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Abstract The concept of nearness and that nearer things are
more connected is useful in quantifying a variety of geograph-
ical patterns and processes, including ecological connectivity
between geographic locations. In some ecological systems
connectivity does not follow nearness relations defined by
Euclidean distances, so distance must be measured another
way. Least-cost modelling is a technique that can incorporate
traversal costs across a landscape to measure the least-cost
distance between locations as a function of both the distance
travelled and the costs traversed. There has been a significant
increase in the interest and use of least-cost modelling by
ecologists in the last decade. However, perhaps because early
applications of least-cost modelling in ecology tended to cite
the method with reference to geographic information system
software rather than the geographical science literature, ecol-
ogists are not currently making full use of available least-cost
modelling techniques that have continued to develop. This
review aims to describe the concepts of least-cost modelling,
demonstrate current applications of least-cost modelling in
landscape ecology, and to suggest future opportunities by
linking the ecological application of least-cost modelling with
recent geographical science developments from which least-
cost modelling originally developed.
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Introduction

The question of what is near is a core concept of spatial infor-
mation [1], and is emphasised by Tobler’s first law of geogra-
phy that states “everything is related [connected] to everything
else, but near things are more related [connected] than distant
things” [2, p. 236]. This association between nearness and the
degree of relation or connection can be used to quantify a
variety of geographical patterns and processes including
movement between geographic locations [3], which has eco-
logical implications relating to habitat fragmentation [4], in-
vasive species [5, 6], and epidemiology [7, 8].

Measuring nearness to quantify connections and infer
movement potential in ecology began with the theory ofisland
biogeography, which predicted that islands nearer to popula-
tion sources in terms of straight-line Euclidean distance had
greater immigration rates [9]. Later research applied the same
straight-line distance approach to nearness using a patch-
matrix landscape model [10] to demonstrate that patches
nearer sources were more likely to be occupied by a species
[11, 12]. However, the importance of landscape structure on
connectivity and, therefore, movements across landscapes
was soon theorised [13] and demonstrated [14]. So, in some
ecological systems, connectivity, and therefore, movement,
does not follow nearness relations defined in Euclidean space.
However, this does not invalidate Tobler’s first law of geog-
raphy, but rather means that nearness needs to be measured in
geographic space using another approach such as least-cost
distance [3].

Least-cost (or cost-distance) modelling is a quantitative
geographic technique to measure nearness that was developed
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in transport geography where there was a need to be able to
identify optimal routes across landscapes with varying
costs of travel. Using the analogy of light refraction
through different mediums, Warntz [15, 16] provided early
examples of how to calculate a route of least-cost between
locations separated by regions of differing transport costs,
and showed that least-cost routes radiating out from a cen-
tral location could be mapped as a continuous surface. At a
similar time McHarg [17] presented a map overlay ap-
proach that combined geographic information about not
only transport costs, but also social and environmental
costs, to determine a region within which a highway could
be located that balanced positive and negative impacts.
While the work of Warntz [15, 16] and McHarg [17]
established the basic principles of calculating a least-cost
route and incorporating a diversity of geographic costs re-
spectively, the efficient and repeatable application of these
principles was only possible with the adoption of computer
technology. Turner and Miles [18] developed a
computerised approach that combined the principles of
Warntz [15, 16] and McHarg [17] to produce the first ex-
ample of what we would now recognise as least-cost
modelling. Turner and Miles [18] presented a process that
first created a gridded cost-surface that was the sum of
geographical costs multiplied by associated weights and
then used a shortest-path graph theory algorithm to deter-
mine the optimum route between two locations.

Although least-cost modelling was developed in the
context of transport geography, as it addressed the funda-
mental geographical question of what is near, least-cost
modelling was included within the earliest developments
of geographic information system (GIS) software [19]. It
was from GIS software that ecologists discovered least-
cost modelling and were able to demonstrate that least-
cost distance measures of nearness outperformed simpler
Euclidean distance based measures of nearness in
explaining patch occupancy as a function of ecological
connectivity [20, 21]. Given the potential of the approach,
following the first formal introduction of least-cost model-
ling in ecology [22] there has been a significant increase in
the interest and use of least-cost modelling by ecologists.
However, perhaps because early applications of least-cost
modelling in ecology tended to cite the method with refer-
ence to GIS software rather than the geographical science
literature, ecologists are not currently making full use of
available least-cost modelling techniques that have contin-
ued to develop. This review aims to describe the concepts
of least-cost modelling, demonstrate current applications
of least-cost modelling in landscape ecology, and to sug-
gest future opportunities by linking the ecological applica-
tion of least-cost modelling with recent geographical sci-
ence developments from which least-cost modelling origi-
nally developed.

A Least-Cost Algorithm

Least-cost modelling has been described using a variety of
different algorithms that may be implemented in any given
software. Additionally, the terminology used to describe least-
cost modelling is used inconsistently in the literature.
Therefore, any discussion of least-cost modelling needs to be
preceded with a formal definition in order to clarify the points
of discussion. I describe a least-cost algorithm [19, 23] that
from my experience is the most widely applied — although
researchers are advised to ensure that they understand the im-
plementation of least-cost modelling within their own software.

