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Abstract
Purpose of Review  Tumors consist of heterogeneous cell types, which present challenges to effective therapeutics. This 
review intends to explore existing mathematical models to better understand the influence of these different types of cells 
on tumor growth and survival.
Recent Findings  Cancer stem cells are often the instigator of tumor development and drug resistance. The replenishment of 
the stem cells by other stem cells and progenitor cells impacts the efficacy of treatments. Multiple treatments are required 
to attack the multiple tumor cell types and induce remission. Mathematical models can be used to explore the behavior of 
these heterogeneous tumor cells, as well as predict the long-term efficacy of different therapies.
Summary  Cell division plays an integral role in the development of tumors. While mathematical models are generally robust, 
they must be updated frequently to accommodate the brisk pace of biological advances. Usable data to inform the models is 
scarce calling for better collaboration between these sciences to help advance the field of cancer therapeutics.
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Introduction

After hypothesizing the existence of cancer stem cells 
(CSCs) in solid tumors in 2001, biomedical researchers 
quickly established the presence of these self-renewing cells 
[1–3]. Since then, the cancer stem cell hypothesis has been 
supported in multiple cancer types [4–9] and further refined 
to explain the role of CSCs in tumor growth and character-
istics that could lead to better treatment options (reviewed 

in [10]). The last decade has been largely spent determining 
specific biomarkers for CSC targeting [11, 12], finally lead-
ing to testing therapeutics in the past 4 years [13–16].

Rhodes and Hillen [17] argue that mathematical models 
not only allow us to confirm experimental results but also 
provide possible explanations to why the system is behaving 
in a certain way. Despite groundbreaking biological dis-
coveries, mathematical models of cancer have not focused 
on including CSCs. For instance, relevant searches in both 
PubMed and Google Scholar from 2006 to 2021 indicate 
approximately 2% of cancer models mention cancer stem 
cells (33/1707 in PubMed and 2900/116,000 in Google 
Scholar as of 10 March 2021), when compared to math-
ematical models of cancer in general (using the title search 
terms “cancer stem cell” AND “mathematical model” vs 
“cancer” AND “mathematical model”). And yet, CSCs 
have been linked to poorer clinical prognosis and cancer 
relapse (reviewed in [18]), making them a key component 
of tumor treatment. Beginning in 2006, Ganguly and Puri 
made the first attempts at incorporating this new biology 
[19, 20] followed by others [21–23]. In the past decade, as 
biologists focused on finding appropriate CSC biomark-
ers, mathematical models began to explore the role of 
CSCs in tumor biology, with a focus on growth kinetics 
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[24–27, 28•, 29–31], cellular plasticity [21, 32–35], the 
tumor microenvironment [36–40, 41•, 42], and therapies 
[43, 44•, 45, 46•, 47, 48•, 49, 50]. From approximately 
2017 onward, these models have begun to increase in com-
plexity to better mirror biological mechanisms.

In this review, we consider the current state of mathemat-
ical models of cancer which incorporate CSCs and deter-
mine the gaps which must be addressed in future studies. 
As models that focus on populations that change in time, 
differential equations allow us to consider long-term behav-
ior and act as a way to predict what will happen under cer-
tain conditions, thus allowing for less expensive and more 
timely answers than with experiments. As with any model, 
a mathematical model will not necessarily represent a bio-
logical process in its entirety. Particular aspects, with neces-
sary assumptions, are explored in different models which 
can be combined to get a fuller description of the biological 
process. Here, we focus on the models that are relevant to 
the cancer stem cell division and dedifferentiation which 
describe a critical process that likely leads to tumor growth 
and recurrence. First, we explore the division of cells and 
then focus on the process of dedifferentiation. Next, we look 
at how the impact of dedifferentiation on tumor growth can 
be understood in the steady state of the models. Finally, we 
consider how the models can inform the effectiveness of 
combining therapies.

Cell Division

Cells in a human body can be classified into three groups: 
stem cells, progenitor cells, and differentiated cells. Stem 
cells are capable of differentiating into all other cell types 
and are known for their longevity. Stem cells can divide 
symmetrically into two stem cells or two progenitor cells, or 
asymmetrically, into one stem cell and one progenitor cell. 
Progenitor cells proliferate into more specific cell lineages, 
eventually producing fully differentiated cells (see Fig. 1). 
Moreover differentiated cells may defifferentiate acting again 
like stem cells, as described below. Fully differentiated cells 
typically have a finite lifespan and make up the majority of 
cells within tissues.

