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Abstract
Purpose of review The purpose of this review is to encapsu-
late past and current research efforts focused on stem cell
transplantation strategies to resolve radiation-induced cogni-
tive dysfunction.
Recent Findings Transplantation of human stem cells in the
irradiated brain was first shown to resolve radiation-induced
cognitive dysfunction in a landmark paper by Acharya et al.,
appearing in PNAS in 2009. Since that time, work from the
same laboratory as well as other groups have reported on the
beneficial (as well as detrimental) effects of stem cell grafting
after cranial radiation exposure. Improved learning and mem-
ory found many months after engraftment has since been as-
sociated with a preservation of host neuronal morphology, a
suppression of neuroinflammation, improved myelination,
and increased cerebral blood flow. Interestingly, many (if not
all) of these beneficial effects can be demonstrated by
substituting stem cells with microvesicles derived from hu-
man stem cells during transplantation, thereby eliminating
many of the more long-standing concerns related to
immunorejection and teratoma formation.
Summary Stem cell and microvesicle transplantation into the
irradiated brain of rodents has uncovered some unexpected
benefits that hold promise for ameliorating many of adverse
neurocognitive complications associated with major cancer
treatments. Properly developed, such approaches may provide

much needed clinical recourse to millions of cancer survivors
suffering from the unintended side effects of their cancer
therapies.
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Introduction

Radiotherapy comprises one of the principle therapies for pri-
mary and metastatic brain tumors in addition to chemotherapy
and surgery, with approximately 200,000 patients receiving
brain radiation treatment each year in the United States [1].
These treatments have become increasingly effective in im-
proving the prognosis for patients afflicted with central ner-
vous system (CNS) cancers. As progress has been made in the
early detection and treatment of cancer, survival rates have
increased [2], adding to the importance of preserving the qual-
ity of life for cancer survivors. One of the most common and
most damaging iatrogenic effects of cancer treatment is cog-
nitive dysfunction, including impairments in working memo-
ry, learning ability, executive function, and attention, with the
neurocognitive sequelae typically manifesting many months
to years following the cessation of treatment [3–7]. Each year,
roughly 100,000 patients with brain tumors survive for at least
6 months, which is sufficient time for the development of
radiation-induced cognitive decrements, which afflict be-
tween 50 and 90% of adults who survive at least that long
with some degree of impairment [8, 9].

The deleterious effects of cranial ionizing radiation expo-
sure are progressive, particularly in pediatric populations, and
are exacerbated with increasing dose and volume of irradiated
brain and by concomitant use of chemotherapeutic agents that
elevate neurotoxicity. While the precise mechanisms
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underlying radiation-induced cognitive dysfunction remain to
be elucidated, much of the underlying pathology believed to
be contributory if not causal is related to decreased hippocam-
pal neurogenesis, increased neuroinflammation (activated mi-
croglia and pro-inflammatory cytokines), microvascular inju-
ry, and alterations in neuronal structure that disrupts dendritic
morphology, spine density, and synaptic proteins [1, 8, 9, 10••,
11]. Increased oxidative stress likely plays a critical role, by
perpetuating cycles of inflammation and damage that prolong
the signature of radiation injury in the brain [12–14].
Pharmacologic therapies currently under investigation to ei-
ther prevent or restore neurocognitive functionality after radi-
ation treatment are limited, and include anti-inflammatory
agents such as peroxisomal proliferator-activated receptor ag-
onists, renin-angiotensin system blockers such as angiotensin-
converting enzyme inhibitors and angiotensin II type 1 recep-
tor blockers, and inhibitors of adenosine kinase [8, 15]. Stem
cell-based transplantation strategies have also shown consid-
erable promise in ameliorating the negative effects of cranial
irradiation. Given the prominent role that cognitive health
plays in the quality of life for survivors of brain tumors [16],
continued exploration and refinement of stem cell therapies to
treat radiation-induced cognitive decrements could have a pro-
found effect on the lives of thousands of cancer patients, par-
ticularly those surviving childhood malignancies.

