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Abstract
Purpose of Review Hematopoietic stem cells (HSCs) produce all blood cells via a tightly controlled production system.
Disruptions to control mechanisms can induce serious disorders, including leukemias. In this review, we provide an overview
of how mathematical modelling has contributed to our understanding of normal and pathological HSC biology.
Recent Findings Through the increased availability of a variety of experimental and clinical data, new approaches to mathemat-
ically modelling HSCs have revealed how clonality is regulated in the hematopoietic system over time, how increasingly clonal
hematopoietic and leukemic stem cell populations contribute to the development of acute myeloid leukemia, and the mechanisms
and kinetics of HSC regulation.
Summary Mathematical modelling is a complementary tool to quantitatively explore HSC and hematopoietic regulation. Studies
combining experimental, clinical, and theoretical approaches have deepened our understanding of HSC biology and aid future
investigations to reveal the mechanisms of HSC maintenance and production.
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Introduction

HSCs have been extensively studied since their discovery, and
mathematical modelling has developed in step. In this review,
we explore mathematical and computational models of HSC
biology that have shed light on pathophysiological mecha-
nisms and their impact on the development of leukemias and
other HSC-related diseases. Readers may also be interested in
other recent reviews whose focus is beyond the scope of this
article [1–3].

The organization of this review is as follows. We first
briefly survey the development of the G0 model for the cell
cycle and then turn to a discussion of stem cell involvement in
acute myeloid leukemia, discussing both deterministic and
stochastic models. We next turn to a discussion of models
for clonal diversity within the context of clonal hematopoiesis
and pre-leukemic dynamics and close with a brief consider-
ation of recent insights into stem cell physiology using for
example, lineage tracking and an examination of symmetric
versus asymmetric division.

The Regulation of the HSC Cell Cycle

Little positive can be claimed for the development of the
atomic bomb, but one by-product was the abundant availabil-
ity of radioactive tracers after the Second World War ended.
Cell biologists soon realized that these could be used to probe
the processes involved in tissue development, maintenance,
and repair. Inspired by a flood of data, they soon developed
a conceptual framework for thinking about how cells replicat-
ed and formulated the notion of the cell cycle and its compo-
nent phases, first the S phase during which DNA was
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replicated andM phase duringwhichmitosis took place before
cytokinesis. It was soon realized [4] that there was an inter-
vening period between the cessation of S and commencement
ofM that became known as the G2 phase and a period known
asG1 between cell birth and the commencement of S. The four
phases, G1, S, G2, and M, constitute the proliferative phase P
of the cell cycle, and cells were viewed as progressing through
these stages in a sequential and orderly fashion. Thus was the
state of knowledge in the early 1960s.

Experimental work on regenerating liver [5, 6] (see the
review by Epifanova et al. [7]) led to the important concept
of the G0 phase of the cell cycle, also known as a resting
phase, between mitosis (and cytokinesis) andG1. This extend-
ed conceptual model of the cell cycle was formulated within a
mathematical framework [8, 9] to analyze labelling data and
has played a pivotal role in the development of our ideas about
the regulation of stem cell development. This model was ap-
plied to the bone marrow stem cell population, speculating
that cells differentiated out of the G0 phase and that the cell
population must be autoregulatory, so any loss of cells would
eventually be recovered by the compensatory movement of
cells from G0 into the active proliferative phase.

Using the G0 model of the cell cycle [8•], Mackey [10]
attempted to understand the origin of cyclical neutropenia
(see Mackey 2020 [11] for a full account). As shown in Fig.
1, the model is simply a variation of the model of Burns and
Tannock [8•] in the following ways. It was assumed that cel-
lular differentiation takes place out of the G0 compartment at

rate δ, there is a potential loss to death (apoptosis) of cells
within the proliferative phase at rate γ, and finally, the rate
of cellular re-entry from the G0 compartment into the prolif-
erative phase takes place at rate β that is a decreasing function
of the total number N of G0 phase cells:

β Nð Þ ¼ β0
θn

Nn þ θn
; ð1Þ

where β0 is the maximal rate of re-entry, θ denotes the half-
maximal G0 population, and n > 0 is the Hill coefficient.

