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Abstract
Purpose of Review Normal bone is commonly irradiated
during radiation therapy (RT). The true impact of focal
radiation on bone tissue remains unclear. The goal of this
paper is to present the current understanding of radiation
effects on the bone as it pertains to clinically observed
radiation side effects.
Recent Findings An increased risk of local fracture has been
associated with RT-induced bone loss in the pelvis, vertebrae,
and ribs. This bone loss appears to occur early after and/or
during treatment, which suggests that reactive remodeling of
the bone via osteoclast activity is a primary contributor to
bone loss and fractures.

Summary Several reports have quantified the structural and
histological changes observed after bone irradiation. These
include changes in bone density and cortical thickness, as well
as alterations in both the number and activity of the cells
responsible for bone turnover that arise from hematopoietic
and mesenchymal lineages: namely, osteoclasts and oste-
oblasts. All of these changes likely play an important
role in the increased risk of fracture reported with RT.
However, more research is needed to fully understand the
mechanisms of bone damage and its relationship tomodifiable
factors such as beam energy, dose, photon or charged particle
radiation, linear energy transfer (LET), fractionation, and
field size.

Keywords Bone . Fracture . Rib . Pelvis . Vertebral
compression fractures

Introduction

The skeletal tissue has previously been described as a relatively
radiation-resistant tissue [1, 2], and the bone is frequently
included in radiation portals either deliberately for the
treatment of bone lesions or incidentally when treating
nearby tumors. The true impact of focal radiation therapy
(RT) on normal bone tissue is difficult to determine. Many
clinical studies are confounded by other known detrimental
factors such as chemotherapy use [3–11], steroid use [6,
10, 12–16], reduced mobility [5, 14, 15, 17], and even
direct tumor infiltration of the bone [18–20].

Toxicity studies suggest a relatively low α/β ratio of 1.8–
2.8 Gy for the bone, implying that the bone is a relatively slow
or late responding tissue with the capacity for sublethal DNA
damage repair [1]. Acute reactive changes, however, including
decreased osteoblast numbers, diminished collagen production,
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and increased osteoclast activity, have been observed within
days of RT exposure [1, 21–25]. Clinically, an increased risk
of local fracture has been associated with RT to the pelvis,
vertebrae, and ribs in cancer patients. Acute cortical bone loss
has been reported in the ribcage within 4 months of thoracic
stereotactic body radiation therapy (SBRT) [26, 27]. These
findings clearly illustrate that the bone is actually an acute
responding tissue. The effects of RT on early responding
skeletal locations will be the focus of this review.

Cellular Response

The multipotent mesenchymal and hematopoietic stem cells
(MSCs and HSCs) which share similar niches within the bone
marrow serve as progenitors for cells that lead to bone forma-
tion and resorption [28]. Depletion of one population of these
osteoprogenitor cells can disrupt the other [29, 30] in various
ways, such as altered cell signaling or damaged vascularity
within the marrow [29, 30]. In regard to bone turnover,
osteoclasts are derived from hematopoietic lineage precursors
[28], and the osteoblast/osteocyte is derived frommesenchymal
origin [31]. Recent studies examining the effects of irradiation
on the bone have largely focused on the osteogenic potential
and colony-forming ability of MSCs post-RT [29, 32].
Reduced numbers of osteoblasts have been identified within
irradiated bones [1, 24, 28, 33] with reactive oxygen species-
mediated DNA damage [34] and subsequent apoptosis as a
likely mechanism for cell death [33, 35, 36]. An increase in
adiposity within the irradiated volume [37] could indicate a
preferential shift of MSCs toward adipocytes at the expense
of osteoblasts [29, 34]. Direct RT-induced osteoblast damage
impairs matrix production and lowers bone mineral density
(BMD) which increases bone fragility [1, 22, 38–41]. The
prolonged and/or transient reduction in bone formation
via effects on MSCs and osteoblasts can serve to reduce
new bone formation and compromise the microstructure and
mechanical properties of the bone [42].