Least-cost modelling is based upon a GIS raster called a
cost-surface (otherwise known by combinations of: cost, fric-
tion, permeability, or resistance and layer, grid, map, raster, or
surface). The values within a cost-surface are used to represent
the per unit distance cost associated with traversing different
parts of a landscape (Fig. 1a). The accumulated cost of tra-
versal is calculated as the product of the cost and distance
traversed. Using an example of minimising the monetary costs
of transport for which least-cost modelling was developed,
moving 100 m through a region with a cost of $10 m™ results
in an accumulated-cost of $1000=$10 m™ x 100 m.

Although least-cost modelling was conceived to minimise
the monetary costs of transportation, costs could also be
expressed in other absolute units such as energy (Jm™") or time
(s m™") so that least-cost modelling results can also be
expressed in absolute units of energy (J) or time (s).
However, due to uncertainty about ecological movement,
and the desire to incorporate multiple ecological processes
such as energy expenditure, behavioural aversion, and mortal-
ity, which affect the choice and success of movement, ecolog-
ical studies tend to use a relative and unitless measure of cost.
Relative unitless costs are still expressed per unit distance, but
result in a unitless accumulated-cost of traversal. For example,
moving 100 m through a region with a relative cost of 10 m™
results in an accumulated-cost of 1000=10 m™ x 100 m. As
most ecological studies use relative unitless measures of cost,
this is the approach used by the illustrative examples within
this review.

To calculate least-cost routes across a cost-surface, most
GIS least-cost modelling approaches convert the raster
cost-surface into a weighted lattice graph for processing.
The centroids of non-null cells become the vertices, and
weighted edges are created between orthogonally and di-
agonally neighbouring vertices (Fig. 1b). The edge weights
(e) are the accumulated-cost between neighbouring verti-
ces (a,b) defined as the product of the mean cost value (¢)
and the Euclidean distance (d) between the centroids of the
neighbouring cells:

cq.+¢p
2

€qb = X da,b (1)
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Fig. 1 An example of the least-
cost modelling algorithm. (a) A
hypothetical cost-surface based
on relative costs and a set of
locations of interest. If the cost-
surface is ignored then location A
is equally connected to locations
B and C and the A-B and A-C
distances are both 16 km. (b)
Result of converting the raster
cost-surface into a lattice graph.
Using A as a source location,
Dijkstra’s Algorithm is applied to
create a Dijkstra tree that finds the
shortest-paths through the graph,
and is shown here when the
accumulated-cost has reached (c¢)
10,000, (d) 60,000, and (e) the
whole landscape. (f) The results
of Dijkstra’s Algorithm are then
converted into a raster least-cost
surface and vector least-cost
paths. Having incorporated the
information from the cost-surface
locations B and C are not equally
connected to A as the least-cost
distance for A-B is nearly eight
times larger than the least-cost
distance for A-C
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With this weighted lattice graph data structure established,
the accumulated-cost for a path between any two vertices on
the graph can be measured as the sum of the edge weights
along that path. However, least-cost modelling uses graph
theory shortest-path algorithms such as Dijkstra’s Algorithm
[24] to find a least-cost distance (Icd) between a start vertex (i)
and an end vertex (j) that is the minimum possible sum of edge
weights between vertices along the shortest-path:

J-1

lCdiJ' = min E €iit+1
i=1

(2)

Dijkstra’s Algorithm works in an iterative vertex by vertex
spreading manner [25] and results in a Dijkstra tree that
branches out one vertex at a time to find the shortest paths
from the source vertex, or tree root, to the other vertices
(Fig. 1c—e). The accumulated sum of edge weights leading
to each vertex of the Dijkstra tree are converted into a raster
least-cost (or cost-distance, accumulated cost) surface, and a

@ Springer

S I ST TNNNNTE

Xl
X

[XIX
1
a2

XIX]
XX

XIX]

&
ya

25
S

KX

)

IXI
1,

[>

o,‘c’o
 §
<12

pas
&

X1

Vas
v

>

Va

05050
V}AV‘V
X
<

VA
v
yas

0
X

v
a0

<[>

3 .......A‘.’

o
<12

X

Pas
v

<IXIX
5

v
pas

35
0

v
yas

pas

5
5

v

<L

4
SIS

VA

XIS

SO
NIXIX

v

%
'A‘.’A‘...'..'
X

L2 0a0
030

e

X
0%
5

X
ANV
X

& SRR © 0

XD
&

S

pa
v

5
0

29
Xl
V.

XIXIXIX
CIXIXIXIX

$

0
0
5
S

Pa
&

VA

VA
v

0
Y
<12

XIXIX
X1
X1

Y
5
>

>
[

<P
<5

b X0 0 OO e o

SIS
A
7
2N
<X

0
2N
S

&
Va
v

<1

15
X1
S

>
AT
5

XX
X

<1

050

<I>
20

v
Vas
v

Ve
<>

VA
AV

IXIX
IXID

VA
Z

<>

I
<l

Vas
vz

Vas
v

Va
&
A
&

s
XXX
KIXIX LS

v
VA
v

v

<1

-'g-

I

SIX

0
S

SIXI
IR

I
5

<L

v

AAA:A
HIXIKIXIX

<1

I

Va
SRR

I

Slesiestz
4.? 4.5

[

P
&

&
1>

>

25
v

val
X
[

e s e S0 00
<1

»:
<1

X
v

X
IXI>

v

Ve
&

Ve
&

Va
v/

<IX
v

A
$

<1

oI IO 00 a0V To o

XIKIXD
XXX

0
QIS

<1
§
X1

<[

&
.A‘.'