The dynamics of the G0 phase cell numbers are governed
by the differential delay equation:

d
dt

N tð Þ ¼ −δN tð Þ−N tð Þβ N tð Þð Þ

þ 2e−γτN t−τð Þβ N t−τð Þð Þ; ð2Þ

where τ is the duration of the proliferative phase P of the cell
cycle. (The origin of the three terms on the right hand side is
easily understood: the first two are, respectively, the loss from
G0 due to differentiation and loss due to re-entry into the
proliferative phase. In the third term N(t − τ)β(N(t − τ)) repre-
sents the flux of cells leaving G0 a time τ ago—and thus
entering the proliferative phase. This is diminished by the
factor e−γτ because of the random cell loss during the prolif-
erative phase of the cell cycle, amplified by the factor of 2 due
to mitosis and cytokinesis.) This equation has a rather aston-
ishing array of solution behaviors [12], which makes it of
interest to mathematicians [13–18] as well as modellers of
hematological diseases [11]. For example, applying this mod-
el to data from mice, Mackey characterized key parameters of
HSC kinetics, including rates of differentiation and re-entry
into the pool and the number of effective divisions between
the HSCs and terminally differentiated cells in mice [19].

Pathology in Hematopoietic Stem Cells: Acute
Myeloid Leukemia

The establishment of the Burns and Tannock G0 model pro-
vided a framework for investigations into both normal and
pathological HSC dynamics. Indeed, theoretical work has de-
veloped in step with recent experimental advances into
perturbed hematopoiesis. Acute myeloid leukemia (AML),
an aggressive blood cancer that accounted for 62% of the
leukemia-related deaths in the USA in 2019 [20], is character-
ized by a rapid clonal expansion in the blood and bonemarrow
of myeloid stem cell progenitors with truncated differentia-
tion. The cause for this perturbation is rooted in a genetic
disruption of an HSC or its progenitor that occurs either by
the acquisition of de novo mutations, prior HSCs disorders
(like myelodysplastic syndromes or myeloproliferative neo-
plasms), or DNA damage through toxic exposures including

Fig. 1 The amended Burns and Tannock cell cycle model. The duration
of the proliferative phase P is τ, and δ is the rate of cellular differentiation,
while γ is the rate of apoptosis in the proliferative phase. β is the rate of
cellular re-entry from the G0 phase (population number N) into the
proliferative phase and was assumed to have the form given in Eq. (1)
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chemotherapy and radiation [20–22]. Improvements in sup-
portive care and in allogenic stem cell transplantation strate-
gies have recently increased the 5-year survival rate of youn-
ger patients [20]. However, the standard therapy for AML,
which primarily targets and kills leukemic blast cells, remains
largely unchanged [20, 23]. While AML occurs in all age
groups, it is most prevalent in people over 65 years old, and
current treatment strategies do not meaningfully improve their
survival [20]. Therefore, the development of novel therapeutic
strategies for AML is needed. For this, a better understanding
of pathological hematopoiesis and the effects of mutations on
HSC differentiation and proliferation is required. This section
will discuss of the use of mathematical modelling to under-
stand blood production mechanisms during AML.

Deterministic Models

Myelodysplastic syndromes refer to the group of clonal disor-
ders characterized by ineffective hematopoiesis resulting in
cytopenia. These diseases progress slowly and carry high risks
of developing into secondary acute myeloid leukemia.
Understanding the interactions between clonal expansion
caused by aberrant HSCs and normal hematopoiesis in
myelodysplastic syndromes may give insight into the devel-
opment of AML.

Walenda et al. [21] developed a system of ordinary differ-
ential equations to describe the self-renewal and proliferation
of clones and the flux of normal and malignant cells through
different stages of differentiation: from hematopoietic stem
cells to mature cells and from leukemic stem cells (LSCs) to
dysplastic precursors. Leukemic stem cells are relatively rare
HSCs harboring mutations that seed downstream leukemic
cells [24]. The authors [21] examined the dynamics of disease
development initiated by a single LSC clone by simulating the
number of cells in each compartment (Fig. 2). By varying
parameter values in the model, they showed that a high self-
renewal rate in LSCs is essential for the development of
myelodysplastic syndromes. This suggests that the increase
in self-renewal is a hallmark of myelodysplastic syndromes
and a possible factor for AML development. Thus, downreg-
ulating the self-renewal rate of malignant stem cells might be
an efficient strategy to incorporate in the treatment of
myelodysplastic syndromes.