Stem Cells and Regenerative Medicine

Stem cell-based interventions have been investigated to repair
and regenerate radiation-associated injuries outside of the
brain as well (for review see [17]). Radiation-induced lung
injury, such as pneumonitis and fibrosis, is a critical compli-
cation of radiotherapy for thoracic cancers [18, 19]; caudal
vein injections of mesenchymal stem cells abated early lung
damage, oxidative stress, and radiation-associated increases in
pro-inflammatory and profibrotic cytokine plasma concentra-
tions in mice that underwent thoracic irradiation, increasing
survival while attenuating lung fibrosis [20, 21]. Salivary
gland damage as a result of irradiation to treat head and neck
cancer can result in chronic xerostomia [22••]. Cells isolated
from murine submandibular glands and cultured into
salispheres have yielded cells expressing stem cell markers
such as c-Kit [23]. Transplantation of these stem cell prepara-
tions into irradiated salivary glands of mice has been shown to
recapitulate the morphology of unirradiated glands and dra-
matically increase saliva production [22••, 23–25]. External
radiotherapy frequently results in cutaneous radiation reac-
tions (with up to 95% of those treated with irradiation showing
some adverse effects) [26]. Human mesenchymal stem cell
(MSC) transplantation has been shown to moderate the sever-
ity of radiation dermatitis and hasten the healing process in an
immunodeficient NOD/SCID mouse model [27], and

injection of adipose tissue-derived stromal cells facilitated
wound healing, re-epithelization, and angiogenesis in murine
models following irradiation [28, 29]. Injections of CD34+
hematopoietic stem cells (HSCs) decreased liver degeneration
and necrosis and improved liver function following abdomi-
nal irradiation in immunodeficient mice, with the transplanted
stem cells migrating to the liver and differentiating into hepa-
tocytes [30]. Finally, bone marrow-derived stromal and MSC
transplantations have demonstrated beneficial effects in alle-
viating the negative response of gastrointestinal tissue to irra-
diation, promoting structural recovery, decreasing radiation-
induced apoptosis, and increasing survival in murine models
[31–36]. Further, cognitive dysfunction associated with other
cancer therapies, such as chemotherapy, is ameliorated with
stem cell transplantation, as shown in studies of
cyclophosphamide- and adriamycin-induced chemobrain
[37••, 38]. Encouraging results in the utilization of stem cell-
based therapies to address radiation injury in other organ sys-
tems and the application of stem cells to restore cognition after
treatment with chemotherapeutic agents portend the therapeu-
tic potential of stem cells for mitigating radiation-induced
cognitive dysfunction.

Stem Cells in the Irradiated CNS

Acharya et al. were the first to demonstrate the potential ther-
apeutic value of transplanting stem cells into the irradiated
brain in 2009 [39••]. Intrahippocampal transplantation of hu-
man embryonic stem cells (hESCs) into cranially irradiated
athymic nude rats improved cognitive function on a
hippocampal-dependent task. In that work, transplanted cells
were found to migrate throughout the hippocampus, differen-
tiating into neurons (concentrated in the dentate subgranular
zone) and astrocytes [39••]. A later study by the same group
showed that human neural stem cell (hNSC) grafting into the
hippocampus also ameliorated radiation-induced cognitive
dysfunction as evidenced by performance on the same task
at both 1 and 4 months post surgery [40]. These cells were
also shown to migrate throughout the hippocampus, with 23%
and 12% of the transplanted cells surviving 1 and 4 months
after grafting, respectively, while differentiating into neuronal
(chiefly in the dentate subgranular zone and CA1) and
astroglial lineages (most evident in the corpus callosum).
Intriguingly, upon exploration of novelty, a fraction (11%) of
the transplanted cells were also found to co-express themature
neuronal marker NeuN and the activity-regulated cytoskele-
ton-associated protein (Arc), a behaviorally induced immedi-
ate early gene, 1 month following irradiation [40]. Since ex-
pression of Arc has been used to map the activity of neuronal
circuits [41, 42], these data suggested that transplanted cells
were functionally integrated into host hippocampal circuitry
[40]. Follow-up studies comparing the outcomes of