The osteoclast is derived from HSC lineage precursors and
serves to resorb the bone. The damaging effects by radiation
on hematopoietic cells are well-documented historically. The
lethality of total body high-dose irradiation was initially
described in animals as early as the 1930s where fatal hema-
topoietic collapse was observed following irradiation [43].
Later, studies of those affected by the Japanese atomic bombs
also showed that hematopoietic injury was the primary cause
of death [44]. Multiple investigators have reported reduced
osteoclast number and activity post-exposure [23, 28, 45].
The reduced turnover resulting from lowered bone formation
and resorption could embrittle the bone [46]. However, similar
to other stressors such as crack formation or mechanical
deformation, radiation can also initiate acute bone remodeling
via early reactive osteoclast activation [23, 37, 45, 47–49,

50••, 51]; this early, transient increase can occur prior to the
observed reduction in osteoclast numbers. Disproportional
activation promotes excessive resorption, lowers bone
mass, and diminishes bone quality and strength [24, 52,
53]. The cause for this early increased activity is unclear.
Material properties of the organic components of the bone
can likewise be altered and can contribute to the embrittlement
of the bone [41, 54, 55]. Substantial bone loss occurring as an
early response due to elevated osteoclast activity, coupled with
prolonged periods of reduced turnover and subsequent embrit-
tlement of the bone [46], could contribute to the etiology of
radiation-induced insufficiency fractures, as are detailed below
in multiple skeletal locations.

Radiation-Induced Rib Fracture

Thoracic RT has been associated with osteitis, osteonecrosis,
and/or fracture of both the ribs and the vertebrae [56]. These
osseous changes are a source of concern, particularly for lung
and breast cancer patients. Chest wall pain and rib fracture
have been described after conventionally fractionated breast
radiotherapy [1, 3, 57, 58]. Since the advent of breast-
conserving therapies, the role of RT in the management of
early-stage breast cancer has steadily increased [59]. In a
review of over 1600 patients treated for early-stage breast
cancer between 1968 and 1985, Pierce et al. identified rib
fracture in 1.8% of the patients, occurring at a median
duration of 12 months since completion of therapy [60].
Upon stratification by beam energy, patients treated with 4-
MV photons were significantly more likely to develop rib
fractures than those treated with 6–8-MV photons. Analyses
of more modern cohorts receiving whole-breast irradia-
tion with various fractionation schedules have reported
rates of radiation-induced rib fracture approximating
0.2–1.5% [58, 61, 62].

Though severe osseous rib complications after breast RT
are rare, osteoradionecrosis has been reported. Nicholls et al.
described a case of a 43-year-old female who underwent con-
ventionally fractionated adjuvant RT for a stage I breast cancer
and subsequently developed ipsilateral chest wall pain 1 year
after treatment [63]. Follow-up imaging revealed healing
fractures of the second through the sixth right anterior ribs
with fatty marrow replacement on magnetic resonance imaging
(MRI) and increased uptake on bone scan. The patient received
treatment for osteoradionecrosis with pentoxifylline, vitamin E,
and hyperbaric oxygen. Over the course of 2.5 years, her
pain gradually subsided, but a persistent nonunion of two
rib fractures with sclerosis was observed.

Normal rib tissue is also unavoidably included in radiation
portals during treatment of lung cancer. SBRT, which is a form
of RT utilizing focused high doses of radiation per fraction, is
increasingly being utilized as a primary therapeutic modality
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for patients with early-stage lung cancer. The risk of rib frac-
ture is particularly concerning when treating peripheral lung
tumors near the ribs. Earlier studies reporting rib toxicity after
SBRT for stage I non-small-cell lung cancer (NSCLC) includ-
ed a German series which reported rib fractures in 3 of 68
patients (4.4%) [64] and another Swedish series reporting 13
rib fractures in 7 of 33 patients (21.2%) [65]. The rate of rib
fractures that occur in the first year post-SBRT ranges from
1.6–41% [66–69, 70•, 71, 72]. Thus, fractures can occur as an
early response.

Following these initial reports, there have been several
studies attempting to quantify the risk of rib fracture with
dosimetric data [70•, 73, 74]. In 2010, Dunlap et al. [74]
reported dosimetric results for 60 patients treated for
NSCLC with SBRT. Their results indicated that limiting
the volume of the chest wall receiving 30 Gy (V30) to less
than 30 cm3 minimized the risk of chest wall pain and rib
fracture. These two toxicities were not evaluated individually,
however, so it is difficult to determine if this constraint is
directly applicable to rib fracture alone [74]. Similarly, a
2012 review of chest wall toxicity (including skin toxicity,
chest wall pain, and symptomatic rib fracture) after SBRT
found that limiting the V30 to < 30 cm3 and/or V60 to
< 3 cm3 results in toxicity rates of less than 10% [75]. A
risk-adapted strategy using variable fractionation (54 Gy in 3
fractions or 50–60 Gy in 5 fractions) to maintain V30 < 30 cm3