Other groups of clonal hematopoietic stem cell malignan-
cies, myeloproliferative neoplasms, are characterized by a rel-
atively slow, but uncontrolled, proliferation of blood cells in
the myeloid lineage. Most patients with myeloproliferative
neoplasms carry a specific mutation (JAK2 V617F) that
makes the HSCs more sensitive to growth factors [25].
Additionally, myeloproliferative neoplasms increase the prob-
ability of developing more aggressive secondary blood can-
cers, such as acute and chronic myeloid leukemias, and the

JAK2 V617F mutation was found, in rare cases, to occur de
novo in AML [25, 26].

The Cancitis model consists of a system of ordinary differ-
ential equations that describes the proliferation of HSCs and
malignant stem cells into mature normal and malignant blood
cells [27]. In this system, self-renewal rates of both normal
and leukemic stem cells are regulated by the number of dead
cells through inflammation. The model reflects the idea that
cancer development is caused by changes in the frequency of
stem cell division and that regulatory feedback allows stem
cells in the bone marrow niche to further divide into blood
cells when needed.

To understand how AML progresses from myeloprolifera-
tive neoplasms, Sajid et al. [22•] analyzed the Cancitis model
[27] and explored the coupling between inflammation and
myeloproliferative neoplasms (Fig. 3). Four steady states (la-
belled trivial, hematopoietic, malignant, and coexistence)
were found, and treatment was studied with the objective of
pushing the system from a malignant steady state to a stable
coexistence or hematopoietic steady state. Through bifurca-
tion analysis, the authors found two relevant parameters that
altered the stability of the steady states and improved progno-
sis when decreased: the reproduction ratio of HSCs over LSCs
and the ratio of inhibition of the hematopoietic relative to
leukemic cells. Further simulations of the JAK2 V617F allele
burden with respect to these two key parameter values support
these results. The analysis of Andersen et al. [27] also suggests
that a therapeutic target for myeloproliferative neoplasms may
be the reduction of the self-renewal rate of malignant stem
cells, reinforcing the hypothesis that diseases caused by clonal
expansion of precursor cells from the myeloid lineage can be
treated by controlling the differentiation of LSCs.

More recently, Bangsgaard et al. [26] expanded on Sajid’s
model [22•] by including multiple aberrant clones to under-
stand oscillations in patient cell counts and therapeutic resis-
tance. They allowed normal and malignant stem cells to mutate
into more aggressive LSCs in two ways: HSCs into different
LSCs (parallel mutations) or HSCs into a single LSC line
wherein further mutations increase its fitness (sequential muta-
tions). Simulations using this model show that when one clone
is significantly less aggressive than the second, the less aggres-
sive clone can be effectively targeted by the immune response
or treatment. However, this reduction in a single clone removes
the inhibitory effect on the second and allows for growth in
leukemic cells [25] typical of cancer resistance [28, 29]. Since
the pool of LSCs can be highly heterogeneous in leukemia,
Bansgaard et al. further studied at least three malignant clones
with varying levels of inhibition. In agreement with clinical
data, they observed oscillations in LSC numbers following fast
targeted treatment. Hence, they concluded that if the fatal
growth of one aberrant clone is quickly prevented, an initial
drop in aberrant stem cell numbers is observed, rapidly follow-
ed by similar oscillations in LSCs occurring at higher
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concentrations due to the resistance mechanisms mentioned
above. The ability of the model to reproduce clinical data pro-
vides strong evidence of the possible, more complex dynamics
driving the evolution of myeloproliferative neoplasms into sec-
ondary and more aggressive leukemias like AML.

