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Abstract
Purpose of Review The epithelial-mesenchymal transition (EMT) and the generation of cancer stem cells (CSCs) are two
fundamental aspects contributing to tumor growth, acquisition of resistance to therapy, formation of metastases, and tumor
relapse. Recent experimental data identifying the circuits regulating EMTand CSCs has driven the development of computational
models capturing the dynamics of these circuits, and consequently various aspects of tumor progression.
Recent Findings We review the contribution made by these models in (a) recapitulating experimentally observed behavior, (b)
making experimentally testable predictions, and (c) driving emerging notions in the field, including the emphasis on the
aggressive potential of hybrid epithelial-mesenchymal (E/M) phenotype(s). We discuss dynamical and statistical models at
intracellular and population level relating to dynamics of EMTand CSCs, and those focusing on interconnections between these
two processes.
Summary These models highlight the insights gained via mathematical modeling approaches and emphasizes that the connec-
tions between hybrid E/M phenotype(s) and stemness can be explained by analyzing underlying regulatory circuits. Such
experimentally curated models have the potential of serving as platforms for better therapeutic design strategies.
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Introduction

Metastasis and tumor relapse are insuperable clinical chal-
lenges that claim most cancer-related deaths [1]. The

metastatic cascade has extremely high rates of attrition, be-
cause of the multi-step and challenging sequence of events
leading to a secondary tumor. These steps include the detach-
ment of cancer cells from their home organ, their circulation in
the bloodstream, and eventually their colonization of a foreign
environment, all while escaping attack by the immune system
and other clinical interventions.

A first step in the metastatic cascade is a phenotypic switch
called epithelial-to-mesenchymal transition (EMT). Cancer
cells in a solid tumor tissue often undergo EMT, characterized
by the loss of cell-cell adhesion and acquisition of migratory
and invasive traits [2]. Disseminated cells travel through the
bloodstream and colonize a distant organ, giving rise to
macrometastases [2, 3]. EMT is not necessarily a cell-
autonomous and binary process. Cells can attain one or more
intermediate, or hybrid, epithelial-mesenchymal (E/M) state(s)
and can involve their neighbors to form more aggressive clus-
ters of circulating tumor cells (CTCs)—the main drivers of
metastases [4–6]. EMT is regulated at multiple levels—tran-
scriptional, translational, post-translational and epigenetic—by
many context-specific factors and the tumormicroenvironment.
Some common traits of EMT include transcriptional repression
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of E-cadherin that mediates cell-cell junctions and adhesion and
activation of one or more EMT-inducing transcription factors
(EMT-TFs) such as SNAI1, SNAI2, ZEB1, ZEB1, TWIST1
that induce can cell scattering, motility, and invasion [2].

To colonize a secondary tumor site, the disseminated tumor
cells need to give rise to different cell types that constitute a
tumor—a trait typical of cancer stem cells (CSCs). Cells with
such stem-like properties are also typically resistant to various
clinical treatments and are often implicated in tumor relapse. The
conventional, so-called CSC hypothesis envisions a small frac-
tion of CSCs that can both self-renew (symmetric division) and
generate differentiated cells (asymmetric division) [7, 8]. This
hypothesis implies a hierarchical lineage of tumor cells similar
to stem cell hierarchy in normal tissues, such that CSCs that
differentiate irreversibly lose their stem-like properties [9].
Recent studies, however, have emphasized that stemness can
be a dynamic cell state that can be acquired or lost [10–12,
13•]. In other words, some differentiated tumor cells can dedif-
ferentiate and regain stemness via epigenetic and/or environmen-
tal factors such as abnormal cancer metabolism and EMT.