resulted in an overall rib fracture rate of 6.9% [70•]. In 2011,
Andolino et al. reviewed the dosimetric data for 347 NSCLC
patients treated with SBRT and found that limiting the max
dose to the chest wall and ribs to less than 50 Gy and limiting
the volume receiving 40 Gy to less than 5 cm3 also minimized
rib toxicity, but this study also did not specifically evaluate
dose constraints for rib fracture alone [73]. In 2015, however,
Aoki et al. evaluated the incidence of rib fracture in 41 patients
treated for lung cancer with SBRT and found that a maximum
rib dose > 54 Gy resulted in significantly more rib fractures, as
did the treatment delivered at a higher dose per fraction [70•].

Risk factors for chest wall toxicity after SBRT have
been reported, but few studies evaluate predictive factors
specifically for rib fracture. Throughout the literature,
chest wall toxicity has generally encompassed skin and
subcutaneous tissue changes, chest wall pain, and rib frac-
ture (either asymptomatic or symptomatic). Patient-related
factors such as gender, age, race, tobacco use, hypertension,
and peripheral vascular disease have not been associated with
risk of such chest wall toxicity; the impact of obesity and
diabetes remains controversial [75, 76]. Total planning target
volume (PTV) volume and its distance from the chest wall
were not associated with chest wall toxicity after correction
for dosimetric factors such as V30Gy [75, 77]. While the
etiology remains unclear, chest wall pain syndrome after
hypofractionated RT has been associated with rib cortical
thinning on CT imaging and elevated uptake on nuclear

medicine bone scans, which can also contribute to fracture.
Okoukoni et al. recently identified significant longitudinal
bone loss in the ribs of patients treated with SBRT for
peripheral lung lesions by only 3 months after the initiation
of treatment at all sites that absorbed ≥ 10 Gy and the
highest degree of cortical thinning occurring at sites absorbing
≥ 20 Gy [27]. Of the 28 patients examined, 2 experienced rib
fractures during the 15 month follow-up period at the site of
significant cortical thinning. Thus, early and late longitudinal
cortical thinnings could serve as a predictivemeasure for chest
wall pain and/or fracture.

RT-induced rib damage remains a concern for patients
undergoing thoracic irradiation for cancers in close proximity
to the chest wall. Further investigation into the effects of
SBRT on rib cortical thickness and bone mineral density
would allow better quantification of the relationship between
RT dose and the risk for significant changes in bone structure
that could lead to rib fracture.

Vertebral Compression Fractures

Vertebral compression fractures (VCFs) are the most common
osteoporotic fracture [78]. Although the majority of cases are
asymptomatic, approximately one third of cases can lead to
significant pain, reduced mobility, and decreased quality of
life [79, 80]. RT has been associated with an increased risk
of VCF in cancer patients [81–83, 84•, 85–87]. While VCFs
are possible after conventional RT, the rates of new VCF or
progression increase significantly with high-dose-per-fraction
radiation regimens such as spine SBRT. In some series, SBRT-
associated VCF incidence has been reported as high as 39%
[88], with the majority of reports indicating a VCF rate of 10–
20% and most fractures occurring within 3–4 months of treat-
ment [81]. Furthermore, the development of one vertebral
fracture is associated with an increased risk of developing
additional vertebral and non-vertebral fractures, especially in
the period immediately following the initial fracture [79].

BMD and cortical thickness (Ct.Th) losses have also been
shown to predispose a VCF to progressive collapse, resulting
in symptoms [10, 19, 89, 90]. Several reports have quantified
structural degradation in the bone after radiation to the verte-
bra [90–92] in the acute setting. Vertebral bodies receiving as
little as 5 Gy had significant BMD loss (>20%) within
4 months of treatment [84•]. Furthermore, BMD reduction
persisted at the subsequent 9 month follow-up.