To understand the dependency of AML on cytokine sig-
nalling, Stiehl et al. [30••] designed two models of leukemia

and their interactions with healthy hematopoietic cells, one
cytokine-dependent (leukemic cell expansion depends on cy-
tokines for expansion) and the other independent of the influ-
ence of signalling. In both models, the dynamics of each cell
type are described by their proliferation rate, fraction of self-
renewal, and rate of death. For healthy and leukemic cells,
cytokines were assumed to determine the fraction of self-

Fig. 2 Simulated dynamics of the development of myelodysplastic
syndrome. An initial leukemic stem cell (long-term LSC, dark red line)
expands over time due to a higher self-renewal rate than normal
hematopoietic stem cells (long-term HSC, dark blue line). Both long-
term HSCs and LSCs go on to produce cells lower in the hematopoietic
hierarchy (first differentiating into short-term HSCs and LSCs,
respectively, and then into multipotent progenitors, committed

progenitors, precursors (or progenitors), and finally mature cells;
progeny of LSCs are indicated by malignant and dysplastic). When cell
numbers in the bone marrow reach a threshold, a feedback signal is
triggered, and the self-renewal of all stem cells decreases. The leukemic
cells finish by outcompeting the normal hematopoietic cells. Adapted
from Walenda et al. [21] under Creative Commons CC-BY

Fig. 3. Flow diagram of the Cancitis model. The Cancitis model
considers six compartments: normal hematopoietic stem cells and their
mature progeny, malignant leukemic stem cells and their mature progeny,
dead cells, and immune cells. Exogenous inflammatory stimuli activate
the immune cells (I), which then promote the mutation of HSCs, the self-
renewal rates of both normal and leukemic stem cells, and the clearance of

dead cells. Black arrows represent the rates of the flow in and out of the
different cells compartments. Red dashed arrows symbolize the
modulation of the immune response on the rates of the normal and
perturbed hematopoiesis. Green dotted arrows denote the inhibitory
effect caused by crowding in the bone marrow. Adapted from Andersen
et al. [27] under Creative Commons CC-BY
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renewing cells to differentiating cells. Integrating these two
models with bone marrow aspirate data from patients allowed
Stiehl et al. to develop criteria to distinguish cytokine-
dependent and cytokine-independent AML, primarily related
to the speed of relapse (earlier relapse suggests cytokine-
independent AML). Further, they found that AML indepen-
dent of cytokine signalling had worse overall survival. Given
the difficulty in assessing whether a patient’s AML is
cytokine-dependent or cytokine-independent, the authors sug-
gested evaluating the autonomous growth of leukemic cells in
culture and/or surface receptor markers to determine the type
of AML prior to treatment.

Stochastic Models

Jäkel et al. [31•] looked at the effects of each individual stem
cell in addition to the dynamics of cell populations by extend-
ing the stochastic, compartmental model of Dingli et al. [32],
which counts single cells at the different differentiation phases
in hematopoiesis. Jäkel explicitly modelled erythrocytes,
granulocytes, and thrombocytes and added a feedback mech-
anism with lineage-specific growth factors. Each compart-
ment in the model represents a stage in the differentiation
process from HSCs to mature circulating cells, with the HSC
compartment size assured to remain constant through asym-
metric cell division. At each time step, cells in each compart-
ment can differentiate with a probability depending on their
hematopoietic stage and the concentration of lineage-specific
growth factors. They modelled the concentration of these
growth factors as a deterministic feedback signal depending
on the number of mature cells in each corresponding lineage.
This model captured clonal expansion in AML by allowing
for two kinds of mutations, the first giving bone marrow cells
unlimited replicative capacity (giving rise to exponential
growth of immature cells which are quickly eliminated in
circulation) and the second blocking differentiation. The latter
causes an exponential increase of immature cells at the level of
the block, which ultimately slows down and drops to zero as
the replicative capacity of the cells decreases. The main con-
clusion of Jäkel et al. [31•] is that the two mutations must be
acquired in the same cell for AML to develop. As in
Bangsgaard et al. [26], they suggest that tumor heterogeneity
is an important factor in the development of AML.

There is evidence that the mode of stem cell division, i.e.
asymmetric (one daughter cell remains the same type while
the other differentiates) versus symmetric (two daughter cells
have same type), may have a significant impact on cancer
development [32–34]. In the context of AML, modelling pre-
dicts that leukemic stem cell proliferation and self-renewal
rates are important for disease development. However, little
is known about the mechanisms by which asymmetric and
symmetric cell division is regulated in HSCs because HSC

division occurs rarely and determining the mode of division
is difficult.

