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Abstract
Purpose of Review The purpose of this review is to analyse recent advances in ecological-economic modelling designed to
inform desirable landscape composition and configuration. We explore how models capture the economic and ecological
consequences of landscape pattern, and potential feedbacks to the responses by policy or landholders.
Recent Findings Modelling approaches are becoming increasingly interlinked, coupling components of empirical-statistical
modelling, spatial and bioeconomic simulation, land-use optimization and agent-based models. We analyse recent methodolog-
ical advances and find that only few examples capture feedbacks between landscape pattern and decision-making.
Summary We outline how future hybrid models could build on these recent advances by inter alia an improved representation of
landscape patterns, refining the theory behind decision-making, incorporating uncertainty and reducing model complexity. We
conclude that coupling recent developments in land-use optimization and agent-based models may help bridge gaps between
modelling philosophies as well as parsimony vs. complexity. This fruitful field of research could help to improve understanding
on the role of landscape pattern in social-ecological systems.

Keywords Bioeconomic modelling . Social-economic models . Portfolio analysis . Landscape metrics . Ecosystem services .

Trade-offs

Introduction

Ecosystem management has lately been framed as a Bwicked
problem^ [1], which arises from the interdependence between
economic and ecological systems. To tackle this problem, the
landscape approach has emerged. It seeks to include interac-
tions between human and natural systems through inter- and
transdisciplinary research for different socio-economic and
ecological contexts [2]. A key question is how landscape pat-
terns are impacted by human decisions, and how these deci-
sions affect ecological functions with implicit consequences
for human welfare. Landscape patterns reflect both the com-
position and spatial arrangement, or Bconfiguration^ of land
uses and land covers (LULC) within the landscape structure
[3•]. Landscape patterns refer to the heterogeneity of land-
scapes, which is seen as an important driver of local biodiver-
sity and for maintaining ecosystem functioning [4–7]. Here,
we focus on human-dominated landscapes, which usually
comprise both, agricultural and forest management, as well
as natural ecosystems. To this interface, we refer to with
Bforest agroecosystems^.
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Designing sustainable landscape patterns [8] can only be
achieved by integrating economics with natural sciences.
As these interrelations can hardly be solved with analytical
approaches only, modelling approaches now form the back-
bone of integrated economic-ecological landscape research.
Attempts to model ecological-economic interactions started
with Bbioeconomic^ [9] models (Table 1) which focused on
investigating optimal, i.e. predictive, management strategies
at the farm level or for a social landscape planner at ag-
gregated levels [10]. They have been criticised, to build on
simplified assumptions, while lacking predictive power, of-
ten demanded by decision-makers [11]. More complex
modelling approaches, more lately summarized under the
term Bsocial-ecological models^ (Table 1) have emerged
[11]. Among them are descriptive system dynamics and
simulation models, as well as agent-based models [12]
(Table 1). Here, we summarize these models under the term
Becological-economic^ models. These approaches are no
mutually exclusive alternatives, while there is a clear trend
to integrate components of different approaches [13•].

This review aims at giving an up-to-date overview on
recent advances in ecological-economic modelling de-
signed to inform landscape pattern. We explore how
future models could effectively couple model compo-
nents to contribute to a better understanding of the role
of landscape pattern in social-ecological systems. Here,
we refer to studies which integrate (landscape) ecology
of forest agroecosystems with socio-economic consider-
ations and explicitly analyse landscape composition and/
or configuration with a decision and management-
oriented perspective. To give an up-to-date review, we
focus on recent advances, covering the time span be-
tween 2015 to April 2019.

Our review is structured along the following questions:

1 . How are economics and landscape ecology
(conceptually) interlinked with landscape pattern of for-
est agroecosystems?

2. How do recent ecological-economic modelling ap-
proaches capture these interlinkages?

3. Which steps to take in order to better inform landscape
pattern?

Our objective is to provide an overview for col-
leagues who are familiar with landscape ecology but
are new to the field of ecological-economic modelling.
But, we also hope that his article may inspire those
working with ecological-economic models to more ex-
plicitly include landscape patterns in their research ques-
tions. In the last section, we outline future fields of
research to facilitate an improved coupling of landscape
ecology and economics in ecological-economic models.

Conceptualizing the Interlinkages
Between Economics, Landscape Ecology
and Landscape Pattern

Landscape research commonly links (socio) economics
with ecology by viewing economics as driver of land
use decisions—illustrated as early as 1845 by Johann
Heinrich von Thünen [14] (left solid arrows in Fig. 1).
A landscape pattern may be viewed as a consequence of
the averaged or aggregated land-use decisions of indi-
viduals or communities owning or managing the land to
whom we will also refer to as Bagents^. Speaking in

Table 1 Brief definitions of the model approaches considered in the article (see also Table 2 for comparison of models)

Socio-ecological systems Coupled Human-Environment systems [11]

Ecological-economic models Models integrating environment-economy interactions to analyse dynamic processes, cause-effect relationships and
potential solutions for environmental problems. The term may be used as synonym for socio-ecological models,
while we emphasize the economic model component in this review.

