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Abstract
Purpose of Review Despite the promise of targeted cancer
therapy (i.e., drugs targeted towards specific signaling path-
ways supposed to be essential to the survival and proliferation
of cancer cells), unexpected treatment failures in the clinic are
common. Tumor cell heterogeneity, which can result from the
plasticity of individual cancer cells and/or evolutionary dy-
namics, has revealed the importance to study cancer at the
level of the entire cell population. Here, we explore mathe-
matical models that describe tumor dynamics under pressure
of anticancer drugs by integrating cancer cell population het-

erogeneity and evolutionary behavior. We further explore
mathematical modeling as a theoretical tool to analyze and
predict the behavior of cancer cell populations as a whole,
and not only of individual cells, which may reveal new clues
to therapy failure and ways to overcome it.
Recent Findings An evolutionary perspective that relies on
the “atavistic theory of cancer” together with the so-called
“cold genes”, and the involvement of “bet hedging” in tu-
mors, has recently changed our vision of cell plasticity in
cancer. These new perspectives provide a sound theoretical
basis to the emergence of resistance in cancer cell populations
and to its possible reversibility. Continuous mathematical
models of the evolutionary dynamics of proliferative cell pop-
ulations already exist, that take into account the heterogeneity
of cancer cell populations, allowing to study the evolutionary
potential of cancer cell populations and predict their behavior.
Those models, in turn, can be used to probe population growth
control by incorporating functions (in the mathematical mod-
el) that represent the action of drugs on the mechanisms driv-
ing proliferation, and furthermore to suggest new therapeutic
strategies in the clinic of cancers.
Summary In this second part of our review, that can be taken
independently of Part I, we focus on the level of cell popula-
tions, the only one amenable to completely take into account
phenotype plasticity in its observable consequences on the
evolution of proliferative diseases, and on heterogeneity, that
makes sense only in the context of cell populations, together
with the fundamental evolutionary potential of cancer cell
populations (and not only of single cancer cells). These are
modern views that come from the transposition from ecology
of species to the biology of cancer (for further reading on
evolution and cancer, the reader is referred to the recent
comprehensive book on the subject Ujvari et al. 2017).
Finally, we present a brief review of mathematical models,
with their features and their use in cell population studies, to
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account for phenomena found in cancer, focusing on drug
resistance. We contend that a good understanding of what
mathematical models can do to tackle the question of drug
resistance in cancer can shed light on the mechanisms of re-
sistance and means to control them and help design principles
for biological experiments to be performed at the lab and
therapeutical strategies to be applied in the clinic of cancers.

Keywords Cancer . Therapy resistance . Cell populations .

Evolution . Biological models .Mathematical models

Introduction: Cancer Cell Populations, Not Only
Single Cells, to Study Drug Resistance

Insufficiency of Single-Cell Level Studies That Assume
Heterogeneity of Cancer Cell Populations

Why is it that such promising molecules used in targeted ther-
apies, such as the tyrosine kinase inhibitors or monoclonal
antibodies, often work quite well in a tissue culture dish, i.e.,
usually on isolated homogeneous cancer cell populations, but
in human organisms show only transient effects [2, 3]?
Notwithstanding notable progress elicited by imatinib [4]
and all-trans retinoic acid [5] in some hematological malig-
nancies due to chromosomal translocations (CML and APL,
respectively, and in some other tumors, like GISTs, for ima-
tinib), these very special cases in which the disease is intrin-
sically linked with an isolated molecular event do not easily
generalize (let alone the fact that resistance to imatinib may
also occur [6]). Different reasons for the failure of such prom-
ising therapeutics have been proposed (see Part I and [2, 7]),
but a highly likely cause is the extended heterogeneity, with
respect to the expression of resistance genes, of the population
of cancer cells in a given tumor. Indeed, assuming such het-
erogeneity, even if an overwhelming proportion of cancer
cells in the tumor are killed by a drug, it suffices that a tiny
subpopulation survives to allow the tumor to resist and even-
tually thrive again. Such phenotypic heterogeneity, that need
not be due to mutations, may be spatially distributed or not,
may be due to the selection of preexisting specialized cells, or
to mere continuous epigenetic adaptation to drug insult
(discussed in [8]). Independently of this alternative between
selection and adaptation is resistance due to a single
multiresistant clone or to stochastic parsimonious risk spread-
ing of specialized resistance phenotypes in the cancer cell
population? The latter case is a would-be “tumor strategy”
known as tumor bet hedging (see below). A full explanation
of failures in cancer therapeutics, therefore, has to deal with
various types of heterogeneity in cancer cell populations, for-
saking the paradigm of the single resistant clone.