The interconnection between EMTand CSCs was first pos-
tulated by Brabletz et al. [14] in 2005 as Bmigrating cancer
stem cell^ by suggesting that the concepts of EMTand CSCs,
considered independent of one another, were not sufficient to
explain various traits of cancer progression. Afterwards, ex-
perimental evidence accumulated suggesting that stemness
can be gained during EMT [2, 5, 15–18, 19•]. Recent exper-
iments have shown that cells in intermediate E/M states pos-
sess a higher metastatic potential as compared to the cells that
have undergone a complete EMT.Moreover, cells in hybrid E/
M phenotype have been suggested to be drug-resistant [20,
21]. Put together, these observations emphasize the clinical
implications of hybrid E/M phenotypes [5, 22, 23].

Recent studies have made significant progress in identify-
ing the molecular networks regulating EMT, CSCs, and their
interconnections [24]. These networks are formidably com-
plex and capable to give rise to emergent non-linear behavior.
Identification of these networks has driven a surge in
deciphering their underlying principles from a dynamical sys-
tems perspective. This approach has involved developing
many computational models to capture the dynamics of these
transitions. These models may deal with intracellular and in-
tercellular circuits or may offer a population-level description
without considering the detailed dynamics of signaling net-
works. Here, we review both of these types of models. First,
we review a set of models that attempt to characterize the
possible set of states for cells undergoing EMT and their pos-
sible relevance to tumor progression and metastasis. Second,
we review a set of models that consider the population struc-
ture of a tumor and its implications for drug resistance. Finally,
we discuss models that aim at gaining a comprehensive un-
derstanding of the connection between these two crucial axes
of cancer progression.

Mathematical Models of EMT

Computational models developed for EMT can be catego-
rized broadly into two classes: mechanism-based models
and data-based models. While the first class of models
adopts a Bbottom-up^ approach and focus on elucidating
the properties of molecular networks identified experimen-
tally, the latter adopts a Btop-down^ approach starting with
high-dimensional data and aims to reverse engineer the net-
works, and/or trace the trajectories of these transitions using
statistical methods.

Decoding the Dynamics of Cellular Transitions:
Mechanism-Based Models of EMT

The first set of mechanism-based models for EMT
regulation—developed independently by two groups—
focused on a small set of nodes and captured the dynamical
features emerging from the interconnections among those
nodes (Fig. 1a, left). These models included the EMT-
suppressing microRNA families miR-34, miR-200, and the
families of EMT-TFs ZEB and SNAIL [25•, 26]. Both models
predicted that this network can be tristable and could give rise
to a hybrid epithelial-mesenchymal (E/M) phenotype, in ad-
dition to epithelial and mesenchymal phenotypes (Fig. 1a,
right) [25•, 26]. These models also suggested that more than
one phenotype can be accessible to a cell due to the underlying
multistability, hence giving rise to sub-populations of epithe-
lial, hybrid E/M, and mesenchymal cells in a genetically iden-
tical population. This phenomenon was observed and later
characterized in detail in multiple cancer cell lines [5, 27•,
28, 29]. Due to different modeling approaches, however, these
models differed on the dynamics of attaining this hybrid E/M
phenotype. Experimental support for both these models has
been observed [27•, 30], highlighting the heterogeneity and
multiplicity of hybrid E/M phenotype(s) present in different
cell lines.

Further follow-up work has identified several intracellular
phenotypic stability factors (PSFs) that can stabilize a hybrid
E/M phenotype, including OVOL2, GRHL2, Np63α, and
NRF2 [31–34, 35••]. Their role as PSFs have also been validat-
ed experimentally in vitro and in vivo [32•, 34–36]. Moreover,
higher levels of these PSFs were observed to correlate with
worse patient survival, emphasizing the clinical implications
of hybrid E/M phenotype(s) [4, 22]. Among those, NRF2 has
been specifically proposed to be maximally expressed in hybrid
E/M phenotype(s) [35••]. In addition, different energy land-
scape approaches have been also developed for the aforemen-
tioned EMT circuit [37] as well as for related larger gene regu-
latory circuits [38]. This strategy allows to compute the transi-
tion rates between multiple cell states, and thus predict the
relative abundance of different phenotypes (epithelial, mesen-
chymal, and hybrid E/M) in an isogenic population.
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EMT can be also induced by biochemical signals coming
from neighboring cells. Boareto et al. [39] elucidated the con-
nection between EMT and the Notch signaling pathway, a
cell-cell, contact-based, evolutionary conserved signaling
mechanism that is also implicated in angiogenesis and therapy
resistance. The model predicted that Notch-Jagged signaling