=

(b)

Lattice graph
vertex
(o)

Lattice graph
edge

(d
Dijkstra tree
vertices

377463
131829
73314
26314
17314

0
Dijkstra tree
edges

N
Shortest-path
N
(f)
Least-cost path
r Least-cost
distance
Least-cost surface
377463
131829
73314
26314
17314
0

Dijkstra tree branch can be converted into a vector least-cost
path (Fig. 1f). The least-cost distances associated with these
outputs are a measure of nearness that optimises the Euclidean
distance travelled and the costs traversed, while the least-cost
path shows the route of maximum efficiency from the source
cell to any other individual end cell. As the least-cost distances
incorporate landscape costs to movement (Fig. 1f), they are
able to differentiate the nearness between locations that might
otherwise be considered equally near if the landscape costs

were ignored (Fig. 1a).
It is important to note that while least-cost paths can be used

to help visualise the results of least-cost modelling, some eco-
logical studies have used the length of a least-cost path in me-
tres as a measure of connectivity. However, simulations have
demonstrated that least-cost path length can be a misleading
measure of connectivity in some landscapes, and that least-
cost distances should always be used as a connectivity measure,
with least-cost paths simply being a way to evaluate visually the
assumptions underlying the least-cost modelling [26].
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Cost-Surfaces
Cost-Surface Construction

The basic construct of a cost-surface has not changed since its
inception and involves the summation of a series of raster map
layers that are each multiplied by a weighting factor [18]. A
cost-surface can be defined using a local map algebra approach
[27] for which the cost (c) is the sum of a set of raster landscape
features (S) for which each raster with values ranging from 0-1
(r) has been multiplied by its associated weight (w,.):

c:l—|—Zr><wr (3)

reS

The use of Eq. 3 has a strong theoretical foundation. In the
absence of any input raster landscape features, or when all
weights are equal to zero, the cost-surface will have a uniform
value of one. This results in the accumulated cost between
neighbouring cells (Eq. 1) equalling the Euclidean distance

Fig. 2 (a) Construction of a cost- (a)
surface through the combination
of a set of raster layers with
associated weights. Such cost-
surface construction assumes all
raster layers have been rescaled to
have values ranging from 0-1 in
order to be comparable. This
rescaling can be achieved using 1.0
either (b) a local function that is l 0.8
dependant only on the value for 0.6
each raster cell or (c) a spatial u 0.4
function that incorporates 0.2
distance 0.0

Binary cost

Continuous
cost

(b)

Elevation
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2340
1960

1580
1200

and least-cost modelling measuring distance in terms of
Euclidean distances.

Of course, for raster landscape features to be combined in
this way they need to be in comparable units. However, this is
problematic for ecological studies as the cost to traverse differ-
ent landscape features will be measured in a variety of different
units, for example traffic volume to traverse roads, elevation to
traverse mountains, or tree density to traverse forests. Therefore,
to integrate this wide range of landscape features, the values for
each raster need to be initially rescaled to a common range. As
some landscape features are binary in form, being either present
or absent, the rescaling for continuous landscape features should
range from 0—1 in order to be comparable. For both binary and
continuous landscape features, values of zero indicate where
there is no cost, and values of one indicate where there is a
maximum cost for that particular landscape feature. Rescaling
values to range from 0—1 then means that the weights applied
are comparable as a landscape feature with a weight twice that
of another will have a cost that is twice that of another (Fig. 2a).
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The multiplicative application of weights to raster land-
scape features in Eq. 1 assumes a linear function between an
increase in weight and an increase in cost, but this may not
always be the case as costs may increase exponentially or to an
asymptote. Therefore, the rescaling of raster values to range
0-1 also provides an opportunity to incorporate more ecolog-
ical realism into the cost-surface, as the rescaling can take a
variety of forms that could be either local [28, 29] or spatial
[30, 31]. For example, traversal cost might be assumed to
increase with elevation, but only up to a certain point, such
as the treeline, beyond which traversal costs might remain
constant (Fig. 2b). Or for a forest organism, the traversal cost
could be modelled as a function of distance from forest edge,
with costs rapidly increasing for locations at or beyond the
forest’s edge (Fig. 2¢).