With every division, there is a chance of mutation for both 
the stem and progenitor cells. Once a stem cell is mutated, it 
may then produce mutated stem or progenitor cells; possibly 
creating a malignant tumor. There are two potential explana-
tions for the origin of a CSC: (i) mutations within existing 
stem cells and (ii) reprogramming of differentiated cancer 
cells into CSCs [51, 52].

The probabilities of dividing symmetrically into two can-
cer stem cells or asymmetrically into one cancer stem cell 
and one non-stem cancer cell are driven by gene expression. 
Mukherjee et al. examine how cells regulate asymmetric 
division [53]. For example, cell-fate determinants such as 

Fig. 1   Cancer stem cells asymmetrically divide into progenitor cells and replicants of themselves. The progenitor cells go on to form differenti-
ated cells which then can dediferentiate
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microRNAs regulate homeostasis, developmental cell-fate 
decisions, and oncogenesis. Bu et al. find that high levels 
of miRNA-34 cause differentiation of cancer stem cells in 
colon cancer, whereas low levels result in self-renewing 
stem cells [54]. For gliomas, the presence of high levels of 
EGF/bFGF regulates CSCs to divide symmetrically more 
than 80% of the time [55]. A novel view of CSCs posits that 
whether a CSC will produce zero, one, or two daughter cells 
that are also CSCs depends on the size of the stem-cell niche 
[56]. Stem cells reside in a special tissue microenvironment 
which allows both undifferentiated and self-renewable cells 
to be actively present. The progenitor cells made by CSCs 
help lessen the cell-division load of the stem cells, by driv-
ing differentiation into other cell types, thus allowing for 
CSCs to proliferate at low levels [57].

Historically, cells have been thought to have a hierar-
chical structure where a stem cell creates a progenitor cell 
which then undergoes a set number of divisions before it 
becomes a terminally differentiated cell. The differentiated 
cell is subsequently eliminated at the end of its lifespan. 
This age-structured progression has been well-modeled 
using systems of ordinary differential equations in the form 
of a compartmental model [19, 30, 58, 59, 60•]. The math-
ematical modeling for the cancer stem cell (CSC) division 
is commonly expressed as exponential growth. Benitez et al. 
design a two-population model for tumors, including CSCs 
and non-stem cancer cells to show that substrate stiffness 
(hardness of the environment) has an impact on stem cell 
division with soft substrates yielding symmetric division and 
hard surfaces leading to asymmetric division [61].

The dynamic process of symmetric division and differ-
entiation and that these probabilities are not constant dur-
ing oncogenesis has been addressed by [27, 49, 62, 63]. Of 
particular note, Bessonov et al. design a Markovian model 
for CSC population that aims to understand the “instructive 
signals” for cancer cell population stabilization and cell-
to-cell communication that impacts probabilities of cell 
division [62]. Their model provides insight into the cellular 
dynamics of tumors.

Dedifferentiation

Hierarchical models, incorporating different numbers of 
subpopulations, are the traditional form of a model for cell 
division and are generally a system of ordinary differential 
equations. However, some argue [64] that this method is 
archaic and suggest that continuum models which allow for a 
spectrum of ages should be implemented using a partial dif-
ferential equations model. There is mounting evidence that 
in specific scenarios, fully differentiatiated cells are able to 
move in the opposite direction and enter into a previous age 
class [65–68]. This dedifferentiation can cause cells to adopt 

a more stem-like phenotype, in essence partially reversing 
the typical pathway of increased specialization seen in nor-
mal cells. In investigating stem cell division, Bessenov et al. 
explore the probability of differentiation type and incorpo-
rate a time dependence because the underlying field bio-
chemical signals may influence the division probabilities 
[62]. They find that in all biologically relevant cases, there 
is a nonzero probability that dedifferentiation occurs. This 
model could aid an experimentalist in determining what 
biochemical factors are supporting the different division 
types. Zhou et al. expands a hierarchical model to incor-
porate the impact of dedifferentiation in two ways: (i) the 
progenitor cell dedifferentiates into the previous age class, 
and (ii) the progenitor cell dedifferentiates into a stem cell. 
Dedifferentiation is shown to have the greatest impact when 
young populations have the largest self-renewal rates, and 
it becomes less common as the dominant self-renewal rate 
moves to later populations [69•]. Jilkine et al. found that the 
inclusion of even a small amount of dedifferentiation drasti-
cally speeds up carcinogenesis, especially in cases where 
fewer cells are initially in the cancer environment [70].