The implication of the effects of RT on bone strength is
perhaps most relevant in patients treated with RT prior to
reaching full bone maturity [1]. Significant decreases in the
vertical and axial growths of vertebral bodies have been
reported in pediatric patients treated with extensive abdominal
radiation fields for neuroblastoma [93]. A strong relationship
between growth impairment and RT dose in pediatric patients is
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demonstrated with doses greater than 15 Gy [56, 94, 95].
Pediatric cancer survivors are at an increased risk of developing
degenerative bone pathologies, including vertebral fractures,
earlier [96].

The pathophysiology of post-RTVCF is not well understood.
Several studies have examined the effects of large fractional
doses of RT on vertebral bodies (VB). Two post-mortem case
studies, for example, reported significant necrosis and fibrosis in
patients exposed to SBRT for cancer metastasis to the VB [84•].
Further quantitative studies are needed to better understand the
development and evolution of post-RT VCF.

Pelvic and Femoral Insufficiency Fractures

Bone structural failures resulting from load-bearing forces
are often manifested through pelvic or proximal femoral
insufficiency fractures (IF) [97, 98]. These areas serve as
the primary attachment sites for major muscle groups
governing gait and posture. Force distribution is complex
and changes with posture and activity [98].

When sitting or standing, the pubic symphysis is under
constant tension and the posterior complex is compressed as
it moves caudally [99].With walking, however, the distribution
of forces changes dramatically, placing significant transverse
stress in the sacrum, particularly in S1 and S2 [100]. Sacral
insufficiency fractures are commonly seen in these regions of
high transverse stress [101]. Furthermore, fracture at any one
site further alters the distribution of load stress and makes sub-
sequent fractures at other locations more likely [102–105].

RT is a known risk factor for IF in both the pelvis and
femoral heads [57, 103, 106–110]. Fractures of the femoral
heads, pubic rami, and symphysis, as well as acetabular
failures and avascular necrosis, have all been reported after
RT as early as 1926. The incidence of pelvic IF varies
considerably across studies, ranging from 1.7–89% [57,
92, 102, 103, 106–110]. Two prospective studies examin-
ing fracture incidence following RT with MRI reported 2-
year pelvic IF incidence rates of 36.9 and 89% [107, 110].
The use of two-dimensional RT techniques which expose
more normal bone to radiation may have influenced the
rates reported in those studies. These data also included
hairline fractures, which often remain asymptomatic [103,
106, 107]. The incidence of symptomatic fractures is much
lower, in the range of 1.7–6.8%, indicating that a large
number of asymptomatic pelvic IF remain undiagnosed
[57, 102, 103, 106–109, 111].

The time course of fracture varies across studies. An early
retrospective Japanese study assessed pelvic insufficiency
fracture (PIF) in 80 women treated for uterine cancer with
RT and reported a PIF rate of 34% in the radiation field within
6–48 months of treatment [106]. The prospective MR study
examining the evolution of radiation-induced IF in females

treated with RT for advanced cervical carcinoma reported
fractures at 3–12 months after RT, with multiple fractures
developing within 24 months [107, 110]. In the early 1990s,
Bliss et al. reported painful fracture in five patients with cer-
vical cancer as early as 1 month post-RT [112]. In the early
2000s, a larger retrospective study by Schmeler et al. examin-
ing 300 cervical cancer patients treated with RT reported a
median time to imaging detection of pelvic IF as 14 months
(range 2–63) post-RT [113]. Another retrospective study
examining 134 prostate cancer patients treated with RT
reported a median time to fracture of 20 months post-RT
(range, 5–52 months) [114]. A more recent case study
examining symptomatic PIF in female patients treated
for rectal cancer had a time to fracture on the order of
3 years after RT [115]. This discrepancy between studies
may be due in part to changes in RT technique and improved
imaging sensitivity over time [111].

The largest retrospective study examining fracture incidence
in women over the age of 65 with pelvic malignancies found
that those who received pelvic RT were more likely to have a
pelvic fracture than those who did not, with an overall hazard
ratio of 1.65 [116]. The cumulative 5-year fracture rate for
women with anal cancer was 14.0 vs 7.5%; for women with
cervical cancer, it was 8.2 vs 5.9%; and for women with rectal
cancer, it was 11.2 vs 8.7%. Interestingly, this study did not
report an increase in osteoporotic fractures in non-irradiated
sites. While RT increased the relative risk of fracture for all
disease sites, patients with anal cancer had the highest increase
in post-RT fracture rates. The substantial increase in fracture
risk associated with anal cancer may reflect the radiation
therapy technique used to treat this disease. Inguinal lymph
nodes are commonly involved and must be included in the
treatment field. The femoral neck and head may absorb
higher RT doses in the treatment of anal cancer patients
due to the close proximity of inguinal lymph nodes. The
increased fracture risk in anal cancer patients suggests that
the decline in pelvic bone strength is dose-dependent.
However, differences in chemotherapy regimens between
anal, rectal, and cervical patients may have also contributed to
the increased relative fracture risk.