Plasticity of Cancer Cells: from the Single-Cell Level
to the Cell Population Level

Plasticity (see Part I) may be defined as the ability of partly
mature cells to dedifferentiate and possibly later redifferentiate
to adopt another phenotype. This ability is generally attributed
to cells showing a “stem-like” status. However, it must be
stressed that “stemness” is not a phenotype in itself, but rather
a transient cell state that cells may acquire and lose [9, 10].
Such labile transitions are of epigenetic nature, due to DNA
methylation, acetylation, or methylation of histones [11] men-
tioned in Part I. The epigenetic enzymes involved can be used
by dedifferentiated cells to yield drug resistance. For instance,
the histone lysine demethylase KDM5A has been found to be
responsible for acute drug resistance in an aggressive line of
lung cancer (non-small-cell lung cancer, NSCLC) cells [12].
The genetic potential for phenotype change, leading to
adapted partial dedifferentiations, on which epigenetic control
may act, is present, masked in our genome by epigenetic bar-
riers established in the course of our development towards
multicellularity to design coherent organisms based on coop-
eration between differentiated tissues [13]. Cancer cells, al-
ready partially dedifferentiated or improperly differentiated,
are particularly fit to divert such epigenetic enzymatic mech-
anisms (KDM5A mentioned above [12], DNMT3A [14] in
leukemogenesis leading to acute myeloid leukemia, and
others) for their own adaptive benefit.

Survival of a tumor in an environment changing to ex-
tremely hostile conditions must be considered, as mentioned
above, in the cancer cell population as a whole, and it cannot
be considered independently of the dimension of time. What
would be the value of an adaptive mechanism if it were too
slow to counter a fast life-threatening insult coming from the
environment? In this respect, dynamic biological experiments
must be performed, such as the one reported by Sharma et al.
[12]. Instead of studying resistance in cancer cell populations
using a slow gradual increase of drug doses, as has been typ-
ical in many studies, in order to yield resistant cell lines, they
exposed an aggressive lung cancer cell line to very high doses
(about 50-fold higher than the dose used in the clinic) of
drugs, to study the adaptive mechanisms at stake. The “dy-
namic” aspect of their study was that they continuously
followed over time the gene expression pattern in the surviv-
ing cell population. For instance, what is the initial status of
methylation of genes of interest in cancer cells? What are the
dynamics of critical enzymes involved, such as demethylases
and methyltransferases [11]? It should be possible, using such
dynamic studies, to precisely define plasticity as a velocity of
adaptation to diverse environmental changes. Ideally, to avoid
averaging effects when they are performed in whole cell pop-
ulations [15], such dynamic gene expression studies should be
performed at the level of single cells, for many different cells
in the same cell population, focusing on epigenetic enzymes
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that underlie plasticity, to explore such plasticity in a hetero-
geneous cell population by reconstruction of the distribution
of gene expression by sampling each cell in the total
population.

Phenotype and/or Spatial Heterogeneity Accounts
for Evolution Towards Resistance

Genetic driver mutations can give rise to resistance and have,
for many years, been considered the only cause of resistance
in cancer. This may often be the case, as exemplified and
illustrated previously [2]. However, resistance also occurs
without mutations, for it may be totally reversible, as shown
in cell line studies performed by Sharma et al. [12], if one
waits for enough time after the drug has been washed out from
the culture dish. In this completely reversible case is resistance
of sheer epigenetic nature, or is reversion to sensitivity due to
the quasi-extinction, when the drug has been washed out of a
resistant, mutated clone that was initially present in a dormant
state and was selected by exposure to the drug? This has been
discussed, e.g., in [8, 16, 17], opposing a Lamarckian-like
adaptive behavior of the cell population to a more classical
Darwinian vision, relying on sheer selection of preexisting
resistant cells. Whatever the explanation, it must assume phe-
notype heterogeneity in the cell population, with evolution
from total drug sensitivity to total resistance—and possibly
back. At the cell population level, through a varying percent-
age of expression of resistance genes, as at the single-cell
level, through, e.g., variable methylation status, a resistance
phenotype continuum is most likely, as opposed to the naïve
vision of a binary totally sensitive vs. totally resistant status of
cells or subpopulations in a tumor. The likelihood of such a
continuum allows for continuous evolution in a resistance
phenotype rather than binary switching between total sensitiv-
ity and total resistance to a given drug. Heterogeneity may be
considered in a first approach only of spatial nature, obviously
more easily studied by using spatially isolated samples in the
same tumor and its metastases, with phylogenetic reconstruc-
tion by branching processes [18]. However, it can also be
considered as merely phenotypic, independently of space,
with possible spatial coexistence of reciprocally tolerant, pos-
sibly symbiotic, clones in the tumor [19, 20].