Wu et al. [33] established a comparative study of asymmet-
ric and symmetric cell division through stochastic stem cell
models with mutations. They captured the dynamics of cell
division with using the Fokker-Planck equation for the joint
probability distribution of the number of normal and mutant
stem cells at a given time. For asymmetric division, the num-
ber of stem cells in the population remains constant, so the
joint probability distribution is simply the distribution of the
number of normal stem cells. The authors found that the ex-
pected values for both the numbers of normal and mutant stem
cells are identical for the two division modes, and symmetric
division yields a larger variance of the total population size
compared to the asymmetric division model. These results
highlight the importance of stochasticity in defining different
division patterns, since they observed the same deterministic
dynamics in asymmetrical and symmetrical cell division.

HSC Clonal Diversity: Modelling
to Understand Clonal Hematopoiesis
and Pre-leukemic Dynamics

As highlighted in the previous section, AML and other leuke-
mias develop through mutations. Modelling mutational evolu-
tion is therefore crucial to understanding these clonal diseases.
Evidence of clonal evolution within the HSC compartment has
been accruing since early studies tracing X chromosome inac-
tivation, the process whereby X chromosome in the female
embryo is progressively silenced [35]. More recently, reduced
clonal diversity in the hematopoietic system has come to light
through a number of associations between driver genes and
diseases. Here, we outline modelling efforts to understand the
dynamics of clonality in HSCs and its impact on hematopoietic
biology.

Abkowitz et al. [36] studied HSC kinetics by studying the
mosaic pattern of the two X chromosomes in female safari
cats. In safari cats, HSCs express one of either two genes (d
or G glucose-6-phosphate dehydrogenase) but not both simul-
taneously. The expression of these genes can be used to track
the relative expansion of hematopoietic clones. Abkowitz
et al. [36] harvested bone marrow cells, transplanted them
back into the animals, and observed excessive skew of one
gene relative to the other within erythroid burst-forming and
GM colony-forming units at both early (1 year) and longer (4–
6 year) time points, indicating a selective growth advantage.
The relative skew over time was driven by X chromosome
genes impacting on HSC dynamics in vivo. From this finding,
Catlin et al. [37] used X-chromosome inactivation to track
HSC replication kinetics through the integration of human
X-chromosome polymorphism data from 1416 women across
two cohorts [37, 38] and a stochastic model tracking HSC

113Curr Stem Cell Rep (2021) 7:109–120



divisions over time. Their Markovian model consisted of two
compartments (HSC and committed progenitors/differentiated
cells). HSCs are born (to a maximal number of cells in the
niche), die, and commit to the second compartment. After
commitment, cells exit the hematopoietic compartment
through death. Using the cohort data, the authors fit their
model to estimate the rate of HSC replication and the
steady-state size of the HSC compartment, a value particularly
important for defining clonal dynamics within the blood (Fig.
4). Catlin’s analyses suggest an HSC doubling time of once
every 40 weeks and a compartment size of 11,000 cells.

With recent advances in sequencing technology, evidence
has now solidified around the emergence of (non-)pathological
clonal expansion within the HSC compartment and throughout
the hematopoietic hierarchy. This expansion, called clonal he-
matopoiesis (CH) when associated with leukemias [40] or clon-
al hematopoiesis of indeterminate potential (CHIP) in the ab-
sence of hematological malignancies, arises through evolution-
ary and selective pressures present during normal hematopoie-
sis and aging [41]. In CH, common leukemia-associated genes
are mutated, and the condition is frequently detected either
prior to, or after, disease onset including myelodysplastic

syndromes and AML. Whole genome sequencing in conjunc-
tion with predictive statistical models has shown the feasibility
of using age-related clonal hematopoiesis to predict AML risk
[42] in healthy individuals and the risk of AML relapse [43]. In
CHIP, it is more common that only a single driver gene [44, 45]
is mutated, and it may occur as a normal part of aging without
any deleterious effects on an individual’s health. The presence
of oligoclonal blood in a 115-year-old woman in good health
supports this curious finding [46].

To understand how evolutionary dynamics contribute to
the development of CH over time, Watson et al. [47•] used a
branching process model (Fig. 5B) with a number of publicly
available sequencing studies to study the fitness advantage of
specific single nucleotide variants (alteration of a single nu-
cleotide in a given DNA sequence) and the evolutionary land-
scape of commonly mutated driver genes in CH.