An alternative to the ordinary differential equations 
(ODE) hierarchical model is a partial differential equation 
(PDE) model as a function of time and age. Scott et al. pre-
sent such a model that incorporates the clonogenicity of a 
cell based on the stage of differentiation and microenviron-
ment influences [64]. Working with the general stem cell 
population, Wang et al. study the population density of 
stem cells incorporating a decrease in proliferation and self-
renewal as a cell ages [71]. As a counterargument, Molina-
Pena et al. argue that hierarchical models are still relevant 
because intermediate progenitor cells are able to form and 
sustain tumors [28•].

The dedifferentiation process, a form of a feedback loop, 
can be invoked when the stem cell population is near extinc-
tion. Proliferation is dependent on the size of a population 
and incorporated using feedback loops for various different 
types of cells. Feedback loops can promote or inhibit the 
proliferation of cells. The most common mathematical form 
of a feedback loop is the Hill function [72–74]. Renardy 
et al. regulate the progenitor population size through the 
replication and differentiation probabilities of stem and pro-
genitor cells [60•]. Weiss et al. examine feedback on the 
self-renewal probability, division rate, and death rate [75•]. 
Rhodes and Hillen suggest that the Survivin protein, which 
is emitted when a cell dies, may instigate the dedifferentia-
tion process in an effort to maintain a cancerous cell popula-
tion [17].

Impacts of Dedifferentiation

When considering a cancer treatment, there are two meas-
urements of success: the short-term efficacy of the treatment 
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and the long-term cancer development. Mathematically, 
we can determine the long-term behavior by studying the 
steady states of the system. Delay differential equations are 
implemented in the case of hematological cancers to account 
for the time, approximately 96–144 h [76], needed for cell 
maturation during the transition from the bone marrow to 
peripheral blood [77]. In this case, three steady states exist: 
the trivial steady state, complete dominance of the malig-
nant population in both the bone marrow and the periph-
eral blood over their healthy counterparts, and coexistence. 
The complete dominance equilibrium suggests that once a 
malignant state is entered, the cancer will take over both the 
bone marrow and the blood [36]. Afenya et al. expand the 
system to give cancer stem cells their own compartment and 
allow for transition from healthy bone marrow into cancer 
stem cells [37]. The examination of the steady states shows 
that incorporating large time delays in the cancer stem cell 
conversion does not cause the malignant dominance in both 
the bone marrow and the peripheral blood to break. This 
suggests that cancer stem cells are driving malignancy and 
can remain dormant for a long period of time before causing 
a late recurrence.

For a solid tumor, Benitez et al. use a simple predator-
prey model for a solid tumor and find there is a tipping point, 
dependent on the symmetric division probabilities, between 
the tumor being homogeneous differentiated cells and a bal-
ance between stem cells and differentiated cells [78•]. The 
balance between stem cells, cancer stem cells, and differenti-
ated cells is delicate and is dependent on the death rate, dif-
ferentiation probabilities, and dedifferentiation. Kaveh et al. 
find without dedifferentiation, the system will converge to 
a steady state where the CSCs dominate the stem cells or 
are non-existent, depending on the parameter choices [79]. 
However, if dedifferentiation is included at a high enough 
rate, then a steady state where stem cells and CSCs coexist is 
attained, even if initially no stem cells were included in the 
model. This study supports the stochastic nature of cancer 
development.

Konstorum et al. incorporate the stochasticity by extending 
the ecological concept of the Allee effect, where a popula-
tion becomes extinct because there are not enough species 
to maintain the cancerous population [80]. If enough CSCs 
are destroyed, then the tumor will be eliminated even if it has 
not disappeared by the end of treatment. There is an Allee 
region based on the parameter relationship between CSC and 
a chemical activator. When self-promotion is included and 
dedifferentiation is not, the CSC population is able to replen-
ish itself when it is near extinction. When cancer cells are at 
low numbers, randomness plays a crucial role. In particular, 
in an effort to renew themselves, non-stem cancer cells are 
more likely to develop stem-like characteristics in the low cell 
number limit. The influence of just one mutant cell is studied 
by Mahdipour-Shirayeh et al. and Wodarz, but they come to 

contradictory conclusions [81, 82]. Mahdipour-Shiraveh et al. 
determine that increased plasticity of the mutant cell increases 
the potential of invasion while Wodarz finds that increased 
plasticity decreases the invasion potential. Eastman et al. rem-
edy this contradiction by demonstrating that the disagreement 
is a result of parameter definition and model assumptions [83]. 
While the two models ultimately give the same results when 
the parameters are defined in agreement, the Mahdipour-
Shirayeh model allows for differentiated cells to proliferate, 
which introduces additional regimes that Wodarz is not able 
to simulate. Tonekaboni et al. find surprising results that sug-
gest there is a careful balance between plasticity and death 
rates [34]. For example, increasing plasticity may decrease the 
overall survival probability in the case of certain death rates, 
meaning that carefully controlling death rates, in other words 
not killing too quickly, may be better to hamper cell plasticity.