Stochastic Bet Hedging in the Expression of Genes
in Cancer Cell Populations?

The concept of bet hedging in tumors, of course, initially came
from the world of economics, in which it was long ago theo-
rized as the best way to preserve one’s assets, but it has also
been present in evolutionary ecology, e.g., [21, 22], and mi-
crobiology, e.g., [23], usually related to hedging in time (in
particular, of reproduction) or space. It may be summed up in
the case of a species or of a population of individuals exposed

to changing environmental conditions as different choices in
the same population for essential fates regarding the survival
of the species or population. For a population exposed to a
changing environment, is it a winning strategy to endow only
one of its parts with all the power to face adverse events, or is
it better to give different tools or weapons to different parts of
its population, with the hope that, in the case of a confronta-
tion with an unexpected life-threatening catastrophe, at least
one part will be able to survive and preserve the population?
Insofar as such a successful strategy is the result, not of a
mutation, but of a non-genetic change of phenotype, when
the life-threatening danger is over, the whole population may
be totally preserved as such, since part of it has survived and
can thrive again.

References on bet hedging in cancer are not as numerous as
in ecology or microbiology. One can cite (Brutovsky &
Horvath, arXiv 2013 1307.060; [24, 25]), studies in which the
case of cancer cell populations is considered. In cancer, as op-
posed to the classical view of one single clone that becomes
more and more dedifferentiated and acquires pluripotent drug
resistance (MDR) due to a single renegade cell, a so-called
cancer stem cell, the bet hedging hypothesis assumes parsimo-
nious distribution of specific resistant phenotypes in the cell
population. How can such a risk-spreading strategy be
achieved? One may speculate that it can be seen as the diversi-
fied, likely stochastic, result of the (epigenetic) unmasking, trig-
gered by abrupt changes in the environment, such as cytotoxic
drug pressure, of so-called “cold genes” [26], in the whole
population. Such “cold genes,” that are highly preserved
throughout the general evolution of multicellular organisms
(by contrast to “hot genes” that carry all of the evolvability of
the genome), could be responsible for simultaneously, and like-
ly also stochastically, launching reversible stress responses of
diverse natures that have been stored in the genome in the
course of billion-year-long evolution from the first unicellular
organisms to face life-threatening events such as UV radiation,
acidity, hypoxia, or other cellular stresses [13].

Evolutionary Phenomena in Cancer Cell Populations

“Nothing in biology makes sense except in the light of evolu-
tion” (Theodosius Dobzhansky [27]).

Evolution of Multicellular Life and the Atavistic
Hypothesis of Cancer: the Large-Time Scale

The atavistic hypothesis of cancer, recently popularized in
[13], is not a new idea [28]. It simply states that cancer may
be seen as a reverse track in the great, billion-year-long, evo-
lution that has led to the present most evolved multicellular
organisms, and that genes that are altered in cancer are those
which precisely correspond to the main steps of
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multicellularity construction through a “multicellularity gene
toolkit” [29, 30]. As evolution proceeds by tinkering [31],
likely some of these tinkered steps driven by genetic muta-
tions show flaws and are sensitive to environmental changes,
in some differentiated tissues of (likely) all individuals.
Searching systematically through the fragile steps in the de-
velopment of multicellularity, which is initiated by prolifera-
tion control, followed by control of differentiation, with epi-
genetic controls coming last and being the most delicate, and
comparing them with cancer phylogenetic studies should help
rationalize genetic studies in cancer. Such vision might yield
probabilistic study models of fragility in the genome and help
design targets in models to focus on in therapeutic interven-
tions. Independently of such potential studies, it should be
stressed that we bear in our genome various defense mecha-
nisms (against hypoxia, UV radiation, acidity, etc.) coming
from our ancestors in a remote hostile past of the Earth [13],
that have normally been epigenetically silenced to allow for a
coherent organization of cooperating differentiated cells and
tissues in multicellular organisms, but that can be unmasked in
the very plastic cancer cells. This may account for the fact that
poorly differentiated cancer cells can develop many resistance
mechanisms, as outlined in, e.g., [32].

