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Abstract

Purpose of Review Adult stem cells play a key role in tissue regeneration and cancer. To translate findings from stem cell biology
into clinics, we require a quantitative characterization of stem cell dynamics in vivo. This review explores how mathematical
models can help to characterize stem cell behavior in health and disease.

Recent Findings Mathematical models significantly contribute to quantification of stem cell traits such as proliferation, self-
renewal, and quiescence. They provide insights into the role of systemic and micro-environmental feedback loops during
regeneration and cancer. Computer simulations allow linking stem cell properties to tumor composition, clinical course, and
drug response. Therefore, models are helpful in personalizing treatments and predicting patient survival.

Summary Mathematical models coupled with tools of parameter estimation and model selection provide quantitative insights
into stem cell properties and their regulation. They help to understand experimentally inaccessible processes occurring in
regeneration, aging, and cancer.

Keywords Cancer stem cell - Mathematical model - Tumor heterogeneity - Clonal evolution - Bone marrow transplantation -

Patient prognosis - Differential equations

Introduction

In early phases of stem cell biology, tremendous efforts have
been undertaken to identify stem cells among all tissue cells.
These efforts were driven by applications in regenerative med-
icine with a hope that stem cells can be isolated from tissues,
multiplied, and then transplanted into patients. However, fun-
damental problems of stem cell medicine remain unresolved
[1, 2]. Specifically, (i) multiplication of stem cells in culture is
challenging or even impossible, as in the case of hematopoi-
etic stem cells (HSC) [3], and (ii) for many stem cell types,
successful transplantation with long-term clinical benefit is
still not possible [4, 5].

These problems indicate that for successful clinical appli-
cations, techniques of stem cell identification and separation
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have to be complemented by a detailed characterization of
stem cell properties in vivo. Such a characterization of stem
cells has to involve diverse aspects including response of stem
cells to systemic and micro-environmental regulatory loops,
epigenetic and metabolic state, plasticity and kinetic proper-
ties such as proliferation rates and self-renewal probabilities
(Fig. 1A).

The cancer stem cell hypothesis is another reason why stem
cell dynamics and their regulation should be understood.
According to the hypothesis, cancer stem cells are required
to maintain tumor growth and, due to their high resistance to
therapy, they trigger relapse [6]. The most prominent example
of a stem cell-driven cancer is acute myeloid leukemia
(AML), a frequent hematological cancer [7]. Other potential
examples include breast cancer [8], prostate cancer [9], glio-
blastomas [10], and sarcomas [11]. To treat cancer, it is crucial
to understand how cancer stem cells differ from their benign
counterparts and to quantify these differences. Important as-
pects are depicted in Fig. 1A.

In the following, we summarize recent examples of mecha-
nistic mathematical models contributing to characterization of
stem cell function. First, we discuss mathematical tools and
concepts. Then we focus on specific applications, namely (i)
the use of mathematical models to quantify stem cell parameters

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40778-019-00155-0&domain=pdf
mailto:Anna.Marciniak@iwr.uni-heidelberg.de

58

Curr Stem Cell Rep (2019) 5:57-65

d
Healthy

Malignant

@ Tissue stem cell
@ Progenitor cell

B Niche

@ Cancer stem cell

0 Markers/Morphology 9 Metabolic/Epigenetic state 0 Kinetic properties (proliferation, quiescence, self-renewal, differentiation)
O Response to systemic feedbacks 6 Interaction with micro-environment 0 Degree of plasticity
Q Interaction of cancer and healthy (stem) cells 0 Therapy resistance O Genetic aberrations 0 Mechanisms of immune-escape

b

Model selection

Process quantification

Simulations Data

L X J
| Hypothesis 1 |—>| Model 1 }—» / L‘. ¢ misfit %
[Hypothesis 2 |-»| Model 2 | » t" “ wd

Model Fit
Unmeasurable Measurable =’/—¢"
processes processes
T Quantification ‘

Prediction

Complexity reduction

Hypothesis generation

| Process 1 ‘+ [ Process 2 ‘+ | Process 3 |

®  Model
—_—

Potential

Simplified
[Procese 1]+ [Pojesc ) [Procese ] S, |

Past
future

Full ’ N
Model 5&'

—
Scenario 2

\
Ce,,

U,

/03

Model

-
)

Simplified |
| Process 1 ‘+ ‘ Process 2 ‘+ Procyss 3 | ———»
/ \ Model 2

\|

Fig. 1 a Stem cell dynamics evolve from the interplay of multiple traits.
A quantitative understanding of these traits is required to predict and
optimize stem cell-driven processes. Left: Stem cell traits relevant to
tissue dynamics in health and disease. Right: Cancer stem cell traits rel-
evant to understand cancer progression, therapy, and relapse. b
Applications of mathematical models to biological questions.
Comparisons of model simulations to data can provide evidence of

that account for population dynamics; (ii) the application of
mathematical models to understand regulatory feedback loops,
including systemic and micro-environmental signals; and (iii)
mathematical models of treatment resistance. All aspects are
discussed in the context of regeneration and cancer.