Incorporating Cancer Therapies

Traditional therapies for cancer attack the tumor cells, but 
the cancer stem cells remain virtually unscathed due to dif-
ferences in biomarkers and proliferation kinetics. CSCs are 
then able to resurrect the tumor, causing a cancer recurrence. 
Promising treatments [63, 84, 85] are those which specifi-
cally target the CSC in the hopes of reducing the risk of 
relapse. In the model presented by Sigal et al., immune cells, 
dendritic, and T-cells are specifically trained to either attack 
CSC or non-stem cancer cells within mice [48•]. Symmetric 
and asymmetric differentiation is permitted along with dedif-
ferentiation. The necessity and timing of different treatments, 
including chemotherapy and targeted immunotherapy, are 
examined for efficacy. While chemotherapy is most effec-
tive in reducing the current tumor burden, immunotherapy 
is most successful in decreasing future tumor development. 
This ultimately increases the complexity of relevant math-
ematical models of cancer therapies, which must incorporate 
multiple cell types within the tumor, various aspects of the 
host immune system, and combination therapeutics.

Radiation, a localized treatment for cancer, is believed 
to increase the CSC population due to the sudden death of 
the tumor cells. One explanation is that the dying cells pro-
duce Survivin which instigates the CSC proliferation pro-
cess. Rhodes et al. study a treatment within a mouse model 
which combines YM155 infusions, a Survivin suppressor, 
with radiation [17]. Molina-Pena studied radiation therapies 
which target either the CSC or the progenitor cells, using 
both experimental mouse models and cell culture studies 
from patient-derived tissues [28•]. In these isolated treat-
ment scenarios, the tumor regrew. However, when radiation 
therapy simultaneously targets CSC and progenitor cells for 
a sufficient length of treatment then the tumor can be elimi-
nated with no relapse.

207Current Stem Cell Reports  (2021) 7:204–211



Incorporating Experimental Data

Mathematical models of cancer describe relationships 
between important biological components such as cells, 
proteins, and cytokines. Along with a variable to represent 
each of the relevant components, a parameter value is also 
included. When determining the validity of a model, the 
parameters are fit to data from an experiment. Published data 
may include in vitro cell culture models of samples from 
cancer patient tissues, in vivo experimental mouse models, 
or even human clinical trials data. To control aspects impos-
sible in human studies and allow mathematical modelers 
to systematically test different aspects of the model, data 
from mouse models are often used to fit parameter values. 
The parameters are chosen in such a way so that there is a 
minimal error between the model and the data. When able 
to find reasonable parameter values to create an agreement 
between the model and the experimental results, the model 
is declared a success. In order to avoid overfitting of data, 
the model must be validated, which requires additional 
experimental data [86•]. Yet, mouse models cannot fully 
represent cancer within humans. Ideally, validated models 
would be tested using in vivo human data, which emphasizes 
the need for access to full datasets in order to create robust, 
validated models. This becomes especially critical as human 
biomarkers and personalized therapeutics become the norm 
for cancer therapeutics.

Conclusions

Cancer stem cells play an integral role in the development of 
a tumor. The relationship between CSC and non-stem can-
cer cells is frequently described using a hierarchical model 
where the cells move from one age class to the next. The rate 
of division of the cells is impacted by the cell microenviron-
ment. However, recently, it has been discovered that cells do 
not necessarily move in a unilateral manner but can repopu-
late a previous age class, most alarmingly the CSC. This 
observation counteracted some of the treatment advances 
which were formed on the basis that elimination of the CSC 
would be a huge advancement toward curing cancer.

The use of mathematical models provides insight to the 
importance of CSC in tumor development. Specifically, 
the examination of long-term behavior made apparent that 
CSCs are the source of recurrence. These revelations are 
essential in advancing the knowledge related to the dynam-
ics of cancer growth. Mathematical models are also used to 
test treatment strategies causing more effective treatments, 
sometimes solely based on treatment schedule. The models 
are generally robust in relation to the specifics of the type of 
cancer, primarily requiring adaptation of parameter values. 
Since there are so many relevant biological aspects, finding 

data to combine with a math model is often a challenge. By 
creating better forms of collaboration between the experi-
mentalists and the modelers, science could be advanced 
much more substantially.
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