among cells, but not Notch-Delta signaling, can foster the
formation of clusters of hybrid E/M cells by promoting a sim-
ilar hybrid E/M phenotype in neighboring cells [39].
Consistently, gene expression analysis highlighted higher
levels of Jagged in CTC clusters of patients as compared to
single CTCs [33]. Thus, a hybrid E/M phenotype can be

Fig. 1 Mathematical models that characterize the landscape of cellular
plasticity mediated via EMT and CSCs. a Left: a gene regulatory circuit
for EMT (adapted from Hong et al. [34]). Right: a bifurcation diagram of
ZEB mRNA as a function of EMT-TF SNAIL (adapted from Lu et al.
[25•]) shows three stable phenotypes (i.e., continuous black curves) cor-
responding to epithelial (low ZEB), hybrid E/M (intermediate ZEB), and
mesenchymal (high ZEB). b An extended EMT regulatory circuit
(adapted from Huang et al. [46]). c The energy landscape of a large
EMT regulatory circuit (adapted from Font-Clos et al. [45••]) shows
two main minima (purple and green projections) corresponding to epithe-
lial and mesenchymal phenotypes, respectively. Additionally, many local
energy minima en route to EMT correspond to intermediate E/M states.
PCA0 and PCA1 are the first two components of the principal component
analysis of the circuit. d Chemotherapy increases the population of
chemo-resistant cancer cells (CD44hiCD24hi) by increasing the

conversion rate from low-resistance CD44low cell population. Top: circuit
schematic; bottom: temporal dynamics of cancer cell subpopulations pre-
and post-treatment (adapted from Goldman et al. [67••]). e Left: a core
gene regulatory circuit including regulation of EMT via the miR-200/
ZEB axis and stemness via the LIN28/let-7 axis (adapted from Jolly
et al. [12]). The parameters α1, α2 represent the strength in the regulation
of the stemness circuit by the EMTcircuit (α1) and the EMTcircuit by the
stemness circuit (α2). Right: varying α1 and α2 shifts the Bstemness
window^ along the EMT axis adapted from Jolly et al. [12]. f The EMT
score of different cancer stem cell lines (adapted from Bocci et al. [13•])
shows the spread of CSC properties along the EMT spectrum. The score
classifies cells as epithelial (score < 0.5), hybrid E/M (0.5 < score < 1.5),
or mesenchymal (score > 1.5). Each row depicts a different CSC line, and
each dot depicts a different biological replicate
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stabilized not only by intracellular PSFs directly coupled to
the EMTcore circuit but also via cell-cell signaling. As anoth-
er example, Bocci et al. [40] predicted that Numb—an inhib-
itor of Notch signaling—can also stabilize a hybrid E/M phe-
notype; this prediction was validated experimentally in multi-
ple independent studies [40, 41].

As the network grows in size (such as going from Fig. 1a,
b), identifying kinetic parameters becomes more and more
challenging. Computational models that have focused on such
larger networks have typically been simulated using Boolean
modeling approaches, where the state of gene expression is
either on (active) or off (inactive). Boolean models do not
consider any kinetic parameters. Cohen et al. [42] developed
a Boolean network to evaluate the combinatorial effect of
different mutations on EMT and metastatic potential using
transcriptome data from TGF-β-induced EMT. Similarly,
Steinway et al. [43] constructed a circuit for TGF-β-induced
EMT using data from hepatocellular carcinoma (HCC). Their
model predicted the activation of several pathways during
EMT such as Sonic Hedgehog and Wnt. Following up, the
authors showed that certain perturbations could give rise to
one or more hybrid E/M states and identified possible targets
to inhibit TGF-β-driven EMT [44]. Recently, Font-Clos et al.
[45••] constructed Boolean model for a gene regulatory net-
work that describes both EMT and its reverse, mesenchymal-
to-epithelial transition (MET). An energy landscape approach
showed two main attractors, or stable states, corresponding to
epithelial and mesenchymal phenotypes, and multiple local
minima, or relatively less stable states, corresponding to mul-
tiple hybrid E/M phenotypes (Fig. 1c). The authors further
mapped RNA-seq data from both lung adenocarcinoma and
embryonic differentiation during EMT/MET and compared it
to the predicted phenotypic expression profiles, hence validat-
ing the existence of multiple different intermediate E/M states.