Mathematical Frameworks to Model Stem Cell
Dynamics

Mathematical models have already a long history of applications
to stem cell problems. The choice of the mathematical frame-
work depends on the considered biological system and the ques-
tion of interest. Ordinary differential equations (ODEs) are useful
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whether a given hypothesis is in agreement with observations or not.
Mathematical models can contribute to quantify processes that are not
directly observable and help to predict future time evolution of a system
based on existing data. Model reduction techniques help to identify rele-
vant components of complex systems. Model simulations can allow to
generate new hypotheses and to plan experiments

when the modeled cell populations are large and well-mixed.
This seems approximately fulfilled for hematopoietic cells in
the bone marrow or for certain chemical species in cytoplasm.
The obtained results are usually interpreted as average concen-
trations/densities, and the equations describe time dynamics of
such quantities. Whenever it is possible to subdivide a given
system into a finite number of large and well-mixed subsystems,
so-called compartment models can be used. Each compartment
represents one of the subsystems, and its time evolution is de-
scribed by an ODE. These models arise naturally in the context
of stem cell-driven systems, where stem, progenitor, and mature
cells correspond to the different compartments [12, 13]. In such
models the pace of commitment is usually dictated by successive
divisions. If the system exhibits a continuum of different cell
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types or states, so-called structured population models can be
used. Such models arise if we describe continuous cell transitions
such as aging or continuous cell maturation. These models have
the form of transport or integro-differential equations [14, 15,
16]. In case of a small number of individuals, stochastic effects
may significantly impact population dynamics. To include
stochasticity in a model, different approaches can be chosen.
Stochastic differential equations allow including noise (random
fluctuations) into a differential equation and solving it numerical-
ly or analytically [17+]. A well-established method to simulate
stochasticity originating from random choices among different
possible behaviors, such as cell division, quiescence, and cell
death, is Gillespie algorithm [18¢]. These approaches allow
studying population dynamics in the presence of random events,
albeit without tracking individual histories of population mem-
bers. The latter can be accomplished using so-called individual-
based models which are usually computationally intensive.
Possible applications include populations with high heterogene-
ity (only a small number of identical individuals) or cases where
it is relevant to know the history of each individual [19e, 20e].
Spatial heterogeneity can be accounted for by individual-based
and partial differential equation models. There exist multiple ex-
amples of bridging these approaches [17¢e, 21¢, 2202, 23].

Applying Mathematical Models to Biological
Questions: a List

Based on literature review, a number of commonly used con-
cepts emerge (Fig. 1B). These include:

*  Model selection and hypothesis testing: Different biological
hypotheses are formulated as mathematical models.
Comparison of modeling output to data helps to falsify
hypotheses and to decide which model fits data best.
Examples of this approach include ref. [12, 17¢, 18es,
240 250e].

* Quantification of unmeasurable quantities: Models help to
relate experimentally inaccessible (microscopic) quanti-
ties to measurable (macroscopic) quantities. Assuming
that the model is based on correct assumptions the fitting
to data can help to quantify the unmeasurable processes.
Examples of this approach include ref. [17¢e, 24, 26°¢].

 Correction of measurement-related processes:
Transfection of cells with genes fused with luminescent
proteins such as GFP alters dynamics of signaling path-
ways. Similarly, repeated illumination of biomolecules by
laser beam results in photobleaching. Mathematical
models allow developing requisite corrections.

» Data-based predictions: Models can help to predict future
evolution of a system based on data about its current state.
Examples for this approach include ref. [20ee, 25¢, 26¢°,
27ee].

»  Complexity reduction: Model analysis can help to identify
which sub-processes have a relevant impact on an outcome
of interest and which can potentially be neglected or sim-
plified. Examples of this approach include ref. [26ee, 28].

» Exploration and hypothesis generation: Mathematical
models help to explore dynamics of complex systems
and to understand which processes or assumptions may
affect distinctive dynamical features. This allows propos-
ing novel biological hypotheses. Examples include
ref. [19e, 21e, 22¢¢, 29+, 30, 31, 32, 33¢].

