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Abstract

Purpose of Review To maintain and repair adult tissues, a balance must be maintained between stem cell proliferation and
generation of differentiated offspring. This review explores recent mathematical and computational models that address stem
cell fate decisions in adult tissues in the context of normal tissue regulation and cancer development.

Recent Findings Quantitative models suggest that upregulation of stem cell self-renewal has a crucial impact on the dynamics of
differentiated cells and plays an important role in cancer progression. Assuming cancer stem cells are the primary cause of drug
resistance, models have estimated how different treatments may influence the prognosis of the disease. Recent evidence of
phenotype switching and plasticity in cancer cell populations complicates the cancer stem cell hypothesis of unidirectional
differentiation.

Summary Mathematical models of stem cell dynamics can make counterintuitive predictions about cancer initiation, metastasis,
and treatment response. By challenging current paradigms, they can shape future research in stem cell biology.

Keywords Stem cells - Cell fate determination - Tissue homeostasis - Cancer stem cells - Phenotypic plasticity - Mathematical

modeling

Introduction

Stem cells are unspecialized cells that are characterized by two
properties, the ability to self-renew, and the ability to differ-
entiate into more specialized cell types. The ability to self-
renew is what is thought to set stem cells apart from their more
differentiated offspring, which are produced from less special-
ized cell types. Each daughter produced when a stem cell
divides can either remain a stem cell or go on to become
terminally differentiated. In many cases, the daughter that opts
for terminal differentiation undergoes additional cell divisions
before terminal differentiation.

To achieve homeostasis, stem cells in adult tissues must
maintain a balance between self-renewal and differentiation.
This, naturally, raises two important questions. (1) How do
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stem cells regulate the balance between self-renewal (stem cell
proliferation) and differentiation? (2) How do cell fate deci-
sions in stem and progenitor cells become subverted in the
emergence diseased states such as cancer? This review focus-
es on the use of quantitative models to study these questions.

Distinguishing Between Stem and Non-stem
Cells

The cells of tissues can be roughly grouped into three classes:
stem cells, transit-amplifying progenitor cells, and fully differ-
entiated cells [1]. Experimental discrimination of stem cells
from more differentiated cells has traditionally been difficult,
and efforts have focused on identifying stem cell-specific mo-
lecular markers in different tissues [2, 3]. Unfortunately, these
markers are not always clearly linked to cellular function.
Historically, label-retaining assays involved the incorporation
of DNA analogs such as BrdU or transgenically induced GFP-
tagged histone 2B in the epidermis [4], intestinal tissues [5],
and the bone marrow [6]. Methods reliant on immunohisto-
chemistry provide a one-time “snapshot” that provides limited
information on stem cell dynamics. Recent experimental
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techniques such as lineage tracing have allowed quantification
of dynamics of stem cells and their progeny over time [7, 8].
Mathematical modeling of stem cells has often assumed them
to be quiescent; i.e., stem cells have much slower division rate
relative to more differentiated cells [9]. However, recent ex-
perimental studies based on inducible genetic labeling of rap-
idly cycling adult tissues, such as epidermis, gut, and male
germline, have argued that stem cells can actually undergo
divisions as frequently as other cell types [10—14]. Stem cells
of those tissue types are now thought to be highly dynamic,
with rapid turnover of cells over an organism’s lifetime.
However, other adult stem cells, such as hematopoietic and
neuronal stem cells, are still considered to be mainly quies-
cent, slow-cycling populations during homeostatic conditions
[6, 15, 16]. The environmental signals that enable these cells
to leave the quiescent stage in order to repopulate the popula-
tion are not well understood.

Over the last decade, many lineage studies have chal-
lenged the model that stem cells typically divide asymmet-
rically, producing one stem and one more differentiated
cell [17-19]. These studies suggested that, in many tissue
types, stem cell divisions are mainly symmetric, producing
either two stem cells or two progenitor cells, depending on
the surrounding cell types [12—14]. These studies support
the idea that, in many adult tissues, division decisions and
stem cell fate are usually strongly influenced by extrinsic
factors associated with the cell’s microenvironment, the so-
called stem cell niche [20, 21].