System dynamics System dynamics seek to understand non-linear and dynamic behaviour of complex systems through compiling
individual causal or observed relationships, transition probabilities and feedbacks into one model. Methods of
system dynamics may be qualitative and/or quantitative. (based on [11])

Simulation models Simulation models operationalize information from system dynamics into computer models which may approximate
the defined process or system in order to conduct experiments and understand the system’s behaviour. The
simulation model usually consists of a series of mathematical equations which exceed the potential of a purely
analytical solution.

Bioeconomic models Bioeconomics aims at the integration of two disciplines, economics and biology. Bioeconomic models integrate
economic and biophysical components, and are seen as extensions of economic models. They therefore usually
build on optimization models, where an economic objective function is to be maximized given natural resource and
economic constraints (based on [10, 11])

Agent-based models Structurally-rich models, which Bgive a computational representation of agents, their properties, and interactions with
each other and their environment^ [11]. Agent-based models are often spatially explicit and consider the temporal
dynamics of model processes.
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economic terms, agents allocate scarce land resources to
LULC options in a way that maximizes their utility.
Utility is an economic unit to express the level of sat-
isfaction, which may be expressed but is not limited to
willingness to pay. As we will show later in this review,
it is not the only one but still the most common concept
for mimicking land-use decisions.

To describe resulting landscape pattern (centre box in Fig. 1),
landscape metrics range from measures of compositional diver-
sity or heterogeneity, such as the Shannon Index of Diversity, the
Simpson’s evenness index or share of natural vegetation, to as-
pects of configuration or landscape aggregation (see [6]), such as
patch density, edge density, Euclidian nearest neighbour distance,
contagion index among others [15] and most recently also as-
pects of the three-dimensional-space (e.g. [16]).

Changes in landscape pattern may have ecological con-
sequences (right solid arrow in Fig. 1). Landscape ecology
has linked landscape metrics to species habitat, species dis-
tribution patterns or conservation value [17] and more re-
cently also to ecosystem service (ES) provision [6, 7].
Concepts to maintain and enhance ecosystem functioning
and related ES emphasize the importance of high composi-
tional and configurational diversity, connectivity of suffi-
ciently large habitats and high shares of native vegetation,
while reducing field sizes and input use [5, 18]. In addition,
(re-)introducing specific landscape elements, such as flower
strips [18, 19], forest patches and agroforestry, are promot-
ed [20].

The link between economic decisions and ecological
consequences is not unidirectional. Ecological conse-
quences may feed back into economic decision-making

(illustrated by the dashed arrows in Fig. 1). Two main
feedbacks have been conceptualized: first, classic
bioeconomic farm models (see [10, 21]) follow the premise
that a (rational) landholder, here also referred to as Bprivate
producer^, may adjust land-use decisions, provided that an-
ticipated biophysical and ecological consequences of land-
scape patterns directly affect the decision criterion, such as
utility (see lower pink dashed arrow in Fig. 1). This might
be the case when yields of diversified land-use practices are
increased due to synergistic growth effects [22] or reduced
soil degradation [23].

The second line of feedbacks integrate ecological
consequences for the overall society as inter alia opera-
tionalized by the ES concept, which are then economi-
cally valued using methods of welfare economics [24]
(upper, blue dashed line in Fig. 1). This means that
public decision-making will be affected by improved
knowledge on changes in natural and human capital,
but also intrinsic values and/or derived social costs re-
lated to changes in landscape patterns. As a response,
the general public, represented by policy decisions, may
introduce legal regulations or financial incentives/disin-
centives, such as payments for ecosystem services [25]
or may try to influence social norms, e.g. through
education.

Figure 1 reveals that socio-economic criteria in an
economic-ecological system reflect both, drivers and conse-
quences of landscape pattern. Yet, our understanding of how
landscape pattern affect these interactions is still incomplete.
In the following section, we will review how current model-
ling approaches capture these feedback loops.

Fig. 1 Conceptual feedbacks between landscape pattern (i.e. landscape
composition and configuration), ecological consequences and (socio)
economic drivers of decisions analysed in this review. Direct links

captured in ecological-economic models are depicted as solid lines, while
potential responses and feedback loops are depicted as dashed lines
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Brief Summary of Recent Advances
in Ecological-Economic Modelling
Approaches

We classify recent modelling approaches into four main cate-
gories: (i) empirical statistical modelling, (ii) system dynamics
and mechanistic simulation, (iii) LULC optimization models
and (iv) agent-based models, following earlier reviews [3•, 11,
12] (Table 2).