Ecological Evolutionary Mechanisms in Cancer Cell
Populations: the Short-Time Scale

On the short-time scale of evolution of cell phenotypes in a
given genome in a human life (and not of all genomes in the
changing environment of the planet Earth, as in the previous
case), cancer cell populations may be considered as new spe-
cies that aim at thriving at the expense of other surrounding
cell populations that exist within a multicellular environment.
Such ecological views applied to cancer, often qualified as cell
Darwinism, lead one to consider the evolution of cell popula-
tions in their environment, which is constituted of exchanges
with other cell populations, in competition or symbiosis, of
local metabolic conditions such as oxygen, pH, glucose,
growth factors, inflammatory cytokines [33], and also of local
mechanical tension/pressure in a given tissue. This short-time
scale of observation is easier to take into account by observa-
tions than large-time phylogeny. It is the first setting in which
to develop models of non-genetic adaptation [8]. It can also
involve phylogenetic studies of successive clonal mutations in
rapidly evolving diseases that help understand their history, as
in [34, 35]. Of note, in this latter study [35] dedicated to the
analysis of blood samples of patients with acute myeloid leu-
kemia, the prevailing functional and phylogenetic scenario
consists of a first mutation in an epigenetic control gene,
followed by a mutation in a transcription factor related to
differentiation, and finally by a mutation in a gene related to
proliferation, as if it recapitulated a systematic deconstruction
of coherent evolution towards multicellularity [13].

Evolution Towards Resistance: Irreversible (Due
to Mutations) or Not (of Epigenetic Nature)

The introduction of an evolutionary point of view in cancer
owes a great deal to studies by Gatenby et al. [36–38], see also
[1]. The distinction between mutational (genetic, irreversible)
and non-mutational (phenotypic, often of epigenetic nature,
reversible [16, 17]) mechanisms has already been mentioned
above in the context of heterogeneity in cancer cell popula-
tions characterized in their biological diversity by variable
expression of drug resistance. It should be noted that genetic
and non-genetic mechanisms are not mutually exclusive. In an
evolutionary perspective, the dominant opinion is that muta-
tions come first. However, the reverse has been observed [39]
and a succession of epigenetic/genetic/epigenetic changes is
completely possible [40]. Nevertheless, when reversibility of
resistance is obvious from experimental observations (al-
though one can never completely exclude the emergence of
a resistant mutated clone followed by its extinction), it is
tempting to involve epigenetic control, all the more so when
epigenetic enzymes have been identified, as in [12]. Whatever
the underlying mechanisms, mathematical models can capture
such reversibility and can be used to design optimized thera-
peutic drug regimens overcoming drug resistance (see below).

Mathematical Models: Their Features for the Study
of Evolving Cancer Cell Populations (See also [41]
for equations and illustrations)

Probabilistic Models with Discrete Time (Number
of Divisions) or with Continuous Time

The first probabilistic model that takes drug resistance into
account was proposed in 1979 by Goldie and Coldman [42].
They assumed that there is a certain probability of a muta-
tion (to gain the resistance phenotype) with each cell divi-
sion. This model was extended by Goldie et al. [43] to study
drug resistance to two different types of chemotherapeutic
agents. Indeed, long-term patient survival not only depends
on minimizing the total number of tumor cells but also de-
pends on preventing the development or outgrowth of drug-
resistant subpopulations within the tumor. As regards the
dynamics of stem cells without drugs, Pacheco and Dingli
have also proposed purely probabilistic models [44, 45], in
which time is discrete and consists of numbers of divisions
at mitosis. They argued that in the case of stem cell popu-
lations, cell numbers are too small to use continuous equa-
tions (that represent the evolution of large population num-
bers). They applied their methods to the hematopoietic mat-
uration tree, using allometric scaling in mammals to recon-
stitute it in humans [46]. Multitype continuous time
branching processes have been used to study evolution of
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resistance mutations emerging from an exponentially grow-
ing population of cancer cells [32, 47].