Multi-Compartment Models of Hierarchical
Tissues

The labeling of cells at different stages of differentiation as
stem cells, progenitor cells, and fully differentiated cells nat-
urally leads to multi-compartment ODE (ordinary differential
equation) models, which track the numbers of cells
transitioning between compartments during division [1,
22-25]. The number of compartments differs between the
models, since the exact number of different stages of differen-
tiation is ambiguous and may not exactly correspond to mi-
totic events, as cells may undergo more than one division in
each compartment stage. Typically, these models have multi-
ple steady states, and stability analysis has been performed for
some simplified variants [26, 27]. Maturity-structured PDE
(partial differential equation) models, where age of progenitor
cells is a continuous variable, have also been considered [22,
28, 29, 30¢]. The dynamics of multistage cell lineage models,
such as the effect of feedbacks on oscillatory approaches to-
ward steady state, continues to be an active topic of research
[31, 32]. Coupling diffusive signals to this feedback architec-
ture allows the emergence of self-organized patterns, such as
tissue stratification and fingering [33, 34, 35¢¢].

Many of these models have focused on the potential feed-
back mechanisms that enable robust homeostasis (keeping a
constant number of cells) for a range of parameter values and
provide efficient repopulation if the tissue needs to regenerate
after injury [1, 24]. Feedback architecture in which both pos-
itive and negative signals act on stem and/or progenitor cells
leads to the appearance of bistable or bi-modal growth behav-
iors [35¢¢]. Modeling has also suggested that the loss of ho-
meostasis and initiation of tumorigenesis occur when one of
the feedback loops controlling self-renewal is affected and the
rate of symmetric versus asymmetric division of the stem cells
is altered [36, 37¢]. An imbalance between self-renewal and
differentiation will result in clonal immortalization and cancer
development [38]. Cancer cells tend to divide more symmet-
rically than their healthy counterparts, and increased symmet-
ric divisions are initiated when tumor suppressors are
inactivated in a variety of cell types, including hematopoietic
stem cells, neuronal stem cells, and mammary stem cells [39].
DNA damage in hematopoietic and mammary stem cells ini-
tiates symmetric self-renewing divisions, which allows the
stem cell population to expand [40, 41]. Across several cancer
types, asymmetric stem cell fate choice correlates with less
advanced, more differentiated tumors, while symmetric stem
cell divisions are correlated with more advanced cancers.

Stem Cells, Differentiation, and Cancer

The accumulation of mutations and the mutational extinc-
tion time are both influenced by tissues’ hierarchical struc-
ture, where a small population of stem cells maintains a
transient population of differentiating cells. The waiting
time to cancer is defined as the time when a particular
number of mutation events have occurred in at least one
cell. The calculation of these times typically utilizes the
theory of birth-death processes. Mathematical modeling
suggests that having a hierarchical tissue structure may
slow the accumulation of mutations and delay the emer-
gence of cancer [42—45]. Cell division patterns are fre-
quently deregulated in cancerous tissues [46], and several
mathematical models have been developed to study accu-
mulation of mutations treating the proportion of symmetric
versus asymmetric stem cell divisions as a control variable
[23, 30, 47-49]. Stochastic modeling has shown that more
symmetric divisions in the stem cell pool compared with
the progenitor pool may slow down the accumulation of
mutations, delaying carcinogenesis [50, 51]. The rationale
is that symmetric divisions producing transient progenitor
cells flushes out mutations from the stem cell lineage pro-
vided that the progenitor turnover is fast. Spatial modeling,
focusing on dynamics in the colon crypt, suggests that
location in the tissue where the cells are dividing rather
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than mode of division is the limiting factor for how fast
mutations can be flushed away [49, 52, 53].