In the following sections, we discuss specific insights ob-
tained from application of these concepts to stem cell systems.

Mathematical Models Allow Quantifying
Proliferation, Self-Renewal, and Quiescence

Proliferation rates, self-renewal probabilities, and the fraction
of quiescent cells determine key characteristics of a cell pop-
ulation such as growth dynamics and stem cell frequency.
These parameters are relevant to the understanding of tissue
regeneration and malignant cell growth [34]. Mathematical
models have contributed a lot to the understanding of complex
population dynamics.

One example of this is adult neurogenesis. Modulation of
cognitive functions requires generation of new neurons
throughout lifetime. The neurons are derived from neural stem
cells (NSC) that are located in specific regions of the brain,
such as the hippocampus. Experiments show a saturating de-
cline of hippocampal NSCs in aging mice [18+]. However,
the fraction of actively cycling cells is constant over time. The
data themselves do not allow a direct conclusion about the
age-related changes of cell properties such as proliferation,
self-renewal (the probability that a stem cell gives rise to stem
cells), and activation from quiescence. To address this ques-
tion, a family of ODE models has been developed, which
describe time evolution of the numbers of NSC and of the
active subset. Each model assumes a different age-related
change of cell properties. Fitting of the different models to
data suggests that, among a number of alternatives, only an
age-related decrease of the rate of activation of quiescent NSC
combined with a decreased depletion is a mechanistic expla-
nation for the experimental findings [18e°].

Similar questions arise in the context of the hematopoietic
system. The hematopoietic stem cells (HSC) are responsible
for life-long blood cell production. However, it is unclear how
HSC proliferation and self-renewal change with age. HSC can
perform symmetric and asymmetric divisions. Symmetric di-
visions lead to two identical offspring, i.e., two stem cells in
case of symmetric self-renewal and two non-stem cells in case
of symmetric differentiation. Asymmetric divisions give rise
to one stem and one non-stem cell. One approach to assess the
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age-specific fraction of symmetric self-renewal among all di-
visions is the study of telomere length distributions and their
change with age. Mathematical models suggest that telomere
length decreases slower if stem cells perform symmetric self-
renewal compared to the scenario where stem cells divide only
asymmetrically. This conclusion follows from stochastic sim-
ulations and analytical calculations of age-dependent telomere
length distributions based on a deterministic approximation.
The analytical results allow to study how the probability of
symmetric self-renewal impacts on telomere length distribu-
tions. A quantitative comparison of the analytical expressions
with data from humans at different ages supports the hypoth-
esis that symmetric HSC self-renewal is frequent during ado-
lescence and asymmetric divisions increase with age [24e¢].
Another approach to understand in vivo stem cell dynamics
employs labeling experiments. Due to their high complexity,
mathematical modeling is required to interpret the experimen-
tal readouts. The labels can be either experimentally induced
genetic modifications [35¢¢] or naturally occurring mutations
[36°¢]. Using somatic mutations as neutral genetic labels,
clone size distributions can be derived from mathematical
models [36¢¢]. Comparison of the theoretically derived clone
size distributions to sequencing data provides insights into
clonal evolution. Application of this framework to sequencing
data from the human epidermis suggests that most somatic
mutations do not lead to growth advantages (so-called
neutral competition) [36++]. Application to a xenograft model
of glioblastoma suggests that growth dynamics of most clones
can be explained by neutral competition and a hierarchical
organization of the cell population [37¢]. Similar results have
been obtained for hepatocellular carcinoma [38], although the
model used in this latter paper has been questioned [39].
According to the cancer stem cell hypothesis, cancers are
maintained by a population of stem-like cancer cells, so-called
cancer stem cells that give rise to the tumor cell bulk. To
establish a cancer cell population, cancer stem cells have to
acquire a growth advantage that allows them expanding with-
in a homeostatic tissue. For a long time, increased prolifera-
tion has been considered a hallmark of cancer [40]. This view
is supported by agent-based models of low-grade glioma
showing that experimentally measured total and proliferating
cell densities can be reproduced under the assumption that
proliferation of malignant cells is increased compared to
healthy cells [41]. However, mathematical models of acute
leukemia suggest that increased self-renewal of cancer stem
cells leads to efficient expansion, whereas a sole increase in
proliferation rate confers only a minor growth advantage to
cancer stem cells [42, 43]. These insights follow from com-
puter simulations and stability analysis of ordinary differential
equation models describing growth of cancer stem and non-
stem cells under environmental feedbacks. Especially, if stem
cells divide asymmetrically under homeostatic conditions, i.e.,
50% of their offspring are again stem cells, a mutation that
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leads to high proliferation rates will not result in an increase of
the mutant stem cell population [34, 42]. The same models
suggest that even cancer cells with proliferation rates lower
than those of healthy cells can expand rapidly if their self-
renewal is high enough. This could explain resistance against
classical chemotherapy observed in relapsing leukemia [29¢].
Models of colon crypts point in a similar direction. Numerical
simulations of a delay differential equation model with ran-
domly chosen parameter values show that tumors resistant to
in silico treatment have a reduced stem cell differentiation rate
compared to therapy sensitive tumors [30].