In an attempt to combine the advantages of both continuous
small-scale models and Boolean large-scale models, Huang
et al. [46] devised an algorithm—random circuit perturbation
(RACIPE)—where the expression levels of genes are continu-
ous, but the parameters for all regulatory links are randomly
chosen within a biologically relevant range. RACIPE generates
an ensemble of mathematical models, each with a different set
of parameters, and identifies the robust dynamical states emerg-
ing from a given network topology. Applying RACIPE to an
EMT circuit composed of 9 microRNAs and 13 TFs (Fig. 1b)
highlighted two different hybrid E/M states [46] that could be
stabilized further by stochasticity or noise [47].

Reconstructing EMT Plasticity from Experiments:
Data-Driven Approaches to EMT

Recent experimental techniques are capable of generating
large and high-throughout (‘omics’ level) data. This deluge
has driven a class of data-driven, or ‘top-down’, models,

which employ a variety of statistical tools to reconstruct cor-
relations among genes and develop expression signatures of
different EMT phenotypes.

For example, Zadran et al. [48] analyzed the temporal
mRNA data of A549 lung cancer cells treated with TGFβ
and identified an intermediate EMT state with a metabolic
state characterized by increased cytosolic ATP levels [48].
Further, Chang et al. [49] analyzed the time course data of
TGF-β-driven EMT for A549 cells and identified three master
TFs for a partial EMT state—ETS2, HNF4A, and JUNB [49].
These regulators correlate with a worse clinical outcome and
their knockdown can prevent TGFβ-driven EMT [49], remi-
niscent of observations made for PSFs.

Besides, two different groups developed methods to ana-
lyze gene expression data of a certain cell line or tumor cell
and calculate an BEMT score^ to quantify the positioning of
these cells along the EMTspectrum. The algorithm developed
by Tan et al. uses entire transcriptomic data for a given sample
[50], while that developed by George et al. considers a few E
and Mmarkers (such as E-Cadherin, Vimentin etc.) as well as
PSFs of hybrid E/M phenotypes (OVOL, GRHL2 etc.) [23].

Data-driven models do not necessarily rely on omics-level
data; they can also use morphological data. For instance,
Mandal et al. [51] proposed a phenomenological approach to
elucidate intermediate EMT states based on cell microscopy
during EMTand found three intermediate states with different
morphological attributes [51]. A more rigorous analysis was
proposed by Leggett et al. [52] that relies on single-cell mi-
croscopy to classify cells as epithelial or mesenchymal with
high precision during TGFβ-driven EMT [52]. Even further,
Zhang et al. [53] classified the morphology and motility of
migrating breast cancer cells using machine learning algo-
rithms such as artificial neural networks (ANN) and random
decision forest (RDF) to analyze single-cell microfluidic mi-
croscopy images [53].

As the connections between molecular and morphological
traits of EMT continue to be explored in detail [54], a syner-
gistic crosstalk among the computational models described
above and their integration with experimental data can provide
novel and crucial insights into the dynamics of EMT.