Their model tracked cells capable of division along the
hematopoietic hierarchy. The rates of death or terminal differ-
entiation, changes in cell type, and asymmetric cell division
were accounted for within each cell population. Mutations
occurred from normal cells at a rate dependent of the cell type
and the state of this cell (primarily its likelihood to divide).

Fig. 4 Multiple scenarios of
clonal population dynamics
leading to clonal hematopoiesis.
A One clone expands in size
without affecting other clonal
population dynamics, ending up
relatively over-represented in the
population. B Dominant clone
expands through competition,
reducing other clone sizes without
changing the overall size of the
population. C Dominant clone is
resilient to total population size
reduction. Reproduced from Lee-
Six and Kent [39] under Creative
Commons CC-BY
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Interestingly, they also accounted for the rare conversion of
multipotent progenitors back into HSCs. For this, they tracked
the number of divisions undergone by multipotent progenitors
and assigned a progressively reducing probability of reversion
with increases in this number. In contrast to the predictions of
Catlin et al. [37], their analysis found an average of 13 HSC
divisions per year (or every 28 days versus the once every 40
weeks from the inactivated X chromosome study). As
highlighted earlier, the kinetics of HSC division have an im-
portant influence on a variety of diseases (i.e., AML) and their
therapeutic outcomes, given that this value has a direct influ-
ence on the rate of self-renewal of individual cells. Watson
et al. further predicted that with sufficiently sensitive and deep
sequencing (detection of variant allele frequencies of 0.01%
vs the typical 2% used for CH diagnosis), clonal hematopoi-
esis will be detectable in virtually all people over 50 years old
and even in young adults (Fig. 6).

Using a Moran model of the HSC dynamics in conjunction
with experimental data in an atherosclerotic mouse model and
human data, Heyde et al. [48] recently established that down-
stream demands on the HSC pool (namely the increased in-
flammation that is associated with atherosclerosis-associated
factors) create a vicious cycle that increases clonal hematopoi-
esis. This study suggests that clonal hematopoiesis is related to
atherosclerosis not only through specific driver genes that in-
crease inflammation, but also from elevated production de-
mands in the HSC pool brought on by the increased number
of leukocytes characteristic of atherosclerosis-associated
factors.

Park et al. also [49] studied HSC evolutionary dynamics
using a mathematical model in conjunction with in vivo data
to assess how competition within HSC niches contributes to
declines in clonal frequencies and the development of CHIP.
In addition to parameterization from literature sources, Park
et al. sampled bone marrow in both young and old mice to
quantify the clonal composition and competition within an

aging hematopoietic system. In contrast to Catlin et al. [37],
Watson et al. [47•], and Heyde et al. [48], here the authors
constructed a deterministic system that modelled the interac-
tions between healthy and mutant HSCs and their production
of mature myeloid and lymphoid dynamics. To represent the
cytokine paradigm, wherein production into specific lineages
is increased as the number of terminally differentiated cells is
reduced (and vice versa) [50], two exponential feedback func-
tions dependent on the number of myeloid and lymphoid cells
(derived from both healthy and mutant HSCs) were coupled to
HSC dynamics. Hematopoietic dynamics during aging were
modelled as subject to heightened competition between
healthy and mutant cells through increases in cell death rates
and niche degradation. Competition was shown to impact
greatly on the output of HSCs, affecting growth rates of both
healthy and mutant HSCs and altering the relative proportion of
each in the bone marrow. This imbalance was further aggravat-
ed by deteriorating bone marrow conditions during aging, a
finding supported by evaluating the proportions of lymphoid
and myeloid cells in aging mice. Overall, Park et al. [49] pro-
vide evidence that low levels of clonal competition can induce
significant decreases in the number of HSCs given deteriorating
environmental conditions, highlighting how the bone marrow
microenvironment impacts on CHIP.

Integrated Approaches to Understanding HSC
Kinetics and Biology

With improvements in viral barcoding, and sequencing and
single-cell technologies, we are now more than ever able to
derive new insights about HSC kinetics and biology through
the combination of mechanistic mathematical models and
novel biological experiments. These approaches in diverse
animal models also help to reduce imprecision in estimates

Fig. 5 Schematic overview of stochastic modelling approaches. A In an
alternative Moran model, a cell within the (fixed size) population is
randomly selected to die, and another cell is randomly selected to

reproduce based on its fitness relative to the population. B Unlike the
Moran model, the population size grows over time in a branching
process. Reproduced with permission from Craig et al. [29]

115Curr Stem Cell Rep (2021) 7:109–120



that may arise due to differences in hematopoietic output
between species [51].