We used two different review methods: first, we screened
for current review articles, which exist for each of the individ-
ual approaches. An overview and critical analysis of recent
methods more specifically referring to landscape pattern is,
however, missing. We therefore refer the reader to up-to-date
reviews for each modelling category, while we focus on meth-
odological approaches which have emerged since 2015. In a
second approach, we screened the ISI Web of Knowledge
using the search algorithm TS = (landscape* AND econ*
AND (forest* OR agri*) AND model AND (config* OR
compos* OR matrix) AND IC Timespan = 2015–2019). We
also replaced the general term Bmodel^ by the specific model
categories (e.g. Boptimization^, Bagent* OR agent-based^
etc.). We only included studies which explicitly incorporate
and investigate landscape pattern, i.e. investigate composition,
configuration or structural landscape elements or deal with
decisions at the farm level, while considering feedbacks at
landscape scale or an element of upscaling to the landscape.
We excluded the topic of urban development and sprawl, more
linked to geographical terrestrial planning than landscape
ecology. The list of studies cited here does not claim complete-
ness; our intention is to give insightful examples.

For each modelling approach, we analyse (i) which
ecological-economic links and feedbacks are considered and
(ii) how methodological aspects are implemented, such as the
measure of landscape pattern used, the consideration of as-
pects of time dynamics and uncertainty, as well as model
complexity (see Table 2). (iii) We analyse how each model
has been linked to other approaches. From these findings, we
will derive six key issues for further research in the last
section.

Empirical Statistical Modelling

Empirical statistical models aim at revealing the correlative
nature of the links between landscape pattern and ecological
and economic drivers/consequences, thus mostly focussing on
the solid arrows in Fig. 1 only. But, they have recently also
considered the upper feedback loop in Fig. 1, by investigating
effects on ES values [26]. Recent studies suggest a generally
positive relationship between heterogeneous landscapes and
ES values [27, 28]. Zhang and Gao [28] showed that the total
ES value was negatively correlated with landscape fragmen-
tation for gas regulation, climate regulation, soil protection

and raw materials, but was positively correlated with water
supply, waste treatment, biodiversity protection and recreation
at the sub-watershed scale. They also showed that patch size is
a critical variable affecting the relationship between landscape
metrics and economic values, which needs to be accounted for
in future research.

While there is growing availability of empirical models
describing ecological consequences, the understanding of
socio-economic drivers of landscape pattern is still weak
(left solid arrow in Fig. 1). Ochoa et al. [29] outline that
empirical studies have focused on explaining income diver-
sification, but few studies have actually used land-use di-
versification at farm levels as a dependent variable. They
found for a landscape in the dry forest of Ecuador that
land-use diversification was driven by subsistence needs
and that financial support and off-farm income may ad-
versely affect landscape heterogeneity. Weigel et al. [30]
found that on-farm diversification of crop portfolios showed
a weak effect on stability of economic returns in southern
Germany. They attribute this finding, which contradicts
economic theory (see [31]), to the strong impact of agricul-
tural subsidies. The finding undermines the importance of
considering both public and private responses in ecological-
economic models.

Hence, empirical-statistical models provide important in-
formation, lately also benefitting from advances in spatial sta-
tistics to predict landscape changes [32]. Yet, they are less
suitable as a stand-alone model to investigate entire systems
and feedback loops as depicted in Fig. 1.

System Dynamics and Simulation

System dynamics and simulation models often build on sta-
tistical correlations and/or physiological processes, to achieve
an improved system understanding of dynamically complex
problems [11]. In the context of landscape patterns, the entire
feedback-loops depicted in Fig. 1 may theoretically be cap-
tured. This model category comprises a wide range of ap-
proaches from semi-quantitative models (e.g. causal loop di-
agram or fuzzy cognitive maps [33]) to quantitative mecha-
nistic simulations, which we will mainly focus on.
Approaches which are of particular appeal for spatial land-
scape simulation are Markov chain models (MCM), state
and transition models (STMs) and cellular automata (CAM)
[34].

MCMs and STMs describe LULC changes using probabil-
ities of change. STMs in the landscape context are based on
the assumption that each, usually discrete, spatial unit of a
landscape can exhibit multiple alternative discrete states (i.e.
LULCs) in discrete time. Transitions between states take place
with a certain probability. Recent developments are for exam-
ple summarized in [35•]. They suggest a STM, in which the
stochastic transition probabilities and transition types may be
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updated during the simulation process [35•]. Recent STMs
also allow for including target areas instead of transition prob-
abilities [35•]. Both are important developments to include
changing economic conditions and political scenarios. For
example, Costanza et al. [36] simulated the spatial landscape
dynamics resulting from different biomass production scenar-
ios to meet bioenergy demands in North Carolina. Exogenous
economic demand was incorporated by using the outcomes of
an economic timber supply model [37] as target areas for the
STM. They found that satisfying bioenergy demands from
forestry rather than biomass crops increased forest area but
decreased ecological quality (i.e. structural diversity) of re-
maining forests.