There is a body of evidence that the driving forces be-
hind tumor growth and invasion are “cancer stem cells,”
defined as cells within a tumor that can self-renew indefi-
nitely and “differentiate” into different cell types present in
the tumor. The cancer stem cell (CSC) hypothesis states
that long-term self-renewal is confined to a discrete sub-
population of malignant cells, which alone has the ability
to propagate tumors through metastasis [54]. The first ev-
idence for the existence of CSCs came from acute myeloid
leukemia (AML) in which a rare subset comprising only
0.01-1% of the total cancer cell population could induce
leukemia when transplanted into immunodeficient mice
[55]. A similar phenomenon is observed in mice when
epithelial tumor cells are implanted into a new host
(reviewed in [54]). The frequency of CSCs in solid tumors
is highly variable. For example, CSC population in colo-
rectal carcinomas ranges between 1.8-24.5% [56]. While
cells in benign tumors mirror the clonal hierarchy organi-
zation of normal tissue, malignant tumors contain many
more stem-like cells [57]. These studies suggest that can-
cers gradually lose their tissue-like hierarchical organiza-
tion as they evolve from benign to malignant. Whether
these cancer stem cells originate from stem cells that es-
cape homeostasis or from dedifferentiated transit-
amplifying cells that have acquired infinite proliferating
potential and have dedifferentiated to a stem cell-like state
remains an open question [46, 58]. For example, in the
colonic crypt, a stem cell or a transit-amplifying cell may
become a cancer stem cell, dependent on which cell type
first circumvents inhibitory feedbacks [59]. By estimating
whether the cancer cell of origin is more likely to be a stem
cell or dedifferentiated progenitor cell, modeling can sug-
gest whether differentiation cancer therapies (reviewed in
[60]) can be effective.

Certain aspects of the cancer stem cell hypothesis have
been addressed using mathematical models. Models have
shown that cancer stem cells are not necessarily rare; the pro-
portion of cancer stem cells in tumors can be arbitrarily large
[61, 62+, 63]. Estimates of a fraction of cancer stem cells based
on individual patient data was done in [64]. Quiescent or
slow-cycling cancer stem cells are thought to be more resistant
to chemotherapy, which targets rapidly dividing cells [65].
Stem cell-like gene expression signature is predictive of pa-
tient outcome in acute myeloid leukemia [66, 67]. High leu-
kemic stem cell self-renewal rate is an indicator of poor prog-
nosis [68¢¢]. An early deterministic model by Michor et al.
[69] found that for chronic myeloid leukemia (CML), imatinib
can inhibit the production of differentiated leukemic cells, but
does not deplete leukemic stem cells, leading to development
of imatinib resistance. In general, to be successful, therapy
must eradicate cancer stem cells [70]. Counterintuitively,
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increasing the rate of cell death due to cancer treatment re-
duces tumor size in the short term, but results ultimately in
accelerated long-term growth (the so-called tumor growth par-
adox) [62¢, 71]. Furthermore, the model predicts that the pro-
portion of cancer stem cells in a tumor will increase over time.
Assuming stem cell enrichment is the primary cause of drug
resistance, negative feedback from differentiated cells to stem
cells, which is required for homeostasis in normal tissue, leads
to a worse outcome when it comes to treatment of hierarchi-
cally structured cancers [72]. All of these results arise from the
fact that radiation or chemotherapy mainly targets the differ-
entiated cells in the bulk of the tumor, thus freeing the cancer
stem cells from having to compete with tumor progenitor
cells. To be effective, therapy must target cancer stem cells
[73]. Combining differentiation therapy that targets cancer
stem cells together with radiation or chemotherapy can erad-
icate tumors, even if each therapy applied individually would
not be successful [74, 75].