The inclusion of linear features in a raster cost-surface
needs particular care. As least-cost modelling establishes di-
agonal links between cells (Fig. 1b), in order for linear features
to act as obstacles to movement within the cost-surface, the
cells constituting a linear feature must be connected orthogo-
nally. Solutions to ensure that this occurs include using very
high resolution rasters [22], applying a post-rasterisation gap
filling algorithm [32], and using rasterisation techniques that
ensure orthogonality of the rasterised linear features [33].
Representing a linear feature using a raster data structure can
over-estimate traversal costs as the linear feature will become

Fig. 3 The effects of changing
scale on least-cost modelling.
Changing grain size always
produces different least-cost
paths, as shown by the least-cost
paths A-B and A-C. By
comparison, changes in extent
size only affect least-cost paths
that could be shorter. For example
least-cost path A-C is not affected
by changes in extent at either
grain size, but least-cost path A-B
is affected by changes in extent at
both grain sizes as the increase in
extent enables shorter least-cost
paths

Locations of
O interest

Cost-surface (m™)

. 1 (forest)

10 (grass)

100 (rock)

Null (water)
Least-cost path

| r Least-cost
distance

is
o
(5]
)
=
(72}
@
1
o
=

@ Springer

at least one cell wide in the cost-surface, but may in fact be
much narrower than one cell in reality. Therefore, another
option is to use a vector-based approach that applies the cost
of a linear feature to the graph edges by finding those edges
that have a spatial intersection of cell links with linear features
[34].

The choice of scale, in terms of both grain and extent,
has fundamental effects on spatial analyses [35] including
least-cost modelling (Fig. 3). To avoid issues associated
with extent, researchers should ensure a suitably large
buffer region around the locations of interest. If all the
least-cost distances between locations of interest are
smaller than the least-cost distances from the locations
of interest to the edge of the cost-surface, then the least-
cost modelling will be free from any effects of increasing
extent further. The issue of grain is more problematic, as
the appropriate grain will be species and landscape spe-
cific, and at present there are no guidelines available to
guide grain selection for least-cost modelling. Given this
uncertainty, researchers should probably try to use the
smallest possible grain size supported by their input data,
as simulations have shown that smaller grains produce
better results [36]. Using the smallest grain supported by
the input data will also avoid the issue of choosing a
method of data aggregation that will also influence least-
cost modelling results [37].

Increasing extent

10 km

10 km
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Cost-Surface Selection

Selecting an ecologically meaningful cost-surface is by far the
most challenging aspect for ecological applications of least-
cost modelling. Given the difficulties in studying organism
movement, ecological least-cost modelling has most often
been conducted solely on the basis of expert opinion [38e].
Such expert opinion is derived either by the researchers within
a study group [27, 39—41] or can be elicited from a wider
group using more formal elicitation approaches [39, 42].
Expert opinion can be applied either for specific species or
by creating generic focal species that have movement charac-
teristics of particular interest [43, 44].

Clearly, expert opinion approaches have limitations and
potential biases, so where possible least-cost modelling should
involve some form of ecological connectivity data. Currently,
the most common way of incorporating connectivity data into
an ecological least-cost modelling study is to use expert opin-
ion to establish a set of candidate cost-surfaces, and then use
landscape genetics to assess the quality of the candidate cost-
surfaces [38¢¢]. Landscape genetics uses the genetic distance
between populations or individuals as an estimate of connec-
tivity between those locations [45]. The landscape genetics
approach has become a very popular method for estimating
connectivity, especially over large spatial extents, as genetic
distances can be measured from an existing population, which
avoids the need to record individual dispersal events that can
be rare or difficult to observe. Genetic distances can then be
compared to least-cost distances from a variety of cost-
surfaces to identify those cost-surfaces that produce least-
cost distances that are a better fit to the landscape genetic data
[46].

A variety of statistical techniques have been used to com-
pare genetic and least-cost distances. Initially these compari-
sons were done using pair-wise genetic and least-cost distance
matrices and Mantel tests [47]. However, there are concerns
about the suitability of Mantel tests for this application [48]
and other approaches based on spatial networks and informa-
tion criterion have since been developed [28, 49]. However, as
simulations have demonstrated that there is unlikely to be any
one best statistical method for landscape genetics studies [50],
researchers should carefully choose and justify their approach
based on their specific data requirements and study objectives.
An interesting alternative to conventional statistical ap-
proaches that has been suggested is to use machine learning
techniques that could iteratively refine a cost-surface [46].
Machine learning techniques are designed to develop predic-
tive models for complex and non-linear data [51] and provide
an alternative to traditional statistical approaches used in land-
scape genetics that may be sensitive to violations of assump-
tions of independence, normality, and linearity [50]. Given the
importance of machine learning in other fields of research
[51], the application of machine learning methods for least-

cost modelling is an opportunity that would benefit from fur-
ther research.

While landscape genetics is a popular approach, genetic
distances are not necessarily an ideal measure of connectivity
in all ecological applications, as genetic distances are depen-
dent not only on the movement process, but also on other
factors such as survival and reproduction [46]. So while land-
scape genetics is currently the predominant quantitative ap-
proach applied by ecologists to select a cost-surface, there are
other approaches that use occurrence, mark-recapture, and
pathway movement data that in some circumstances may be
more suitable for cost-surface selection [38e].