Mathematical Models of CSCs

Modeling the CSC Fraction During Tumor Progression

An important direction where mathematical approaches have
offered significant insights into the CSC dynamics and its rela-
tionship with tumor progression is a set of population dynamic
models that aim at understanding the temporal dynamics and
the mechanisms regulating the CSC fraction (the fraction of
cells with stem cell properties in a tumor) [55, 56]. Dhawan
et al. [57] considered two compartments, the CSC-like cells and

14 Curr Stem Cell Rep (2019) 5:11–21



the non-CSC-like cells, to elucidate the increased plasticity ob-
served in human mammary epithelial cells under hypoxia. In
their model, individual cells can both differentiate (fromCSC to
non-CSC) and dedifferentiate (from non-CSC to CSC).
Integrating their model with gene expression analysis, the au-
thors showed that hypoxia generates a shift toward a more
CSC-like population and increases EMT features [57].

The role of cell dedifferentiation to a stem-like state has
been also investigated by Jilkine et al. [58] via a hybrid model
that describes the development of the differentiated cell pop-
ulation in a deterministic manner but considers the stochastic
accumulation of mutations to better describe the small CSC
population. The authors concluded that dedifferentiation to a
stem-like state can speed up tumor progression by enlarging
the CSC population [58].

Among the different possible mechanism for dedifferentia-
tion, metabolic reprogramming is especially frequent in the con-
text of cancer [59]. Liu et al. [60] devised a probabilistic frame-
work to specifically investigate metabolic reprogramming that
converts somatic cells into pluripotent stem cells. Insights gained
from such analysis may be useful in understanding metabolic
aspects of tumor cell dedifferentiation, given that different sub-
sets of CSCs may have different metabolic vulnerabilities [61].

Another set of models have aimed to explain how a fraction
of CSCs is maintained in a tumor. Zhou et al. [62] developed a
population model of tumor growth that integrates the differ-
ential growth rate of CSCs and differentiated cells, as well as
transitions among cell phenotypes. In particular, switching
between phenotypes maintains a fixed ratio of cell sub-
populations [62]. Extending this idea, Wang et al. [63] pro-
posed a population model that combines hierarchical organi-
zation (irreversible loss of stem traits upon differentiation) and
stochastic switching (stemness can be gained by switching to
a stem-like state). In this model, CSCs can (a) self-renew
(symmetric division in two CSCs), (b) differentiate (symmet-
ric division into two non-stem cells), and (c) asymmetrically
divide into a CSC and a daughter differentiated cell.
Additionally, differentiated cells can proliferate (symmetric
division) but also switch to the progenitor CSC state [63].
The combination of hierarchical and stochastic processes can
reproduce the CSC/differentiated cell fraction observed in a
human colon cancer cell population [63]. A similar idea has
been proposed by Zhou et al. [64] to show that back-and-forth
transitions between stem-like and non-stem states is crucial to
establish an equilibrium cell fraction of CSCs [64].

A different approach to model CSC-driven tumor progres-
sion was proposed by Poleszczuk et al. [65]. They proposed
an agent-based model where CSCs can gain migratory traits
by stochastic mutations. Such approach enables to simulate
the spatiotemporal dynamics of the cancer cell population
and investigates the cell heterogeneity that arises during tumor
development due to mutations. In this model, CSC can divide
symmetrically or asymmetrically, and also have a migration

potential that translates into discrete movements on a two-
dimensional lattice [65], reminiscent of the idea of Bmigrating
cancer stem cell^ proposed by Brabletz [14].

CSC, Tumor Progression, and Therapy: FromModeling
to the Clinic

A subset of recent models have focused their attention toward
identifying optimal therapy schedules for cancer treatment
[66]. In this context, CSCs are considered as important target
because they are resistant to therapy and can therefore drive
tumor progression and relapse. For instance, the model devel-
oped by Dhawan et al. [57] (discussed in the previous section)
can be generalized to the context of drug tolerance by intro-
ducing one or more additional cell sub-populations that can
resist different treatments [67••]. Specifically, the authors
show by integrating in vivo experiments and mathematical
modeling that chemotherapy can change the rates of conver-
sions among different cell phenotypes and promote a
chemotherapy-tolerant state (Fig. 1d) [67••].