Modeling Plasticity Between Stem
and Non-stem Cell Populations

Traditionally, the conversion dynamics between stem cells
and non-stem cells have been assumed rigidly unidirec-
tional, wherein a stem cell can differentiate into a non-
stem cell, but the reverse transition cannot occur. It is
now believed that non-stem cells are capable of
dedifferentiating, thus complicating the cancer stem cell
paradigm [76, 77]. The Nobel Prize winning work of
Takahashi and Yamanaka [78] demonstrated that a non-
stem cell becoming a stem cell was possible upon the in-
troduction of four transcription factors. Later, spontaneous
dedifferentiation to a stem cell-like state has been ob-
served in cultures of non-stem mammary cancer cells [79,
80]. The idea that the microenvironment can induce cells to
switch from non-CSC cancer cell into a more aggressive
CSC phenotype was demonstrated by Medema and
Vermeulen [81]. Dedifferentiation rates seem to be higher
when cancer cells are under stress. For example, dediffer-
entiation of non-stem cells has been reported to occur in
hypoxic regions of a tumor at higher frequencies compared
with normoxic regions [82].

Experiments and modeling of this phenotypic switching
in melanoma cells suggest that reducing the proportion of
CSCs below a threshold causes the cells to switch. This
suggests both that there is a regulatory network governing
the switching response and that a therapeutic strategy
based on CSC eradication alone is unlikely to succeed
[83e]. Others have argued that imperfect cancer stem cell
markers rather than phenotypic switching can explain the
experimental results [84]. The biological factors regulating
this conversion process are still not fully clear. There are
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several recent phenomenological models of phenotype
switching and plasticity in cancer cell populations [85,
86¢, 87¢, 88]. Rhodes and Hillen fit the experimental data
to an ODE (ordinary differential equation) model of hier-
archical tissue and suggest that dedifferentiation may be
the cause of emerging resistance to radiation therapy
[86¢]. While generally, dedifferentiation results in greater
likelihood of tumor initiation [30+], Wodarz argues that the
presence of dedifferentiation can actually lower the rates of
tumor initiation and progression [88]. A stochastic model,
focusing on small cell populations, also showed that in
some cases, the plasticity between stem and non-stem cell
populations may reduce the survival probability of the can-
cer cell population [87¢]. The effect of combination thera-
py on reducing CSC population in the presence of pheno-
typic transitions was computationally tested in [89ee]

The dedifferentiation of non-CSCs into CSCs may be
driven by the epithelial to mesenchymal transition
(EMT), a cellular transdifferentiation program where epi-
thelial cells adopt mesenchymal features that allows sta-
tionary epithelial cells to gain the ability to migrate and
metastasize [90]. Recent quantitative studies have focused
on modeling the feedback loops in the transcription factor
network that regulates the epithelial-mesenchymal transi-
tion in the context of cancer development [91, 92, 93e].

Conclusion

Accurately identifying stem cells and cancer stem cells in
tissues remains an open question due to imperfect stem cell
markers. This makes model-based estimation of key pa-
rameters, such as rates of stem cell self-renewal, differen-
tiation, dedifferentiation, and death, an important step in
understanding stem cell dynamics in normal and diseased
tissues. Such modeling should be performed in tandem
with biological experiments.

Theoretical insights obtained from mathematical models
of hierarchical stem cell dynamics have already influenced
our understanding of cancer initiation, metastasis, and
treatment response. The idea that cancer stem cells form
a rare subpopulation has been challenged by modeling and
confirmed by experiments. Modeling suggests that the pro-
portion of cancer stem cells at time of treatment may influ-
ence prognosis of the disease. Furthermore, modeling ar-
gues treatment needs to selectively target cancer stem cells
in order to be effective. Otherwise, it may actually speed
and the probability of tumor survival. Recent insights from
experimental studies of cell plasticity have challenged the
hierarchical theory of tissue structure, but the exact molec-
ular nature underlying dedifferentiation is still unclear.
Existing mathematical models will need to be adapted to
integrate new experimental data as it becomes available.
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