Given the complexities associated with linking field data
and least-cost models, when developing new methods for
cost-surface selection, ecologists may benefit from adopting
a virtual ecology approach that uses simulation models to
rigorously evaluate sampling schemes and analytical methods
against a known truth [52¢]. Using this approach ecological
patterns could be created that are absolutely known to be a
direct result of connectivity as defined by a hypothetical cost-
surface. Methodologies that could be applied to collect and
analyse empirical field data can then be simulated to measure
the ecological patterns and to estimate what the underlying
cost-surface is expected to be. Using this kind of controlled
modelling approach it should be possible to identify methods
that are capable of selecting reliable cost-surfaces. Virtual
ecologies from such simulations are now commonly used in
developing methodologies for species distribution modelling
[53] and have started to be applied to investigate methods
within landscape genetics [48, 50].

Ecological Applications of Least-Cost Modelling
Outputs

Least-Cost Networks

Some landscapes can be viewed as a network of inter-
connected habitat patches. These ecological networks can be
represented by a landscape graph in which vertices represent
habitat patches, and edges represent connections between
neighbouring patches [54]. The landscape graph edges that
represent the connections between patches can be weighted
using least-cost distances to identify those patches that are
more or less connected [40]. The resulting least-cost network
(Fig. 4a), can then be analysed using a vast array of graph
theory approaches to measure connectivity properties within
the landscape graph [55], which can then be compared with
ecological patterns such as species diversity or population
persistence. Another approach to least-cost networks is to
specify least-cost distances that represent limits to movement
potential for processes such as foraging or dispersal and to
buffer the habitat patches by these least-cost distances [43].
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Fig. 4 Some examples of (a)
ecological applications of least-
cost modelling. (a) The cost-
surface used in all the examples,
plus a least-cost network of least-
cost paths between neighbouring
locations of interest. (b) A least-
cost corridor and least-cost path
between locations D and G. (¢)
Probability density functions
fitted to dispersal observations
measured in least-cost distances
can be used to create dispersal
distance and dispersal location
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This enables researchers to see not only which patches are
connected, but also what parts of the landscape are enabling
those connections.

Least-Cost Corridors

The use of corridors as a means to promote movement be-
tween isolated locations has a long-standing interest in ecolo-
gy [56]. Some ecological studies have defined corridors sim-
ply from a least-cost path or by buffering a least-cost path by
some Euclidean distance [57]. However, this approach ignores
the fact that there are likely to be many alternative least-cost
paths with very similar least-cost distances. By creating least-
cost surfaces for two locations and then adding these together
(Fig. 4b) it is possible to identify the combined least-cost
distance to both locations [19], which can be interpreted as a
least-cost corridor [44]. However, while least-cost modelling
is widely applied as part of corridor planning efforts, there is
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currently no consensus about how to use a least-cost corridor
to delineate reliably a corridor of suitable width [57].

While least-cost corridors identify areas important for
maintaining connectivity, methods that can identify locations
whose restoration would improve landscape connectivity have
also been developed [58]. On a similar theme, least-cost
modelling approaches to roadway planning that incorporate
the possibility of using bridges and tunnels to reduce traversal
costs at key locations have been proposed [59]. Given the
increasing use of wildlife under- and over-passes to reduce
the costs of crossing roads, such a method could be adapted
for an ecological context to identify locations suitable for eco-
logical engineering projects to improve landscape
connectivity.

Least-Cost Kernels

A dispersal distance kernel is a probability density function
that is fitted to observations of dispersal in terms of Euclidean
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distance and can be used to describe the probability of an
organism dispersing a given Euclidean distance [60].
Dispersal distance kernels form a fundamental component of
many ecological studies, as they enable ecologists to trans-
form measures of nearness in terms of Euclidean distance into
ecologically meaningful connection probabilities. For the ap-
plication of least-cost modelling in ecology, ecologists should
ideally use least-cost kernels that would enable measures of
nearness in terms of least-cost distance to be also turned into
ecologically meaningful connection probabilities. While this
has rarely been done, all that is required is the same start and
end points of dispersal events that are used to define a dispers-
al distance kernel, but with the dispersal event measured in
terms of the least-cost distances between the start and end
points of dispersal events [28, 61]. A probability density func-
tion can then be fitted to the least-cost distance observations to
define a dispersal least-cost distance kernel (Fig. 4c).

Dispersal can also be described in terms of a dispersal
location kernel that is the distribution of post-dispersal loca-
tions relative to the starting location [60]. In a least-cost con-
text this can be defined as an inverted cumulative distribution
function developed from the same set of least-cost distance
dispersal observations (Fig. 4c). Then, when applying least-
cost modelling to a given location, the least-cost distances
from a given location can be rescaled to show the probability
that a dispersal event will finish at a given point on the land-
scape (Fig. 4d).