A more data-driven approach aims to correlate the CSC
population with tumor progression and response to therapy.
For instance, Werner et al. [68] proposed a computational
method to quantify the fraction of tumor-initiating cells (i.e.,
CSCs) by analyzing the tumor’s macroscopic growth rate as a
function of time. This patient-specific method can be applied
to many types of tumors and provides an estimate of the CSC
fraction to rationalize the optimal therapy in a clinical setting
[68]. Zhou et al. [69] applied a statistical approach to compute
the transition rate between CSC and differentiated cells in
colon cancer cells and showed phenotypic plasticity with back
and forth transitions [69]. Furthermore, Yu et al. [70] gathered
the differential response of CSCs and differentiated cells to
radiotherapy for different tumor types including glioblastoma,
lung, prostate, and breast cancer and fitted this tumor-specific
information with a stochastic mathematical model to explain
the different inter-tumor responses to radiation therapy [70].

Not all models of cancer cell-therapy interplay need to
employ a population approach. Instead, Chen et al. [71]
used an energy landscape approach to investigate the tran-
sitions of breast cancer cells which are sensitive, hyper-
sensitive, or insensitive to hormone therapy regulated by
the ERα signaling network. The authors implemented dif-
ferent treatment strategies including sequential treatment
(multiple drugs) and intermittent treatment (alternation of
treatment and Bdrug holiday^ periods) [71]. The effects of
continuous vs. intermittent treatments was also explored
in the context of prostate cancer, where a small-scale
model predicted that cells could oscillate between a
therapy-sensitive and a therapy-resistant phenotype [72].
The authors further modeled different hormonal treat-
ments for prostate cancer that were predicted to
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synchronize oscillations among different cells, thus
restricting the heterogeneity in the cell population [73].

As discussed above, most models related to CSCs have
largely focused on identifying the causes underlying varying
fractions of tumor population that can behave as CSCs [74].
Thus, there is much room for progress in constructing mech-
anistic models for CSC-driven tumor progression and the
emergence of drug-resistant phenotypes. In this direction,
Nazari et al. [75] recently proposed a mathematical model
for the role of inflammatory cytokines in mediating CSC-
driven tumor growth. This model couples the ligand-receptor
interaction at the molecular scale with CSC self-renewal and
proliferation at the cellular level [75] and could reproduce the
observed decrease in tumor volume in mouse models with
knockdown of IL-6R, an inflammatory cytokine.

Toward an Integrated Understanding of EMT
and CSC

Aside from the separate models for EMTand CSC dynamics as
discussed above, multiple computational models have investi-
gated the connection between EMTand CSC. Turner et al. [76]
interrogated the connection between EMT and CSC through a
phenomenological, population model with two possible scenar-
ios where EMT enriches the CSC population. First, cells can
dedifferentiate back to a CSC state while undergoing EMT.
Secondly, EMT increases the probability of symmetric, self-
renewal division of cells that are already stem-like [76]. The
authors used the model to fit the experimental data on CSC
fraction andmammosphere expansion, indicating that both pro-
cesses may play an important role in supporting cancer progres-
sion [76]. Later, Gupta et al. [77••] showed that breast cancer
cells SUM149 and SUM159 can exist in different sub-
populations with varying functional attributes: luminal, basal,
and stem-like. They demonstrated that the overall population,
when perturbed, re-establishes a fixed fraction of the three cell
phenotypes. This robustness could be explained by a popula-
tion model where cells can undergo stochastic phenotypic tran-
sitions between the three different states [77••]. Moreover, the
stem-like cell line SUM149 has been shown to exhibit the traits
of a hybrid E/M phenotype, hence suggesting a possible corre-
lation between a partial EMT state and stemness [33].