Similar to MCMs and STMs, CAMs are based on
simulating changes in the state of grids (or cells), but
based on pre-defined rule sets, mostly omitting stochas-
tic processes. Their advantage is that neighbouring cells
are defined in relation to a specified cell, which is im-
portant for implementing economic feedbacks. For ex-
ample, Grashof-Bodkdam et al. [38] assume in their
model that the more farmers invest into green infrastruc-
ture, the reliability of natural pest regulation increases
as compared to conventional use of pesticides. They
find that high social cohesion and conversion costs were
the most important drivers for adoption of landscape
elements.

All three simulation approaches have been coupled with
spatial statistics to predict LULC change. Among them are
CLUE-S [39], CA_MARKOV [40] and DINAMICA EGO
[41] (see [34] for detailed descriptions and comparisons).
These models have a predominantly predictive character,
representing the unidirectional link of economic drivers affect-
ing spatial patterns with consequences for ecological out-
comes. Feedback loops focus on the estimation of economic
values of ES [40] or analysing differences in policy scenarios
implemented through allocation constraints [42] (see upper
dashed lines in Fig. 1).

Process-based simulation models furthermore play an
important role for capturing effects of heterogeneity at
the field and farm level. Such bioeconomic simulations
combine biophysical growth models [21] with economic
simulations, including stochastic and time dynamic as-
pects, such as price fluctuations or extreme weather
events [22, 43]. The results can also be integrated into
optimization approaches (see below) in order to reflect
adaptive management of landholders (see lower dashed
arrow in Fig. 1).

In sum, we found important advances in accounting for
spatial and time dynamics of landscape pattern. Yet, the ma-
jority of simulation models reviewed focused on describing
ecological consequences from few discrete socio-economic
scenarios, rather than a comprehensive modelling of potential
feedbacks.

Normative Land-Use Land-Cover Optimization
Methods

Instead of asking Bwhat if^, LULC optimization models ask
Bwhat should be^, irrespective of what is. In Fig. 1, this per-
spective is depicted by boxes, denoted as Bdesirable pattern^,
representing the question of what would be the optimal land-
scape pattern to fulfil public consumer’s (upper box) and/or
private producer’s needs (lower box). Mathematical program-
ming is applied to estimate such Boptimal^ patterns to satisfy
one or multiple goals. This approach has the advantage that a
solution is searched for within a continuous set of land-use
patterns, rather than pre-defined scenarios as described above.
These approaches are predominantly used in farm-based
bioeconomic modelling [10]. Recently, this field has contrib-
uted to an improved understanding of the risk-reducing effect
of land-use diversification [10], by incorporating portfolio
theory [31]. This theory builds on the statistical effect that if
the fluctuations of the decision criterion (e.g. economic return
or yield) for individual LULCs are not perfectly correlated, a
higher compositional diversity will reduce the standard devi-
ation of the expected mean of this respective criterion. This
risk-reducing effect has been demonstrated for inter alia eco-
nomic returns when mixing different crop types within agri-
cultural farms [44], tree species or stand types in the forest
[45] or combinations of trees and crops within a farm [22, 46,
47] and even for allocation of water resources [48] at a land-
scape scale. This provides economic arguments for higher
degrees of land-use diversification and the integration of struc-
tural elements, such as agroforestry at the farm level [22]
(lower dashed line in Fig. 1). Yet, such analyses are very data
intensive, as the approach is based on the correlations and
covariances between the decision criterion of all LULC con-
sidered. To overcome this drawback, robust optimization ap-
proaches have been suggested [49], which avoid the need for
covariances. Analysis of compositional diversity at the farm
level have been upscaled to the landscape level by using area
weighted estimates of optimized farm portfolios for different
farm types [50] or by optimizing spatially explicit farms by
using the sum of farmer’s utilities [51••].

In order to cover public responses (Fig. 1 upper dashed
line), multi-criteria decision analysis has been coupled with
mathematical programming [52•, 53]. Two main logics are
used to combine multiple objectives into one mathematically
solvable objective: they may be considered as sum or linear
combination of weighted individual goals [54, 55]. This im-
plies that indicators (e.g. ES) are substitutable. Alternatively,
goal programming strives to reduce the distance across each of
the multiple goals to the attainable maximum [56••, 57], thus
avoiding substitution effects. Recently, uncertainty has also
been integrated into multi-objective goal programming fol-
lowing the logic of portfolio theory [56••]. This study demon-
strated that a high Shannon Index of land-uses buffered the
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risks associated with the uncertain provision of multiple ES at
a landscape scale.