Curr Stem Cell Rep (2017) 3:342–347 343



transplanted hESCs to hNSCs in cranially irradiated animals
confirmed that engrafting of both cell types rescued cognitive
function at 1 and 4 months post surgery [43]. While survival
of the hESCs was higher (35% at 1 month post transplanta-
tion, 17% at 4 months) relative to the hNSCs, hNSCs showed
preferential neuronal differentiation compared to the hESCs
[43]. Moreover, at 8 months post transplantation, hNSCs con-
ferred improvement in cognition while hESCs failed to do so
[44]. At 8 months following the transplantation of hNSCs,
only 4.5% of the engrafted cells survived, but the number of
activated microglia was reduced significantly in the
transplanted animals relative to animals that had been irradi-
ated and received sham surgery [45•]. Interestingly, and again
following the recent exploration of novelty, behaviorally-
induced Arc expression was rescued in host neurons located
in the CA1 and dentate gyrus of the hippocampus [45•]. As
opposed to the earlier expression of Arc in transplanted cells,
these latter findings pointed to a trophic support mechanism
whereby engrafted cells enhanced the functional plasticity of
host neuronal circuits [45•]. Furthermore, intrahippocampal
transplantation of FDA-approved human fetal-derived neural
stem cells into irradiated rats also improved behavioral perfor-
mance on hippocampal-dependent tasks of spatial memory
and contextual fear conditioning, with migration of grafted
cells throughout the CA1 and CA3 subfields and preferential
differentiation to neuronal fates [46].

In addition, the Limoli laboratory has examined the optimal
window for stem cell transplantation into the hippocampus
following irradiation [47]. As opposed to prior work targeting
a 2-day post-irradiation transplantation time, this study found
that stem cell grafting 4 weeks after irradiation yielded more
improvement in cognitive function than earlier transplantation
times [47]. Protracting the transplantation time also revealed
that stem cells were distributed along the septotemporal axis
of the hippocampus, with favored differentiation into neuronal
fates, and significantly decreased microglial activation
throughout all hippocampal subfields, indicating that
radiation-induced neuroinflammation was reduced [47]. The
clinical utility of stem cell transplantation strategies to offset
normal tissue damage caused by irradiation may be limited by
the downstream potential for teratoma formation and immune
rejection. To circumvent such caveats, work by Baulch et al.
demonstrated the promise of using transplanted human neural
stem cell-derived microvesicles, in place of stem cells [48••].
Intrahippocampal grafting of microvesicles ameliorated the
cognitive decrements associated with cranial radiation expo-
sure, decreased neuroinflammation, and preserved dendritic
morphology in rats. The transplanted microvesicles were
found to migrate throughout the hippocampus and fuse with
host brain cells, as determined by tracking a fluorescent mark-
er protein expressed on the surface of the grafted
microvesicles [48••]. The foregoing data provided some pro-
vocative insight into the mechanisms of cognitive

improvement following irradiation, and suggested that the
bioactive cargo within microvesicles conferred neurotrophic
support to the host brain.

Past and present studies have built upon the seminal ap-
proach pioneered by the Limoli laboratory [39••] that imple-
mented stem cell transplantation for the amelioration of
radiation-induced cognitive dysfunction. Early studies
showed that oligodendrocyte progenitor CD4+ cells
transplanted into the spinal cord by laminectomy following
irradiation migrated throughout the spinal cord without differ-
entiating, contributing to the remyelination of demyelinated
areas [49, 50]. Irradiation was found to enhance the subse-
quent survival of transplanted oligodendrocyte progenitor
cells, likely due to radiation-induced depletion of the endoge-
nous oligodendrocyte progenitor population, providing the
transplanted cells the opportunity to enter a previously occu-
pied “niche” [49, 50]. In fact, survival of transplanted CD4+
cells was limited in the non-irradiated spinal cord. Evidence
for the enhanced survival of stem cells transplanted into the
CNS following radiation was bolstered by studies from
Niranjan et al. [51] and Marshall et al. [52], which noted the
increased survival of neural stem cells transplanted into the
brain and multipotent astrocytic stem cells transplanted into
the lateral ventricle, respectively. Intramedullary transplanta-
tion of neural stem cells 3 months after local irradiation of the
spinal cord was found to significantly ameliorate indications
of myelopathy in a rat model [53]. However, it was thought
that transplantation of oligodendrocyte progenitor cells had
limited clinical utility because the radiation dose needed to
deplete endogenous oligodendrocyte progenitor cells to the
requisite level to allow for significant survival of the
transplanted cells was high enough to approach the ED50
(~ 20 Gy) for radiation necrosis [54].