The multi-scale model proposed by Sfakianakis et al. [78],
instead, focuses on resolving the spatial structure of a cancer
cell population. This phenomenological model couples the
aspects of CSC and EMT to describe the invasion of extracel-
lular matrix by tumor cells. In this framework, EMT is
modeled as a binary switch between an epithelial-like and a
mesenchymal-like phenotype that is driven by growth factors.
Therefore, this model couples EMTat the individual cell scale
and the population dynamics and growth of the tumor mass at
the multi-cell scale. Note, however, that the models discussed

so far proposed mechanisms for CSC-driven tumor progres-
sion and maintenance of the CSC fraction but did not provide
a molecular rationale for the acquisition of CSC traits.

Li and Wang [38] reconstructed a core gene regulatory
circuit with relevant players determining CSC properties such
as miR-145 and OCT4 and core regulators of EMT—miR-
200 and ZEB. The authors applied an energy landscape ap-
proach to predict the co-existence of multiple cellular pheno-
types. In their model, a cell can either assume a Bnormal^ state
or a Bcancer^ state, both of which could or could not exhibit
stem-like traits. Thus, a total of four possible cell phenotypes
are available—normal, normal stem-like, cancer, and cancer
stem-like [38]. In this framework, p53 represents a degree of
cancerization and ZEB represents a degree of stemness.
Notably, both the predicted Bnormal stem cell^ state and the
BCSC^ state highly express ZEB, hence implicitly suggesting
that stemness is gained along with EMT [38].

Finally, the models developed by Jolly and colleagues ex-
plicitly proposed a mechanism-based rationale to elucidate the
connection between EMTand CSC: the stemness circuit com-
prising LIN28, let-7, and OCT4 is connected to the EMT
circuit already discussed by Lu et al. [25•] (Fig. 1e, left).
The CSC phenotype was defined as a state with intermediate
levels of OCT4 that have been shown experimentally to cor-
relate with stem-like traits [79, 80]. These models proposed
that a CSC phenotype is highly correlated with a hybrid E/M
phenotype [81•], but intracellular factors such as OVOL [12]
or cell-cell communication via Notch signaling [13•] could
move the predicted Bstemness window^ toward the epithelial
or mesenchymal ends of the EMT spectrum (Fig. 1e, right).
Experimental evidence for this dynamic stemness window
concept was provided by Bocci et al. [13•] by computing the
BEMT score^ [23] of different human CSC lines using pub-
licly available datasets. This analysis showed that CSC traits
can be scattered along the EMT spectrum based on context-
specific activation of signaling pathways, therefore resulting
in epithelial, hybrid E/M, and mesenchymal CSC (Fig. 1f)
[13•]. Furthermore, this model proposed a strong overlap be-
tween a hybrid E/M phenotype, CSC properties, and Notch-
Jagged signaling [13•], a pathway implicated in both drug
resistance and in clusters of CTCs, the key drivers of metas-
tasis [33]. Consistently, knockdown of Jagged was shown to
restrict the growth of tumor emboli in SUM149 inflammatory
breast cancer cells [82••]. Given the role of Notch signaling in
pattern formation in multiple contexts [83, 84], Notch signal-
ing coupled with EMT circuitry may underlie the spatial seg-
regation of different subsets of cells with stem-like traits, as
observed experimentally in a breast cancer tissue [85].
Secretion of a diffusive EMT-inducing signal at the tumor-
stroma interface (such as TGF-β), along with cell-cell signal-
ing through Notch, was shown to give rise to mesenchymal
CSCs at the invasive edge of the tumor and a population of
hybrid epithelial-mesenchymal (E/M) CSCs in the tumor
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interior [82••]. The idea that cell-cell signaling and the micro-
environment can shape the spatial distribution of a cell popu-
lation has been examined in different biological contexts, such
as bacterial colonies [86, 87] or eukaryotic chemotaxis [88,
89], but remains largely unexplored in cancer biology, and
thus demands further attention.

