian estimation of regression

coefficients under extended balanced loss function. Commun

Stat Theory Methods 43:4253–4264

Fisher I (1937) Income in theory and income taxation practice.

Econometrica 5:1–55

Friedman DJ, Montgomery DC (1985) Evaluation of the predictive

performance of biased regression estimators. J Forecast

4:153–163
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