Using a non-human primate model, Goyal et al. [52] tagged
human stem and progenitor cells and tracked the lineage dis-
tribution of resulting clones. To follow differentiation biases
over time, data from 106 to 107 mobilized and retransplanted
lentivirally tracked human stem and progenitor cells were in-
corporated into a neutral model of hematopoiesis. (The neutral
model assumes that mutated sequences or clones have no
effect on fitness [53].) The Goyal et al. [52] model accounted
for HSCs (unlabelled, due to not being mobilized, and
transplanted, labelled cells) that were subsequently transiently
amplified within the progenitor pool before release into circu-
lation. The moments of the stochastic model were established
by studying the generating function of the underlying proba-
bility distribution. In this way, Goyal et al. derived the sam-
pled clone size distribution and compared it to data taken over

4–12 years. Using the steady-state clone size distribution, the
authors inferred a variety of estimates for biologically uncer-
tain parameters, including the proportion of asymmetric di-
vision in the HSC pool (small, in the range of 10−2–10−1).
The proportion of asymmetric to symmetric division is key
in pathological HSC biology, as other mathematical model-
ling work has suggested that symmetric division in stem
cell populations may be protective against cancer [54].
Goyal et al. [52] also estimated the number of active HSC
clones. (As mentioned above, the HSC pool is known to
largely be quiescent (in G0) at any given time [55].)
Previous mathematical modelling by Dingli et al. estimated
the active pool to be around 400 cells [56, 57]. Goyal’s
modelling indicated that between 103 and 105 HSCs are
active in the primates they studied, which underlines the
difficulty in obtaining precise estimates of HSC kinetics,
given their relative scarcity and quiescence, and the

BA

C

Fig. 6 Branching process modelling framework applied to the
evolutionary dynamics of clonal hematopoiesis. A Number of
participants (circle size) and variant allele frequency (VAF) from
studies used in Watson et al. [46•] analyses. B Schematic overview of a
branching model of HSC dynamics with driver mutations that cause
imbalance towards self-renewal. Red plus sign: mutation causing

increased rate of self-renewal; redinus sign: mutations cause decreased
rates of differentiation or apoptosis. C Data points: variant allele
frequency of mutant (DNMT3A) normalized by mutation rates; error
bars: sampling noise; lines: predictions from branching model
accounting for age distributions in original studies. Adapted from with
permission from Watson et al. [46•]
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importance of integrating novel biological data with well-
designed mathematical models.

Lee-Six et al. [58••] more recently estimated the total size
of the active HSC pool by combining a Moran model and
phylogenetics with primary bone marrow aspirates and serial
blood sample data from a 59-year-old man. Whole genome
sequencing was performed on stem, progenitor, and mononu-
clear cells, and granulocytes for assessment of clonality and
phylogenetic analysis. Targeted deep sequencing was also
performed on certain mutations, enabling the back assignment
of these mutations onto the phylogenetic tree constructed from
the whole genome sequencing. To estimate the number of
HSCs that contribute to terminal granulocyte production, they
designed a stochastic hematopoiesis model. As in the stochas-
tic models previously described, Lee-Six [58••] used a Moran
model, which was originally developed to study population
genetics. This model can be viewed as a prospective analogue
of the retrospective phylogenetics analysis they deployed.
Moran models are stochastic frameworks of fixed size popu-
lations in which the allelic composition of a population is
studied under neutral selection. Birth and death processes oc-
cur in succession at each time step, maintaining the overall
pool size (Fig. 5A). Lee-Six et al. used a variation of this
model wherein one individual is randomly chosen to die,
and another (distinct) individual is chosen to reproduce in
each generation, with one daughter inheriting the same label
as its mother and the second daughter inheriting the same label
as the cell chosen to die. This modification allowed the au-
thors to track lifespan with respect to death/division.