A drawback of these approaches is that they are usually not
spatially explicit, with [58] being one of the few exceptions.
Representing spatial dynamics requires hybrid approaches,
which either use a set of rules to distribute optimized propor-
tions of LULC types in a real-world landscape [56] or by
coupling them with CAMs [59]. For analysing spatially ex-
plicit landscape configurations, deriving the Pareto frontier
(also called efficiency or production possibility frontier) has
become popular. It illustrates the landscape pattern that pro-
vides the highest level of one criterion (e.g. ES) for each target
level of the other criterion [60]. The underlying logic does not
allow one criterion to improve, without compromising the
other. It is thus well suited for illustrating trade-offs between
ES [61] and for testing effects of policy scenarios [62]. For
identifying efficient combinations, evolutionary and genetic
algorithms are used [63], and more lately also artificial im-
mune systems and warm intelligence algorithms [52•]. These
algorithms require long computation times and cannot offer an
exact solution. This makes results hard to reproduce and bears
the risk of falsely identifying solutions as optimal, which are
actually suboptimal. This may explain why effects of uncer-
tainty on land-use decisions have hardly been incorporated in
Pareto frontiers to avoid further complexity.

To summarize, optimization approaches are able to consid-
er a continuous set of landscape pattern and consider impor-
tant feedback loops between landscape diversification and
land-use decisions. Yet, they are usually data intensive and
therefore mostly disregard aspects of land-use configuration.
LULC optimization models are closely interlinked with other
models. They build on simulation approaches while often be-
ing a component of ABMs.

Agent-Based Modelling

ABMs have received increased attention since the late 1990s
and are considered particularly useful for analysing
ecological-economic trade-offs at landscape scale [11, 64•,
65, 66]. This is because they account for heterogeneous
decision-makers and interactions between agents, as e.g. dif-
fusion of knowledge, attitudes or beliefs. They also account
for temporal dynamics. Given their rule-based structure,
ABMs allow for adjustments within each time step. They are
thus capable of incorporating complex, non-linear feedback
loops as depicted in Fig. 1. Agents may represent farmers,
households, communities but could also represent governance
forces and institutions [67, 68]. Decisions are usually imple-
mented via rule-based approaches, multivariate regression
[69, 70] but may also involve mathematical programming at
the individual agent’s (farm) level [71••, 72] and Bayesian
networks [67, 73].

In terms of landscape patterns, ABMs consider spa-
tial composition but also configuration. Similar to opti-
mization approaches, they can be made spatially explicit
by coupling simulation runs with GIS information [67].
Yet, we found only few studies which actually focus on
effects on landscape patterns rather than landscape allo-
cation, making its output similar to that of optimization
models [72]. Given that ABMs have a strong basis in
ecological research (where they are often called
individual-based models), they would actually be suit-
able for representing non-linear ecological feedbacks of
landscape patterns, for example related to biodiversity
[3•]. Yet, in a review of ABMs focussing on agricultural
policy evaluation [74], only 2 out of 30 studies used
spatially explicit data, while the majority used random
allocation of agents within space, disregarding aspects
of autocorrelation. This may be attributed to the high
data demand for such models. Gonzalez-Redin et al.
[67] use a spatially explicit ABM to show that the
Wet Tropics of North-East Queensland may be one of
the rare examples, where the current landscape pattern
performed better in providing biodiversity, carbon se-
questration and sugarcane production compared to sce-
narios of land sharing or land sparing. This example
reveals one of the drawbacks of ABMs. Being a simu-
lation model, ABMs depend on pre-defined scenarios,
while the high model complexity and long computation-
al times limit in-depth sensitivity analyses [13•]. While
most models include some components of stochasticity,
uncertainties are seldom incorporated in decision-making
of agents [75].

To reduce the high data needs, recent ABMs build on
newly evolving landscape generators [76••], which pro-
duce simplified, but realistic representations of land-
scape patterns. These can help to systematically vary
initial landscape configurations to explore differences
in the effects of private and public responses. For ex-
ample, Dislich et al. [71••] use the landscape generator
EFForTS-LGraf [77] (based on [78]), for building a vir-
tual landscape, parameterised by data from Sumatra,
Indonesia. Using an ABM, they demonstrate how differ-
ences in farmer ’s productivity affect ecological-
economic trade-offs and related landscape pattern and
how these interact with external price changes.