Agent-Based Models: Simulations That Easily Take
Biophysical Phenomena into Account

Agent-based models (ABMs) do not involve continuous nor
deterministic settings. They are by nature based on stochastic
evolution rules according to which cells (agents) divide,
move, differentiate, or die, with a priori total unpredictability.
As no mathematical analysis (i.e., no theorems and thus no
sure predictions) can be obtained from them, they can be used
only to perform simulations up to a limited number of cells,
usually around 10,000, due to their heavy computational bur-
den, without any certainty that their results are always repro-
ducible, and not simply due to random effects. However, any
metabolic or environmental influence exerted on the cells,
provided that it has a chemical or physical representation,
can readily be included in such models. Furthermore, these
models can provide biologists and mathematicians, concerned
with sure predictions about the fate of a cell population, with
conjectures, i.e., with an intuition of what could be proved.
For these reasons, they are popular in the community of math-
ematical modelers, even among those who indulge more in
PDE modeling.

For a comparison between partial differential equations
(PDEs, see below) and ABMs, see [48]. Roeder and Loeffler
[49] have used ABMs to dynamically study imatinib-treated
chronic myeloid leukemia. See, however, below about partial
differential equations (PDEs, Kim and Doumic in a simpler
setting [50, 51]). Gupta et al. [52] have used ABMs to simu-
late stability of phenotype coexistence in cancer cell popula-
tions, and later Chisholm et al. [8] have also used ABMs to
investigate stochasticity in the evolution towards drug resis-
tance and its reversibility, as biologically evidenced by
Sharma [12]. Poleszczuk and Enderling also used an ABM
of cancer stem cells and their progeny, including transition
between stem and non-stem cancer cell states, and showed
that plasticity can substantially increase tumor growth rate
and invasion [53].

Ordinary Differential Equations: Compartmental,
Simple, Amenable to Dynamic Analyses

On the contrary, ordinary differential equations (ODEs) are,
by nature, continuous in time, deterministic, and can give rise
to theorems and predictions of the fates of cell populations.
Note, however, that they are valid only in the case of large
population numbers (which of course may be questionable in
the case of healthy stem cells). They represent the necessary
fate of a cell population, provided that one knows its initial
conditions and dynamic rules for its instantaneous evolution,
which can be described by conservation laws such as the law

of mass action. Consideration of heterogeneity in ODE
models is, however, limited to a discrete representation, i.e.,
residing in a compartmentalization between totally homoge-
neous subpopulations and exchanges of cells between these
compartments. This is exemplified in [54], in which an addi-
tional environmental framework is proposed.

Avariety of ODEmodels have been developed to study the
dynamics of cancer stem cells, heterogeneity and plasticity of
cancer cells, and the role of stem cells in drug resistance.
Several studies have focused on mathematical modeling of
stem cells and cancer initiation and progression in chronic
myeloid leukemia (CML), see, e.g., [55–57].

By calculating the probability of resistance, Komarova
and Wodarz [58] developed an ODE model for the
targeted treatment of cancer based on the evolution of
resistant tumor cells. Their model suggests that resistance
often arises before the start of treatment. The cancer stem
cell hypothesis has also been applied in the context of
drug resistance as an evolutionary process by Leder
et al. [59], of course still in a binary (compartmental)
vision, since ODEs are not amenable to take continuous
phenotypes nor continuously evolving transient cell states
into account. The model by Leder et al. suggests that
dedifferentiation reduces the effectiveness of therapy di-
rected at cancer stem cells by increasing the rates of
resistance.