Least-Cost Kernel Density Estimation

Ecologists often use kernel density estimation to turn point
occurrence data into a continuous probability or density sur-
face, and traditionally this has been done using spatial
weighting defined by Euclidean distances [62]. But if a
least-cost kernel can be established, then the spatial weighting
could be defined by least-cost distances. In an ecological con-
nectivity context, this least-cost kernel density estimation ap-
proach was developed to predict areas of importance for dis-
persal from known dispersal locations such as vernal pools
[41], but other important locations such as nest or den sites
could equally be used. By fitting a least-cost kernel around
each location, the kernels can then be added together to pro-
duce a map that shows areas that are more likely to receive
dispersers from those locations (Fig. 4¢)

Least-Cost Catchment Area Isolation

The previous least-cost ecological applications require specif-
ic locations, such as habitat patches or protected areas, for
which movement between the locations is of interest.
However, in some landscapes there will be no discrete loca-
tions, and instead landscape characteristics such as isolation
must be measured as a continuum across the landscape.

Assuming movement can be described in terms of a least-
cost kernel, then a catchment area that is within the limits of
movement can be generated for any cell of a cost-surface. By
iteratively generating a catchment for each cell in the cost-
surface, the catchment area for each cell can then be visualised
to produce a continuous map of intra-landscape isolation
(Fig. 4f). This approach was developed in the context of inva-
sive species and zoonotic diseases, where lower levels of iso-
lation would indicate higher risks [5, 25, 27, 63]. But catch-
ment areas could also be used to identify sites with lower
levels of isolation that may be more suitable for ecological
restoration or species reintroduction.

Ecological Opportunities from Least-Cost Modelling
Developments

Topographic Distance

Early implementations of least-cost modelling recognised that
topography will affect the distance between cells and that
changes in elevation should also be taken into account [19].
This can be done by calculating the edge weight (e) of any
neighbouring cells (a and b) as the mean cost value (c) of the
neighbouring cells multiplied by the topographic distance that
is a function of the Euclidean distance (d) and elevational
distance (z) between the centroids of the neighbouring cells:

# X \/da’bz X Za,bz (4)

Topographic distance has rarely been used in ecological
applications of least-cost modelling [64], but in landscapes
where elevation covers a large range the least-cost distances
incorporating topographic distance (Fig. 5b) will differ from
least-cost distances using Euclidean distances (Fig. 5a).
Therefore, ecologists should consider the potential implica-
tions of topographic distances in their least-cost modelling
analyses.

€ab =

Anisotropic Least-Cost Distances

Thus far, least-cost modelling has been described as an isotro-
pic process. This means that the direction is irrelevant and the
cost to traverse a cell is the same regardless of the direction of
traversal. In contrast, under anisotropic conditions direction of
traversal becomes important, with the traversal cost for a given
cell varying depending on the direction of traversal. The im-
portance of anisotropic conditions were noted during the in-
ception of the least-cost modelling idea [16], and while this
has received attention in transport geography [59, 65], it has
not been incorporated into ecological applications.
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Fig. 5 Comparisons of ()
extensions to (a) the basic least-
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In an ecological context, the potential for anisotropic con-
ditions is perhaps best viewed through the concept of energy
landscapes [66¢]. Viewing a landscape in terms of energy rec-
ognises that vertical movement such as moving uphill or
downhill or horizontal movement such as moving upwind or
downwind is direction dependent, and hence anisotropic.
Zhan et al. [67] described an approach to incorporate vertical
and horizontal anisotropy into least-cost modelling through
the addition of further vertical (v) and horizontal (#) weighting
factors into the edge weighting function:

Cq+Cp /
. > X da,b2 X Za,b2 X Vap X ha,b

The vertical weighting factor is derived from the combina-
tion of the slope of a vertical gradient field and a rescaling
function that describes how traversal costs and hence least-
cost distances are affected by movement with or against the
vertical gradient (Fig. 5¢). The vertical rescaling function can
take any form, but will always be equal to one when the slope

(5)

€ah =
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is zero so that when the vertical gradient is flat there is no
effect on the edge weight. The horizontal weighting factor is
derived from the combination of a horizontal flow field and a
rescaling function of some form that will reduce traversal
costs and hence least-cost distances in directions aligned with
the horizontal flow, and increase costs and hence least-cost
distances in directions aligned against the horizontal flow
(Fig. 5d). Given the importance of vertical and horizontal
forcing factors on organism movement [66¢], incorporating
anisotropy into least-cost modelling has the potential to make
applications of the technique far more ecologically
meaningful.

Horizontal weighting factor

— T

0 27 90 180
Direction relative to wind

Raster Data Structure Induced Bias

While least-cost modelling was first considered using
Warntz’s [15, 16] vector data structure that applied the analo-
gy of refracting light, the raster data structure and graph theory
shortest-path algorithm approach developed by Turner and
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Miles [18] has become the predominant least-cost model-
ling approach used today. This is because the raster ap-
proach is computationally much more efficient than the
exact vector approach, though it is important to note that
the raster approach can only approximate the true least-
cost distance due to biases created by the raster data struc-
ture itself [68]. The regular shape of the weighted lattice
graph created from the raster cost-surface (Fig. 1b) results
in zigzagging least-cost paths (Fig. le) that are both elon-
gated and deviated from the true least-cost paths [23].
This bias could result in misleading measures of connec-
tivity, but is really only evident when least-cost modelling
is applied on a uniform cost-surface when octagonal pat-
terns of spread emerge (Fig. 6). Ecologists should also be
aware that some least-cost modelling software provide the
option to connect only orthogonal neighbouring cells,
rather than diagonally neighbouring cells. However, with
only orthogonal neighbours connected, the bias becomes
much worse [23, 68, 69] and so should be avoided to
minimise the risk of misrepresenting distances.