One major shortcoming of the available literature on
pelvic insufficiency fractures is the paucity of outcome
data from patients treated using modern conformal tech-
niques. Historically, pelvic malignancies have been treated
using evenly weighted parallel anterior and posterior fields,
as well as opposed lateral beams. Although simple, easily
reproducible, and capable of providing excellent tumor
coverage, this comes at a high cost of substantial pelvis
and femoral bone exposures [26].

Intensity-modulated radiation therapy (IMRT) is a more
conformal method of RT delivery that can sometimes allow
for better sparing of normal tissues when compared to static
three-dimensional RT fields. The introduction and widespread
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use of IMRT reduced the volume of pelvic bones receiving the
highest radiation doses, but increased the bone volume receiving
lower doses. The clinical significance of such low-dose RT has
not been well-established. Interestingly, when comparing IMRT
and three-dimensional RT delivery, as well as different
dose fractionation schemes, there was no significant impact
on the incidence or time to fractures. A retrospective study
including 650 gynecological cancer survivors treated with RT
observed that the mean absorbed external beam dose above
52.5 Gy to the pubic bone was associated with the occurrence
of reportable pain and pelvic insufficiency fractures [117, 118].

There remains a paucity of data on the mechanisms of
PIFs in RT patients. Several studies have quantified bone
loss in the femoral neck and spine [8, 14, 19, 90–92, 119,
120]. Hui et al. conducted a longitudinal assessment of
spine and femoral neck (FN) volumetric BMDs (vBMDs)
in 40 gynecologic cancer patients treated with chemotherapy
and radiation [8]. Significant bone loss was observed in the
spine and femur within the first year of chemotherapy, radia-
tion, and a combination of radiation and chemotherapy. The
percent reduction in vBMD (± SE) at the L1–L2 spine and
the FN was 11% (± 5.68) and 15.8% (± 2.56) in the radiation
group and 21.0% (± 7.03) and 3.6% (± 3.3.7) in the combined
therapy group. However, structural changes at the sites with the
highest incidence of post-radiation fractures, namely, the sa-
crum, pubis, iliac crest, and femoral head, have not been
assessed. Okoukoni et al. retrospectively examined trabecular
and cortical bone losses in anal cancer patients treated using
IMRT techniques [26]. They observed rapid dose-dependent
bone loss in the proximal femur within 1–2 months of RT
completion. These findings suggested that rapid bone resorp-
tion after RTexposure, similar to the bone loss described in pre-
clinical studies, may predispose pelvic RT patients to fracture.

Due to the complex structure of the pelvis and proximal
femur, the study of pelvic insufficiency fractures is difficult.
Insufficiency fractures after pelvic radiation exposure are
further complicated by potential difference in the local effects
of RT on the bone. In the proximal femur, dose-dependent
cortical thinning was observed in discrete locations. Structural
features, such as cortical volume, minimal cross-sectional area,
and trabecular BMD, were independently related to increased
hip fracture risk in a number of studies [121]. However, the
effects of regional changes, such as those observed in pelvic
RT patients, on fracture risk are unclear. Because therapies vary
in their impact on various components of the structure, it is
important to understand the effects of RT on the bones of the
pelvis to mitigate RT-induced bone damage.

Conclusion

Bone health is a vital component of overall health and quality
of life. As a dynamic tissue that is continually changing over

the lifetime of an organism, it is especially sensitive to
environmental insults, such as RT or systemic agents. The
cells responsible for bone formation and resorption have
been identified as especially radiosensitive, reacting within
days of RT exposure. Pre-clinical studies have shown a
significant correlation between RT exposure and the early
upregulation of bone-reabsorbing cells, as well as a decline
in bone quantity and quality [23, 24]. Further research is
needed to more fully understand the pathophysiology of
the RT toxicities at various anatomic sites. However, there is
ample evidence that RT is detrimental to bone health and that
the bone is a radiation-sensitive, acute responding tissue.
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