Age and Maturation-Structured Transport PDE Models
and Delay Differential-Derived Models

Age-structured models have been used to represent the cell
division cycle in cell populations. In this case, heterogene-
ity occurs only with respect to an age variable [60–63].
More PDE models, structured in both age in the cell cycle
and maturation (=differentiation) age, either with continu-
ous [64] or discrete maturation age [65], have been de-
signed to simultaneously represent proliferation and matu-
ration, in particular for hematopoiesis, from the hemato-
poietic stem cell to a given mature lineage such as neutro-
phils in the myeloid case. In the context of cancer evolu-
tion, plasticity and dedifferentiation are explored using an
age-structured PDE with diffusion—to account for the
probability of fixation of a mutation derived from a
Moran process—in [66], with good fit to data. In this ver-
sion of PDEs, the phenotype represented is only matura-
tion, named age. Age-structured linear PDEs can immedi-
ately be reduced to delay differential equations that are not
necessarily simpler to study, but simpler to formulate,
which has been done in [67, 68]. A feature of such delay
models is that they are amenable to represent periodic he-
matological diseases, using a delay systems version of a
Hopf bifurcation. They are still a subject of active research,
reviewed in [69].
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Spatiallly Structured and/or Phenotype-Structured PDE
Models

Phenotype-structured populations take into account the bio-
logical variability at stake by means of a continuous pheno-
typic trait characterizing cells in the population. These cell
population models may sometimes be too complex to perform
mathematical analyses, allowing only computer simulations,
but they have the essential property of representing phenotype
heterogeneity in a continuous and reversible way. This latter
feature has been used, for instance, in [8] to question, in a
phenotype-structured PDE model setting, the respective roles
of non-genetic instability and of fast drug dose-dependent,
adaptation in the establishment of acute drug resistance in
cancer; a numerical study of a more general class of models
is also performed in [70]. Classical PDEs usually take account
of heterogeneity in cell populations in a spatial manner, i.e.,
the distribution of cells in a population and its evolution with
time is dependent on the position of a cell in the spatial struc-
ture in which it is located. This allows, in particular,
representing and analyzing cell motion triggered by
chemoattractants, by means of the well-known Keller-Segel
model [71]. This setting also allows one to study tumor growth
in spheroids and its control by drugs, with possible application
to drug resistance, as in [72], and many others. Structuring a
cell population according to its heterogeneity in phenotype is
less classical than with respect to space in cancer, although it
had already been done in the framework of modeling for ecol-
ogy, giving rise to the mathematical field of “adaptive dynam-
ics.” Such modeling has been proposed to account for a drug
resistance phenotype in cancer in [73], where effects of thera-
pies are studied and a proof of concept of drug delivery opti-
mization is simulated, avoiding resistance and eradicating a
cancer cell population, while preserving a healthy cell popu-
lation. Furthermore, it is possible to mix phenotype and space
when knowledge about the tumor geometry is known, such as
in a spheroid, again to represent drug resistance and propose
therapeutic strategies to overcome it [74].

Asymptotic analysis of an ODE or PDE model consists of
determining, as a function of its parameters, its behavior in
large time (otherwise said, for time tending to infinity). If the
model represents a cell population, will its number stabilize at
a given positive value? Will it become extinct? Will it grow
indefinitely? Will it present sustained oscillations? In the case
of several populations, will there be coexistence? At deter-
mined positive values? Or coexistent indefinite growth?
These are the types of questions with which asymptotic anal-
ysis deals. Clearly, it allows for predictions, in the absence or
presence of drugs that change the model parameters. This
question is treated in an ODE setting, with possible applica-
tions to understanding and overcoming drug resistance, e.g.,
in [75], and lately in a phenotype-structured PDE setting for
drug resistance [76].

It is sometimes possible to deduce a PDE model from an
agent-based one, keeping its main features and taking advan-
tage of the velocity of computation and of the possibility to
perform some mathematical analysis. Such an example is pro-
vided by the Roeder ABM model of CML [49], and consid-
erably reduced in its PDE version by Kim [50], and further
analyzed for its stability by him and others in [51], obtaining
the same results and more in terms of analysis. Nevertheless, it
should be noted that, while the ABM formalism is easily ac-
cessible to elementary understanding, its PDE counterpart
may seemmore abstract, and even though it contains the same
features and allows one to perform predictions that are certain
(theorems are not subject to stochastic fluctuations), PDE
models have too often been disregarded thus far—a trend that
will hopefully be reverted in the forthcoming years.