More recently, Piao et al. demonstrated that the transplan-
tation of human embryonic stem cell-derived oligodendrocyte
progenitors into the corpus callosum of irradiated animals im-
proved performance on behavior tasks that interrogated learn-
ing and memory capabilities [55•]. The transplanted animals
exhibited restoration of the glial cell population and
remyelination of axons [55•]. Likewise, transplantation of ol-
igodendrocyte progenitors into the cerebellum improved mo-
tor balance and coordination, and induced remyelination with-
in the cerebellum [55•]. Work by Joo et al. showed that mouse
fetal neural stem cells administered through the caudal vein in
an irradiated mouse model migrated to the brain, exhibited
multipotent differentiation, and improved short-term spatial
memory as measured by the Morris water maze [56•]. The
stem cell injections also protected structural aspects of the
brain from radiation damage, maintaining the depth of the
granular layer of the dentate gyrus of the hippocampus and
the cerebral cortex [56•]. This study also found that nerve
growth factor was elevated in the brains of mice receiving
stem cell injections, indicating a protective neurotrophic
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effect, while the fate of other transplanted cells was found to
trans-differentiate into endothelial cells, exhibiting a repara-
tive effect on cerebral blood flow [56•]. In work by Belkind-
Gerson et al., enteric neuronal stem and progenitor cells ad-
ministered systemically through the caudal vein were also
shown to home to the irradiated brain and differentiate into
neurons, particularly in germinal zones such as the
subependymal layer of the ventricular zone and the dentate
gyrus, and in white matter tracts [57]. However, Osman
et al. indicated that intrahippocampal transplantation of autol-
ogous enteric neural stem/progenitor cells in young irradiated
mice actually had a deleterious effect on learning [58]. Grafted
mice exhibited increased neuroinflammation and deterioration
of the granular cell layer of the dentate gyrus, while grafted
cells showed limited survival and differentiation [58].
Similarly, neural stem and progenitor cells derived from
mouse brains and grafted into the hippocampus of irradiated
mice also caused deterioration of the granular cell layer and
astrogliosis [59], revealing further potential limitations of the
utility of stem cell-based therapy for resolving the adverse
effects of radiation on the brain.

Conclusions

The promise of regenerative medicine continues to move for-
ward, bolstered by a wealth of data pointing to the capability
of such interventional strategies to hasten the recovery of in-
jured tissues throughout the body [17]. For survivors of can-
cer, radiotherapy and chemotherapy treatments have long
been associated with adverse neurocognitive complications,
unwanted side effects that diminish quality of life with rela-
tively little clinical recourse. Cranial and/or systemic trans-
plantation of neural and related stem and progenitor cells has
now been shown to provide a host of neurological benefits
that include improved learning and memory and motor con-
trol, reduced inflammation, preservation of host neuronal mor-
phometry, increased myelination, protection of the microvas-
cular bed, and increased cerebral blood flow. At early times
post transplantation (≤ 3–4 months), many of the beneficial
effects may be due in part to functional integration of grafted
cells into host neuronal circuitry. At latter times (> 4 months),
the majority of these benefits are most certainly derived from a
variety of trophic support mechanisms that act to protect and
restore CNS functionality. Despite these exciting develop-
ments, stem cell therapies will not be suitable for everyone
afflicted with a declining cognitive reserve. Patients will need
to be stratified and assessed on an individual basis for various
risk factors that will depend greatly on disease status and
prognosis, and other social and career variables that inform
proper medical decision-making. Immunorejection and tera-
toma formation remain genuine risks to most transplantation
procedures, and while technology has minimized many (but

not all) of these potential problems, graft survival seldom ap-
proaches the projected life span of many cancer survivors.
Nonetheless, for those suffering from debilitating cognitive
impairment, unable to maintain routine duties or unable to
conduct prior job duties to acceptable levels, stem cell therapy
may one day provide much sought-after relief. Moving for-
ward, stem cell research must continue to elucidate further the
mechanism of action, the duration of action, and the optimal
routes of administration and cellular dosing to provide bona
fide therapeutic efficacy and to deliver useful targeted ap-
proaches to personalized medicine.
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