The cancer stem cell hypothesis suggests that the cancer
cells can be subdivided into cancer stem cells with the potential
of indefinite self-renewal and proliferation, progenitor-like cells
with limited self-renewal and proliferative potential, and post-
mitotic maximally differentiated tumor cells. So far, it remains
unknown how proliferation and self-renewal of cancer stem
and progenitor-like cells impact on the growth dynamics of
the cancer. Mathematical models of AML suggest that prolif-
eration and self-renewal of cancer progenitor-like cells have a
negligible impact on the total malignant cell dynamics com-
pared to the respective properties of cancer stem cells [26e].
This insight led to the hypothesis that observable leukemic cell
dynamics are the result of the cancer stem cell properties which
could, therefore, be estimated based on clinical data. Parameter
estimations for individual patients suggest that high self-
renewal and high proliferation are linked to poor survival.
Application of the framework to patients with multiple relapses
indicates changes in self-renewal and/or proliferation in the
course of the disease [26¢]. This result is complemented by
modeling studies suggesting increase of leukemic stem cell
self-renewal with time. This change of cell properties can be
either caused by new mutations [21¢] or by selection of pre-
existing small clones [14, 29¢]. Simulations of ODE models
describing competition of healthy cells and multiple leukemic
clones suggest that clones with highest self-renewal out-com-
pete clones with lower self-renewal [29¢]. This result has been
rigorously shown in the case of a continuum of different cell
clones (i.e., a trait-structured system of integro-differential
equations) [14]. Population-based models of clonal competi-
tion considering emergence of new clones due to mutations
lead to the conclusion that a high self-renewal of the new clone
increases the probability that it reaches detectable size and ac-
quires further mutations [21¢]. This mechanism might explain
an increase in self-renewal over time and help to predict the
impact of newly detected mutations.

Systemic Feedback Regulations Govern
Regeneration and Cancer Growth

Systemic feedbacks allow coordinating mature cell output
with the activity of stem and progenitor cells. A detailed
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knowledge about such regulations is crucial to understand
stem cell maintenance, tissue regeneration, and cancer growth.

A paradigmatic example to study tissue regeneration is
bone marrow transplantation (BMT). As treatment of hema-
tological cancers, host’s bone marrow is eliminated by che-
motherapy and radiation. To restore blood cell production,
hematopoietic stem and progenitor cells from a donor are in-
fused. For treatment optimization, it is important to under-
stand how stem cell self-renewal and proliferation change
during the regeneration phase. Numerical and analytical study
of a set of ODE cell population models, each imposing regu-
lation of a different parameter, suggests that the clinically ob-
served speed of mature cell production cannot be explained by
a sole increase in proliferation rates [12]. However, mathemat-
ical models assuming increased self-renewal during regenera-
tion are able to capture quantitative data from BMTs [12, 31,
44-]. This type of models is also helpful to understand com-
plications of BMT and how they could be rescued [31].

The stem cell population is exceptional in the sense that it is
the only cell population that is independent of influx of differ-
entiating cells. It is a fundamental question what kind of sig-
nals are required to maintain such a hierarchy and how stem
and non-stem cells respond to them. Steady-state analysis of
ODE models of hierarchically organized cell populations,
controlled by a negative feedback signal from mature cells,
implies that stem cells are the subpopulation requiring less
signal stimulation to maintain its size than any other subpop-
ulation [13]. This result shows that stemness can be under-
stood as a property that dynamically evolves from interaction
of cells and systemic signals.