Demonstrating the equivalency between their formulation
of the Moran model and the Wright-Fisher model, Lee-Six
et al. [58••] were able to take advantage of several computa-
tions specific to the latter model, in particular for estimating
the size of the HSC pool and the lifespan of distinct lineages in
their model and tree. Together, their framework for whole
genome sequencing, targeted sequencing, phylogenetics, and
predictive Moran/Wright-Fisher models led them to conclude
that the average size of the active stem cell pool is relatively
constant over an adult lifetime and around 100,000 cells. This
number is quite different from that of Abkowitz et al. [59], and
an order of magnitude larger than that of Goyal et al. [52], both
of whose estimates fall within the credible intervals of Lee-
Six’s model predictions (see Fig. 3 in Ref. [58••]). If true, this
larger active HSC pool size has important implications for
CHIP and also the development of blood cancers like AML
that expand from cells of origin in the HSCs.

In addition to fundamental insights about HSC pool size,
mathematical models combinedwith novel experimental strat-
egies can also help to clarify HSC biology including kinetics
and differentiation trajectories. For example, Laurenti et al.
[57••] sorted and expanded long- and short-term HSCs from
donated cord blood samples to analyze cell cycle kinetics in
immunodeficient mice. Data for the time for cell cycle

emergence and completion of mitosis were analyzed, in part,
by estimating parameters using an agent-based model to infer
the time for G0 exit of both long- and short-term HSCs, pick-
ing up from the Burns and Tannock model discussed earlier.
Agent-basedmodels consider cells independently and assign a
set of rules that dictate agents’ (cells’) behaviors. Laurenti
et al. [60••, 61] considered each cell to have its own cell cycle
length and G0 exit time, with each randomly assigned accord-
ing to a normal distribution. Cells were then modelled to di-
vide if they received a randomly assigned signal to divide that
was longer than their G0 exit time, giving birth to one cell of
the same type as the mother and another of type determined at
random (i.e., only asymmetric division was considered). The
results of Laurenti et al. [60••] suggest that both G0 exit and
cell cycle times are independent in long- and short-term
HSCs: long-term HSCs were found to have a 54.5-h delay
between division signal and the beginning of division and to
complete their cell cycles in 19.7 h, whereas short-term HSCs
began dividing 48.7 h after signal reception and took 15.8 h to
divide.

Busch et al. [62•] also investigated the kinetics of normal
hematopoiesis, combining modelling with transplantation ex-
periments by generating a mouse line to track hematopoiesis.
Mice were irradiated and single-cell and competitively
transplanted to study the frequencies of HSCs contributing
to lymphoid and myeloid lineages by monitoring label emer-
gence in downstream compartments and estimating the kinet-
ics in a cell flux model of hematopoiesis. Using a flux model,
Busch et al. [62•] estimated the rates of differentiation be-
tween compartments and net proliferation at steady state.
The authors’ results quantified key HSC kinetic characteristics
that can be used in future modelling and transplantation ex-
periments. In particular, Busch et al. [62•] concluded that
short-term HSCs act as amplifying cells in a more long-term
way than multipotent progenitors.

Together, these studies demonstrate new avenues for re-
search into HSC biology that blur the lines between exper-
iments, data, and modelling. In each, new behaviors and
characteristics of HSCs were identified, with long-term
consequences for our understanding of how HSC popula-
tions are maintained over a lifetime and how (sub-)clonal
populations arise in the hematopoietic system from the top
of the hierarchy.

Discussion

The hematopoietic stem cell system has been intensively in-
vestigated since the 1960s. In step, mathematical modelling
has revealed important HSC mechanisms and characteristics,
helping to define and refine experimental and clinical research
questions and establish fundamental properties of HSC biolo-
gy. More recent work has been performed in even closer
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collaboration with experimentalists and clinicians in innova-
tive studies that provide precise estimates for parameters that
were previously difficult to establish.

There is an increasing recognition of the role of quantitative
fields, particularly predictive modelling, in biology. The abil-
ity to assess and track genetic composition longitudinally will
continue to improve our picture of HSC behavior. In parallel,
to translate this data, newer, more intricate, and refined math-
ematical models have emerged, demonstrating that advances
in one discipline spur developments in another. Thus, we ex-
pect mathematical modelling to continue to play an extensive
role as we continue to improve our understanding of healthy
and pathological HSC biology and further new experimental
and clinical approaches and modalities.
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