While this grid-induced bias was noted in the first review of
ecological applications of least-cost modelling [22], it has
been largely ignored in ecological studies. However, various
solutions have been proposed by geographic information sci-
entists. Increasing the number of links between cells to be-
yond the usual eight orthogonal and diagonal cells produces
less biased results [68—70], but requires greater computation
times, and results in avoiding single cell width linear features.
More complex algorithms that can adjust for angular devia-
tions on a regular grid have also been developed [71, 72], but
these are also computationally more demanding. A final op-
tion is to convert a raster cost-surface into an irregular data
structure to ameliorate the bias [73—76]. A comparison of
some of these approaches has indicated that while the effect
of grid bias can be reduced, there is unlikely to be an optimum
universal solution as the results are dependent on landscape
structure [77].

(a)
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least-cost surface
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Fig. 6 Examples of the raster induced octagonal bias in least-cost
modelling for (a) isotropic conditions, and (b) anisotropic conditions
that are the same as those shown in Fig. 5d. In both cases a uniform

Least-Cost Wide Paths

A potential problem of least-cost modelling is that owing to
the lattice graph structure used to represent the cost-surface
(Fig. 1b), the shortest-path graph algorithm that measures the
least-cost distances are never more than one cell wide
(Fig. le), and as such can pass just as easily through a gap
one cell wide as a gap that is many cells wide. In an ecological
context this means that there is the potential for least-cost
distances to be an overly optimistic view of connectivity.
When working with invasive species, under a precautionary
principle where connectivity is viewed negatively, it would
perhaps be better to overestimate the degree of connectivity
than underestimate it in order to ensure that all at risk areas are
identified. But clearly when attempting to maintain connectiv-
ity for conservation applications this could be problematic.
Therefore, ecologists may be interested in investigating new
least-cost modelling approaches that are designed to find wide
least-cost paths [78, 79] that may be useful in avoiding issues
with least-cost paths being identified through too ecologically
narrow landscape elements.

Hierarchical Least-Cost Modelling

Landscapes are inherently hierarchical, with interactions be-
tween different hierarchical levels affecting overall landscape
processes [80]. In the context of movement, different hierar-
chical levels could represent different types of movement.
Perhaps the clearest ecological example of hierarchical move-
ment is invasive species for which dispersal is a combination
of organism dispersal and human-mediated dispersal via trans-
portation [81], but a similar analogy could be drawn for par-
asites or diseases that may disperse via a variety of hosts.
When movement is likely to result from a hierarchy of differ-
ent, but inter-connected types of movement, this needs to be
recognised within least-cost modelling. There have been ef-
forts to combine different modes of movement to conduct
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cost-surface with a cost of 1 m ' has been used so that the least-cost
distances should equate to Euclidean distances
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least-cost modelling in a hierarchical context [82] and even in
specifically ecological contexts [25]. In both examples least-
cost modelling is applied using a hierarchical graph that inte-
grates information from a cost-surface and a transportation
network. When using least-cost modelling to measure near-
ness between locations to infer ecological connectivity and
movement, the potential effect of hierarchical interactions
could be significant, and this is an area of research that would
benefit from further development.

Computational Efficiency for Uncertainty and Sensitivity
Analyses

Cost-surfaces will always be somewhat uncertain, and the
need for sensitivity analyses to assess least-cost modelling
results was recognised during initial development of the meth-
od [18, 83]. Considering uncertainty is particularly important
for ecological applications of least-cost modelling, as the cost-
surface uncertainties will be much larger than in other appli-
cations like transport geography. However, ecological appli-
cations have in general included little or no sensitivity analy-
sis, and are often based on expert opinion approaches that will
have high levels of uncertainty [38¢, 57]. Ecological studies
that have incorporated uncertainty and sensitivity analyses
have all done so through repetitive least-cost modelling that
varies factors such as costs, scale, and graph structure [28, 39,
40, 44, 84-87]. Therefore, beyond the ability of the analyst to
program these repetitive analyses, the major obstacle to
conducting detailed uncertainty and sensitivity analyses is
the computational efficiency of the least-cost modelling.

One approach to reducing computation time is simply to
use more powerful forms of computing such as distributed
computing [88, 89]. An alternative is to recognise that least-
cost modelling time is primarily a function of the number of
cells in the cost-surface being processed and the least-cost
path algorithm being used [83].