It is an open question if and how malignant cells respond to
systemic signals. Cell culture and xenotransplantation studies
[45] have shown that AML cells of some patients require
growth factors, so-called cytokines, to multiply. Cells from
other patients can grow autonomously, i.e., in absence of cy-
tokines. It is unknown whether this difference has an impact
on the course of the disease. Computer simulations and ana-
lytical results suggest that autonomous leukemic cell growth is
linked to a poor prognosis and a fast increase of malignant cell
load [25¢¢]. This hypothesis is supported by model-fitting
studies. Patient data that are compatible with the model of
autonomous leukemic cell growth and incompatible with the
model of cytokine-dependent leukemic cell growth are corre-
lated with a poor prognosis [25¢¢]. In the context of hemato-
poietic malignancies, another important factor seems to be
reduction of heterogeneity of healthy HSC due to recurrent
infections, which reduces competitiveness of HSC with re-
spect to leukemic stem cells (LSC) [46].

Cytokines play a role in various cancers beyond AML.
Mathematical modeling and experimental data suggest that
cytokines originating from chronic inflammation can trigger
development and progression of myeloproliferative neo-
plasms, a group of blood cancers characterized by excess

production of red cells, white cells, or platelets [47]. Another
example for a cytokine inducing tumor growth is IL6 in head
and neck squamous cell carcinoma (HNSCC). Treatment
using antibodies against the IL6 receptor has been investigated
by a quantitative mathematical model of HNSCC xenografts
[22¢¢]. The model consists of ODEs describing evolution of
tumor stem cells, progenitor cells, and terminally differentiat-
ed cells. Self-renewal and death rates of the different cell types
depend on cell counts and on the fraction of occupied IL6
receptors. Time evolution of free and bound IL6 and of ther-
apeutic IL6 antibodies is described by separate ODEs.
Simulations lead to the conclusion that the drug has a more
pronounced effect on the increase of tumor cell death com-
pared to the reduction of self-renewal. The model suggests
that tumor reduction is robust with respect to changes in drug
dose and administration interval [22ee].

Healthy and Cancer Stem Cells Compete
for Micro-environmental Factors

It is well accepted that stem cells depend on complex interac-
tions with their micro-environment, the so-called stem cell
niche.

One of the best studied niche systems is the hematopoietic
stem cell niche. A distinguishing feature of the hematopoietic
stem cells is their dynamic attachment to and detachment from
the niche. Under homeostatic conditions, HSC can detach
from the niche, travel through circulation, and reattach at a
different site. In ref. [17¢¢], these processes have been formu-
lated as an individual-based stochastic model, the average
dynamics of which are given by a system of ODEs. Steady-
state analysis of this model allows to relate measurable steady-
state cell counts to so far unknown rates of niche detachment
and attachment. Niche traffic also plays a role in malignancy.
Mutated cells have to spread inside the niches. Using the mas-
ter equation and stochastic differential equations, the average
time required for a new clone to reach a certain size can be
calculated. This suggests that clones without proliferative ad-
vantage cannot reach a dominant size within the lifetime of a
mouse [17¢].

Competition of leukemic and healthy cells for spaces in a
joint human bone marrow niche has been modeled in ref.
[32¢¢]. According to the ODE model, dislodgement of HSC
by LSC can reduce the number of HSC long before the clinical
manifestation of the disease. The higher the probability that a
LSC can dislodge a HSC, the lower the HSC count at the time
of diagnosis and the poorer the patient survival. The correla-
tion between low HSC counts and poor prognosis has been
detected in clinical data [32¢¢]. Simulations predict that the
decline of HSC before clinical manifestation of the disease
is a unique feature of models that include a competitive inter-
action between stem cells. It cannot be explained by systemic
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feedback signals that act simultaneously on all differentiation
stages [32¢]. The modeling results and the clinical observa-
tion that HSC decline before AML relapse support the rele-
vance of the stem cell niche for human disease dynamics.
Stem cell dynamics emerge from integration of local
(micro-environmental) and global (systemic) signals.
Mathematical models are a helpful tool to investigate whether
hypotheses derived from experiments are sufficient to explain
observed phenomena. One example for this approach is given
in ref. [48], where experimentally derived feedback mecha-
nisms acting on healthy and dysplastic hematopoietic cells
have been formulated as ordinary differential equations. The
experiments indicate that self-renewal could be regulated by
local and proliferation by systemic signals. Simulations of the
obtained model show that the hypothesized feedbacks are suf-
ficient to reproduce cell dynamics observed in MDS patients.