In sum, ABMs have become a backbone of landscape sci-
ence [13•] and are well suited to integrate different approaches
[13•]. Yet, few of them focus on landscape pattern. To do so,
further refinements will be necessary in terms of the landscape
metrics and ecological-economic interactions incorporated, as
well as an improved consideration of uncertainties in decision-
making. A further challenge is the need to develop and apply
general guidelines to efficiently manage data needs and model
complexity.
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Next Steps to Take in Ecological-Economic
Models to Better Inform Landscape Pattern

Schlüter et al. [11] state that full feedback loops in social-
ecological models are still missing. Our review shows that this
is also true for studies investigating feedbacks with landscape
pattern. To incorporate such feedbacks, the different model-
ling approaches should not be viewed as competing alterna-
tives. Instead, the strengths of each approach (summarized in
Table 2) should be combined in comprehensive nested, mod-
ular and potentially step-wise approaches [12] (Fig. 2). From
our review of recent methodological advances and the already
existing links between models, we derive six priorities for the
design of hybrid ecological-economic models to inform land-
scape pattern. We structure these aspects along the criteria in
Table 2, in which we found that the models differed, and
discuss how some of the challenges could be tackled.

1. Coupling the Bwhat if^ and the Bwhat should be^
perspectives

From our own experience, it is vital for modellers in inter-
disciplinary research groups to jointly identify the modelling
philosophy best suited to support the research question. Not
all links are always necessary to include, while often misun-
derstandings exist concerning the feedback loops that may be
captured by either descriptive, prescriptive or predictive
models. For example, pure simulation approaches alone are
not suitable for identifying Boptimal^ landscape patterns or
management strategies—even though this term is often used
in this context—while LULC optimization is usually not de-
signed for deriving predictions on future development, even
though some positive approaches exist [79].

The advantage of a deterministic solution, following a
prescriptive modelling philosophy is that it is derived from
a continuous set of LULC compositions and configurations,
thus reducing the probability of the actually best option
being left out [80]. LULC optimization may thus form a
basis for participatory approaches to develop a common
understanding of a desirable landscape development. Yet,
using pre-defined scenarios has the advantage that socially
or technically inacceptable scenarios and landscape pattern
are omitted, without having to define additional constraints.
Therefore, Pareto frontiers have become more common to
illustrate efficient, but pre-defined landscape configurations
within participatory approaches [52•]. A large number of
hypothetical scenarios may help to reduce the chances of
leaving out more efficient ones [26]. Hence, in situations
where rather specific policy scenarios are to be compared,
deriving Pareto frontiers from spatial simulation [52•, 61]
and ABM models [81] offers a promising hybrid tool to
inform landscape pattern.

However, to derive compromise solution, which satisfy
multiple needs simultaneously, combining recent advances
in multi-objective goal programming [52•, 56, 82] with spatial
simulation seems promising. This could also be extended to
ABM models, for example by incorporating such multi-
criteria algorithms as the agent’s decision criterion.

Even if pure LULC optimization may result in infeasible
landscape configurations or compositions, the obtained pat-
tern may serve as a benchmark. Exploring the landscape pat-
terns resulting from defining different objectives and/or con-
straints may improve understanding of interactions. Such
Bwhat should be^ results could then be coupled with structur-
ally more complex ABMs and spatial simulation models, to
investigate which parametrisation and thus policies would be
needed to approach the desirable state (Fig. 2).

2. Improved considerations of landscape patterns and related
ecological effects

We excluded many articles, which provided some compo-
nents of LULC patterns as output (particularly aspects of for-
est cover), but did not incorporate any interlinkage of these
patterns with economic-ecological drivers and consequences.
The studies which we did include mostly focussed on aspects
of land-use composition, rather than configuration. This may
be due to the spatial mismatch of advances in landscape ecol-
ogy at landscape scale with economic variables at the
household/field (micro) or the regional/national (macro) econ-
omy scale. But how to overcome this mismatch?

Fig. 2 Conceptual links between models found in this review (grey
arrows). Empirical statistical models and system dynamics are often
incorporated into LULC optimization and agent-based models. We spe-
cifically outline how optimization and agent-based models are strongly
interlinked. Solid black arrows denote already existing links, while
dashed line respond to our suggestion outlined in the text
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Most ecological-economic landscape models implicitly de-
pend on the patchmatrix model to represent ecological effects,
where the landscape is viewed as a mosaic of discrete patches
[15]. More recently graph-based networks and gradient sur-
face models with associated surface metrics have evolved
[15]. Even though analytical ecological-economic approaches
using graph-based models exist [83] and may offer a fruitful
field for future research, we follow the suggestion of Lausch
et al. [32] that the patch matrix model provides a helpful
grounding to link aspects of landscape ecology with human
decision-making. For this purpose, data collection should be
designed in a way that can be linked to discrete patches. This
means that, for instance, discrete spatial units need to be
assigned to specific agents and their household data [71••],
while ecological data should ideally be linked to these units.