The number of cells in a cost-surface can be reduced by
making the extent smaller or the grain larger [23], although
both these approaches may have scaling implications (Fig. 3).
An alternative approach is to transform the cost-surface into a
sparser irregular network data structure using spatial adaptive
aggregation [23], quadtrees [68], or triangulated irregular net-
works [75, 76]. These approaches require initial computation
time to reduce the complexity of the cost-surface, but if suffi-
cient redundant detail can be removed from the cost-surface,
then overall reductions in computation time can be achieved
[75, 76].

The least-cost modelling approach was defined earlier with
reference to Dijkstra’s Algorithm [24]. However, there are in
fact a range of algorithms, and variations within those algo-
rithms, that can be used to calculate least-cost paths with vary-
ing degrees of success depending on the particular analytical
requirements and data structure of an analysis [90]. In
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addition, although heuristic algorithms may not guarantee that
an exact least-cost path is found, they have the potential to
reduce computation time [91]. Given that in ecological appli-
cations no exact least-cost path is likely to exist, it may be
beneficial to sacrifice some computational exactness in order
to enable greater examination of uncertainty and sensitivity.

Given the high levels of uncertainty present in ecological
applications, ecologists should consider leveraging some of
these computational approaches to facilitate more robust un-
certainty and sensitivity analyses. Having quantified the un-
certainty and sensitivity of a least-cost modelling analysis, it is
also important to be able to visualise this information in a
manner that is useful for the purpose of decision-making, as
has been argued for species distribution modelling [92]. There
are challenges in visualising uncertainty [93], but this has been
done for results from least-cost modelling [40, 63].

Conclusion

While least-cost modelling was initially developed in the con-
text of transportation geography, there are obvious parallels in
an ecological context. Ecologically, higher costs can be used
to represent species-specific geographical factors that impede
movement via greater mortality risk, energy expenditure, or
behavioural aversion. With this perspective, least-cost model-
ling can be used to produce measures of nearness in terms of
least-cost distance that estimate ecological connectivity
resulting from the movement process. Such an approach has
potential relevance in reference to quantifying the direct trans-
fer costs within a broader dispersal ecology framework [94] or
the external factors that influence navigation within the move-
ment ecology framework [95]. Of course, the success of such
an endeavour is dependent on the least-cost model that is used.
In particular, the conventional isotropic approach that is most
commonly used is probably too simplistic a view of move-
ment through a landscape for many organisms, given how
energy use during animal movement is often anisotropic
[66°]. Therefore, ecologists should endeavour to incorporate
findings from the dispersal ecology [94] and movement ecol-
ogy [95] frameworks by making better use of recent least-cost
modelling methodological developments to create least-cost
models that are as ecologically meaningful as possible.

While recommending that ecologists endeavour to make
more ecologically meaningful least-cost models, it is worth
noting that many of the more novel least-cost modelling adap-
tions that could enable this are not integrated into all GIS
software as standard. Therefore, to take advantage of more
novel methods, analysts may need to use a variety of software
programs, or may have to develop software programs of their
own which is possible using high-level programming lan-
guages such as Python and R.
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It is also worth noting that least-cost modelling is not the
only method that can use a cost-surface as the basis of graph
theoretic measures of connectivity. Methods such as circuit
theory [96] and network flow [97, 98] have also been present-
ed. Like least-cost modelling, network flow also finds an op-
timal connectivity solution, but, unlike least-cost modelling,
network flow takes into account multiple paths through a
graph. In direct contrast to least-cost modelling, which as-
sumes an organism has complete knowledge of a landscape
and will select the most optimal route, circuit theory assumes
an organism has no knowledge of the landscape and will be-
have as a random walker. So least-cost modelling, network
flow, and circuit theory exist along a spectrum of different
connectivity modelling representations and assumptions. As
none of the methods will provide a perfect explanation of
ecologically connectivity, this raises the question of how to
choose between these methods.

Ultimately, the decision about which method to use needs
to be based on the individual requirements of a connectivity
modelling study, but there are situations in which least-cost
modelling may be preferential. Because least-cost modelling
is optimistic about connectivity it might be a better methodol-
ogy for measuring connectivity for invasive species and
spread of diseases, as under a precautionary principle where
connectivity is viewed negatively, it would be better to over-
estimate the degree of connectivity than under-predict it. Also,
given the recommendations to explicitly consider uncertainty,
a technique is required that is computationally efficient
enough to assess outcomes under different conditions. With
this requirement in mind, least-cost modelling may provide a
more reasonable balance between theoretical complexity and
computational simplicity. Finally, as network flow and circuit
theory are both one-to-one connectivity methods that measure
connectivity between specific source and sink locations, they
cannot currently be used to define outputs such dispersal ker-
nels (Fig. 4d) for kernel density estimation (Fig. 4¢) or catch-
ment area (Fig. 4f) maps. In contrast, least-cost modelling as a
one-to-all connectivity method that measures connectivity
outwards from a single source location is required.
Therefore, even with the availability of more recent develop-
ments in connectivity modelling in landscape ecology, least-
cost modelling is likely to be used extensively within future
landscape ecology research. Hopefully this review has
highlighted useful least-cost modelling connections between
landscape ecology and geographical information science and
will encourage ecologists to make use of recent developments
that have potential ecological applications.
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