Cancer Stem Cell Heterogeneity, Plasticity,
and Resistance Contribute to Cancer Relapse

Resistance to treatment and subsequent relapse of the cancer
are major clinical problems. In the simplest scenario, a subset
of cancer cells is a priori resistant to the administered drug
[19e, 29¢]. In this case, the treatment leads to an enrichment
of resistant cells. Since eradication of sensitive cells results in
the availability of free resources, the resistant cells potentially
show enhanced multiplication in the post-treatment period.
This phenomenon is investigated in ref. [29¢] using an ordi-
nary differential equation model of competing AML clones in
the presence of a nonlinear systemic feedback signal.
Computer simulations propose that at the time of diagnosis
most cells proliferate fast and have a high self-renewal prob-
ability. If slowly cycling cells are endowed with high self-
renewal probabilities, relapse can occur shortly after treatment
since high self-renewal accelerates cell expansion [29¢]. This
mechanism could explain the observation of early and
treatment-resistant relapses in AML patients. Similarly, com-
puter simulations based on ODE models of radiotherapy of
breast cancer propose that it might not be sufficient to aim at
maximal reduction of tumor volume. The authors simulate
different treatment protocols and conclude that in cases where
cancer cells cannot be totally eradicated, therapy should aim to
counterbalance the reduction of tumor burden and outgrowth
of resistant cells [33¢].

Induced drug resistance describes the phenomenon where-
by cancer cells become resistant in response to drug exposure.
This phenomenon is an example of phenotypic plasticity, i.c.,
a potentially reversible change of cell properties.
Mathematical models are a helpful tool to evaluate whether
experimental observations can be explained by phenotypic
plasticity and to discriminate them from selection phenomena,
imperfect marker expression, or other mechanisms [49-51].
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Simulations of chemotherapy using a cellular automaton mod-
el of solid tumors suggest that treatment response strongly
depends on the mechanisms of drug resistance. In the simula-
tions, very high doses lead to selection of primary resistant
cells whereas low doses can increase induced resistance [19¢].
Two recent works for ovarian [52¢] and colorectal cancer
[20+¢] demonstrate how mathematical models can help to pre-
dict treatment response and to personalize treatment choice.

To understand resistance to novel targeted therapies, inter-
cellular heterogeneity of cell signaling pathways has to be
taken into account. Mathematical models coupling activity
of signaling pathways and tumor cell phenotype allow to sim-
ulate the impact of novel treatment agents and the impact of
cellular heterogeneity on the outcome [27¢¢]. Similarly, the
interaction of tumor and immune system seems to have im-
pacts on treatment outcome, especially in case of immune
therapies [20ee, 53, 54, 55]. Another process that might inter-
fere with treatment response is the conversion of non-cancer
stem cells into cancer stem cells. Depending on the context,
this type of plasticity can be either advantageous or disadvan-
tageous for survival of the cancer cell population [56¢]. Other
variables influencing cancer growth and drug response are the
genetic, epigenetic, and metabolic state of cancer cells.
Corresponding models have been reviewed elsewhere
[57-59].

Summary

The multi-factorial and nonlinear nature of stem cell regula-
tion significantly limits our intuitive understanding. Further
complications arise due to the restricted experimental accessi-
bility of stem cells, which are often located in protective
niches. Although mathematical models cannot ultimately
prove whether a biological hypothesis is correct, they can
contribute to our mechanistic understanding of complex sys-
tems and help to overcome experimental limitations.
Mathematical models allow comparing rigorously competing
hypotheses and to design experiments that help to distinguish
between them [12, 18ee, 25¢¢, 37¢¢_ 51]. Comparisons of mod-
el simulations to experimental data can provide evidence of
whether a given hypothesis is in agreement with data or not
[18ee, 37+, 58]. Using parameter estimation strategies, math-
ematical models can contribute to quantify processes that are
not directly observable [17¢, 26¢¢]. Sensitivity analysis and
model reduction tools allow simplifying rigorously the com-
plexity of the studied system by identifying sub-processes
with negligible impact on the overall dynamics, see e.g.,
[28]. The examples discussed above demonstrate how math-
ematical models provide valuable insights into relevant stem
cell traits such as self-renewal, proliferation, or response to
signals. They allow quantifying these traits and inferring trait
differences between individual cells and trait evolution over
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time. Mathematical models contribute to understand how pro-
cesses on the level of single cells are integrated with regula-
tory signals and population dynamics. Modeling tools help to
compose multiple insights to an increasingly complete picture
of stem cell dynamics that can be applied to simulate clinical
scenarios and to personalize treatment decisions [19e, 20ee,
220ee, 2500, 2600, 330, 52¢].
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