Conclusion

EMT and CSC represent two crucial biological axes that bol-
ster tumor progression, metastasis, and tumor relapse [2, 4].
While the molecular details of multiple steps of tumor devel-
opment continue to be identified, it is largely accepted that
EMT often plays a crucial role in regulating epigenetic, mor-
phological, and functional cell properties during tumor pro-
gression and metastasis formation [2, 4]. Similarly, it is well
accepted that the acquisition of stem-like properties potenti-
ates tumor maturation and enhances resistance to various
treatments, driving tumor relapse. Only recently, we have
been gaining insights into how, when, and where these two
dynamic processes can influence one another (Fig. 2). In this
context, mathematical modeling has proven itself as a potent
tool to interpret existing data and formulate new predictions
that can be tested experimentally.

In the context of EMT, mechanism-based computational
models have suggested that cells undergoing EMT can stably
acquire intermediate cell states enabling hybrid phenotypes
with mixed epithelial (E) and mesenchymal (M) characters,

as opposed to a binary E/M switch scenario [2, 4]. Novel
in vivo and in vitro analysis recently highlighted the existence
of such hybrid states that coexpress E and M markers and
often possess mixed morphological traits of cell-cell adhesion
and motility [18••, 19•] and have highlighted their enhanced
metastatic potential [90]. The next crucial steps will include a
more comprehensive attempt to integrate data-based models,
mechanism-based models, and time-course and single-cell ex-
perimental data, to formulate a more quantitative characteri-
zation of these malignant hybrid E/M state(s).

In the context of CSC, one set of models considers the dy-
namics of a CSC population employing the tools of population
dynamics and agent-based modeling. Such class of models can
provide predictions about CSC fraction or population dynamics
under perturbations, hence potentially providing strategies for
containing CSC-driven tumor progression. Additionally, cou-
pling mathematical modeling with clinical data of therapy re-
sponse enables predictive tools that can shed light on the CSC-
therapy interplay. Such models can provide information on,
among others, adaptive response, differential drug sensitivity,
or phenotypic plasticity in a cancer cell population.

Recent experimental observations have led to a class of
models that can offer insights into the coupling between
EMT in cancer cells and the acquisition of stem-like proper-
ties. A first set of models relates phenomenologically the ac-
quisition of stem traits with the EMT process, hence
explaining how CSC-EMT interaction can support tumor pro-
gression and maintain a certain fraction of different cell phe-
notypes. Moreover, a second class of models investigates the

Fig. 2 Interconnections between
EMT and CSC axes. The
spectrum of EMTstates can range
from epithelial (E) to mesenchy-
mal (M) phenotypes, with a vari-
able number of partial E/M states
(x-axis). Both cancer stem cells
and differentiated cancer cells can
assume different states depending
on genetic and epigenetic factors
(y-axis). Horizontal and vertical
transitions represent independent
EMT and stem processes, respec-
tively. However, transitions are
possible where both the EMT and
stem states change, or correlated
transition. The interconnection
among EMT and CSC states and
the transitions enabled between
them depend on context-specific
factors including, among others,
intracellular signaling and muta-
tions, cell-cell, and cell-
environment signaling
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coupling between EMT and CSC at the level of gene regula-
tory networks, showing a correlation between the cell pheno-
types enabled by an EMT regulatory circuit and the stemness
regulatory circuit. A common feature across these models is
envisioning the acquisition of stemness as a dynamical pro-
cess correlated with EMT [12, 13•, 38]. Recent mathematical
modeling and experiments have suggested a correlation
among hybrid E/M states and stem cell properties [5, 12,
13•, 18••, 19•]. CSC traits, however, are not exclusively ob-
served in intermediate states, and the crosstalk between tumor,
microenvironment, and therapies is likely to play a major role
in modulating the plasticity properties of cancer cells (Fig. 2),
as shown by recent experiments highlighting subsets of CSCs
in multiple cancer types [20, 85].

Considered together, these computational models devel-
oped for EMT, CSC, or their interconnections have contribut-
ed not only in deciphering the mechanisms underlying specif-
ic experimental observations but also have driven the next set
of experiments by generating testable predictions. Such bidi-
rectional crosstalk between theory and experiments can sig-
nificantly accelerate our goal of understanding and conse-
quently targeting these processes for therapeutic benefit.
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