Building on the idea of discrete landscape units, it is easier
and maybe also more reliable to only include those ecological
functions/services which are proportional to the number of
units allocated to each LULC and do not depend on configu-
rational aspects. Verhagen et al. [7] found that a majority of ES
mapping studies (65% in their review), which often provide
input for economic-ecological modelling, did not account for
aspects of configuration, with the exception of those consid-
ering nutrient retention, such as the InVESTmodel. But which
are the services for which configurational aspects should be
accounted for? Most obviously, this is the case for biodiversi-
ty, which is rarely included in ecological-economic ABMs
[3•]. Improved incorporation of biodiversity models into
economic-ecological modelling is needed [3•], for example
by coupling them with metacommunity models [84, 85].

So far, biodiversity is mostly captured through its indirect
effect on ecosystem functions and ES [24]. Verhagen et al. [7]
found that there is evidence that landscape configuration af-
fects the ES nutrient retention, pollination, landscape aes-
thetics and sediment retention, while there are mixed effects
for crop production, flood control and pest control and no
evidence for carbon sequestration. Likewise Duarte et al. [6]
found that landscape aggregation (here fragmentation) only
explained provision of the ES, pollination and water quality.
But, all ES considered responded to some aspects of landscape
composition and compositional diversity. This finding rein-
forces the importance of even the simpler landscape metrics.
The differences between predicting ES based on landscape
composition only and accounting for configuration will most
likely decline at larger spatial scales [7]. Hence, even if land-
scape configuration is a desirable aspect to include, more ex-
plicitly exploring aspects of landscape composition and com-
positional diversity will already be an important step forward.
Incorporating aspects of configuration might not always be
necessary for very large landscapes or if not all functions are
of interest.

If configurational aspects are to be investigated, our review
shows that spatial simulation models and ABMs may be most

suitable to account for spatial autocorrelation in both natural
(e.g. effects of fires, desired or undesired species expansion)
and socio-economic processes (e.g. diffusion of knowledge
and perceptions, distance to urban centres). If the research
question calls for LULC optimization models, future studies
could account for configuration through offering (discrete)
LULCs with differing diversification levels of, e.g.
agrobiodiversity and agroforestry to the optimization model.
For example, Knoke et al. [45] optimize the allocation of land
to different forest stand types of varying species richness.
These approaches could be expanded by building on spatial
simulation approaches. For example, Yoshimoto et al. [59] use
a CAM coupled with integer optimization to estimate ideal
control of invasion spread (see also [86]). Such ideas could
also be used to estimate ideal investment decision into agro-
forestry systems. Mixed integer programming could also as-
sist in incorporating patch size and shape (see, e.g. [87] for a
problem of land consolidation).

In order to move landscape pattern in the focus of research,
refining the integration of spatial autocorrelation and land-
scape structures is needed to allow for investigating feedbacks
with consequences for socio-economic decision-making. We
see much potential in the evolving landscape generators [76••]
for more directly including landscape pattern not only for
ABMs, but also all other simulation, optimization and hybrid
approaches. The reduced data needs could allow for important
insights before applying them to real landscapes.

3. Refining the theoretic foundations of decision-making

We found that simple profit maximizing is still often as-
sumed as ex- or implicit driver of land-use decisions (e.g. [62,
71••]). Likewise, Groeneveld et al. [88•] state that a theoretic
background is often lacking in decision rules of ABMs, while
this also applies for other approaches reviewed here. Among
those ABM studies backed by theory, the expected utility
frameworks clearly dominated the simulated decision-
making [88•], followed by theories of Bsatisficing^. This term
was originally created by Herbert A. Simon to express the
combination of the words Bsatisfy^ and Bsuffice^ [89].
BSatisficing^ builds on aspiration levels of the decision-
making to be fulfilled and represents one aspect of Bbounded
rationality .̂ Groeneveld et al. [88•] state that such psycholog-
ical theories are still underrepresented. Kremmydas et al. [74]
suggest to better integrate empirical research on interactions of
decision-maker, as well as interactions of institutions (e.g.
[68]). Yet, empirical calibration of social decision-making
and integration of more complex psychological aspects will
be time and resource intensive, while individual decision-
making will remain a black box. Hence, improved incorpora-
tion of important aspects of learning and interaction may also
be represented by established economic theory, such as using
appropriate, for example risk-averse utility functions [51••]
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and accounting for spatial or temporal autocorrelation among
agents [38]. Future approaches may also build on aspects of
bounded rationality as compared to the often criticised as-
sumption of the rational decision-maker [88•].We suggest that
instead of aiming at perfectly reproducing behaviour, models
may benefit from addressing the inherent and inevitable un-
certainty associated with individual decision-making. Yet, this
does not undermine the importance of incorporating partici-
patory approaches or experiments like role playing games to
involve landowners and stakeholders and to validate, as well
as improve the modelling of decision-making processes [69,
90, 91].

4. Incorporating effects of uncertainty

Groeneveld et al. [88•] found that only 17 out of 134
ABMs reviewed incorporated aspects of uncertainty. Of the
optimization models reviewed by Castro et al. [10], 15 out of
21 studied considered aspects of uncertainty when focusing on
a single objective optimization problem. Hence, uncertainty
has more prominently been incorporated in LULC optimiza-
tion approaches. However, in multi-criteria optimization, ac-
counting for uncertainty is also still an exception [10].

Incorporating aspects of uncertainty for investigating land-
scape patterns is, however, crucial, firstly, as no model will be
able to perfectly reflect human decision-making or the
resulting provision of ES. Secondly, as shown in this review,
incorporating uncertainty in decision-making may lead to
higher landscape diversity, in an attempt to buffer risks
through diversification of income (for the private producer)
and/or ES provision (from the public consumer’s perspective)
[56]. We found that portfolio theory is a powerful tool to
account for both ecological and economic effects of composi-
tional landscape diversity [31]. Hence, this feedback between
landscape pattern and economic or ecological risk could play a
more prominent role in future research, for example also in
ABMs (see, e.g. [75]). To do so, the challenge will be to
incorporate uncertainty into spatial simulation approaches on
the one hand (see, e.g. [92]), and on the other hand allowing
for more complex spatial interactions in existing portfolio-
based LULC optimization. For example, uncertainty is also
integrated in STMs, as they express changes as probability
distributions. A drawback is that the simplified spatial auto-
correlation does usually not allow for deriving covariances
between transitions, which would be necessary to account
for the portfolio effect on returns/ES. The same problem ap-
plies to ABMs. If such information on spatial correlation was
available, uncertainty could be integrated into agent’s
decision-making through risk-averse utility functions. To
avoid the need for these data-intensive correlations, future
hybrid approaches could benefit from recent developments
in robust optimization approaches, which avoid the need for
estimating covariance-matrices [49, 56••, 93].

5. Time dynamics

We find that advances have been made in order to depict
more complex temporal dynamics, particularly in simulation
approaches (e.g. [35•]). Improved incorporation of time dy-
namics, such as adjustments of transition probabilities, prefer-
ences or changing exogenous prices [71••] are important for
including economic feedbacks. Such simulation approaches
could then be combined with dynamic programming [10].
The drawback of deterministic optimization problems used
for agent’s decisions provides that the future is known to the
decision-maker. This means that dynamic effects over the en-
tire observation period are modelled and included in a one-
time decision. Future hybrid models could build on novel
computational models and, e.g. recursive utility functions,
emerging for solving these problems [94].

6. Reducing complexity and data needs

As De Fries et al. [1] put it, Becosystem management
must avoid two traps: falsely assuming a tame solution and
inaction from overwhelming complexity .̂ In this line, ap-
plying the principle of parsimony throughout model design
and interpretation has been suggested [12, 95, 96]. Hybrid
approaches may only gradually add more components or
modules to structural rich models. One example could, for
example, be to include information on land-use diversifi-
cation from empirical modelling as constraints into an
optimization-based portfolio model [29]. This would avoid
the need for capturing complex interactions between indi-
vidual drivers of landscape diversification in simulation
models. We furthermore suggest to couple parsimonious
normative models on landscape patterns with low compu-
tation time (e.g. [56••]), with structurally complex ABMs
informed by landscape generators [71••], through a step-
wise hybrid approach. Simpler normative models could
help to pre-select the major drivers of land-use decisions
and the ecological functions which seem to affect land-
scape patterns from a private producer’s and/or public con-
sumer’s perspective. This could help to focus on crucial
interrelationships and drivers in structurally more complex
ABMs or spatially explicit and dynamic models. LULC
optimization could also be used to first derive a theoreti-
cally desirable land-use pattern. Secondly, a parametriza-
tion could be searched for in the ABM, which approaches
this theoretical landscape pattern (Fig. 2).

Conclusions

Our review shows that landscape patterns are pre-dominantly
considered as an outcome of economic decisions. The ecolog-
ical and economic consequences of different landscape pattern
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are, however, seldom fed back into decision-making (dashed
lines in Fig. 1). We have shown that the few examples which
actually do so are inter alia found for the risk-reducing effect
of compositional diversity, aspects of targeted invasion control
or valuation of ES. The resulting call for hybrid approaches is
not new [3•, 11, 13•], but the recent methodological advances
outlined here may help to improve consideration of spatial and
temporal autocorrelations needed for such research endeav-
ours. We would particularly like to underline the fruitful ex-
change of LULC optimization approaches and ABMs (Fig. 2),
which are often viewed as competing modelling approaches.
Finally, we would like to motivate authors to provide their
model codes and input data in open-access data repositories
(e.g. [71••, 97]) to support the development of such interdis-
ciplinary hybrid approaches.
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