Phenotype-structured models are also amenable to take
evolution under metabolic change into account. This has often
been studied in hybrid models, in which agent-based models
represent the fate of a cell population, or several cell popula-
tions in competition, and the dynamics of diffusible molecules
of interest in the tumor environment is represented by spatial
PDEs of the reaction-diffusion type. This is the case, in par-
ticular, of the study [77], in which heterogeneity in cells is
focused – in a continuous manner – on the oxidative vs. gly-
colytic metabolism, whereas proliferation and cell death are
based on an ABM.Nevertheless, nothing opposes using strict-
ly continuous (PDE) models to take environmental variables
into account. This is done in a schematic way for nutrients and
drugs in [74], with study of optimized therapeutic protocols.

Using Mathematical Models to Design Therapeutic
Strategies Taking Drug Resistance into Account

As mentioned at the beginning of the previous section, struc-
turing an evolving cell population according to a continuous
variable x means assigning to each cell a relevant value x (or
set of values if x is multidimensional) to characterize its var-
iability at stake in the population. The variable x may be for
instance age in a phase of the cell cycle, size, or expression of
phenotype(s) of interest. Now, given a continuous and deter-
ministic representation of the evolution of a cell population
structured in phenotypes of resistance for both cancer and
healthy cells in interaction by competition, e.g., for space oc-
cupation and for nutrients, one can set an optimal control
strategy problem. Solving an optimal control problem, which
is always finding a best trade-off between reaching an objec-
tive and respecting constraints inherent to the problem, here
consists of determining the best strategy of continuous drug
infusion that will contain, and if possible eradicate, a cancer
cell population under the constraints of limiting unwanted side
effects in the healthy cell population, while avoiding the emer-
gence of a resistant phenotype in the cancer cell population.
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This was, for instance, the case of the first models,
consisting of compartmental ODEs, in which drug resistance
in cancer and its optimal control by chemotherapy were stud-
ied [78, 79]. The framework of ODE models has more recent-
ly been used by Komarova et al. [58], Leder et al. [59] as
mentioned above, taking drug resistance into account.

Adaptive therapy, as advocated by Gatenby et al. [36–38],
brings the important consideration of an evolutionary drug
resistance phenotype in the cancer cell population to the fore-
ground. Either using ABMs or an ODE setting, or both, they
develop the idea of making a binary (or possibly graduated)
distinction between sensitive and resistant cancer cell popula-
tions and making use of this distinction in therapies. It
amounts to taking the sensitive cancer cells as an ally inside
the tumor fortress, since sensitive cancer cells are also the
faster to proliferate in the absence of drugs. The trade-off
consists in alternating periods of drug delivery, that kill sensi-
tive cells but inevitably trigger proliferation in resistant cells
[17], and periods of “drug vacation” during which, inside the
tumor, resistant cells give way to the then more proliferative
sensitive cells, the switch being determined by a threshold
imposed on the tumor volume or mass.

Although not taking drug resistance into account, notable
contribution has been brought to the field, still with ODEs, by
Łędżewicz and Schättler, to optimize the delivery of a combi-
nation of cytotoxic and antiangiogenic drugs [80, 81], using
optimal control algorithms. However, also using optimal con-
trol algorithms, and a combination of cytotoxic and cytostatic
drugs in a phenotype-structured PDE setting involving revers-
ible phenotype evolution, the question of simultaneously
avoiding drug resistance and unwanted toxic side effects to
healthy cell populations has been theoretically solved in the
case of a finite horizon [76]. As in the case of adaptive therapy
[36–38], this study proposes an alternation of drug delivery
and “drug holiday” periods, the switch being determined here
by the side effects of the cytotoxic drug on a healthy cell
population.

Multiscale Modeling: Integration from the Single Cell
to the Cell Population Level

Changes in the environmental metabolism, or mutations, or
added drug pressure, change the differentiation phenotype in
the well-known Waddington epigenetic landscape (1957) and
were revisited by Sui Huang in a series of articles [82–84, 85•,
86]. In this metaphoric landscape, cells follow, from a plurip-
otent state, a differentiation journey that resembles the fate of a
ball rolling in a succession of bifurcating valleys with apparent
stochastic choice at each bifurcation. However, such bifurca-
tions in differentiation are not random and depend on balances
between dynamic determinants of gene regulatory networks
that are not metaphoric, relying on identified biochemical
mechanisms that can be modeled as bistable (or multistable)

dynamical systems. In particular, epigenetic barriers in the
landscape may be lowered, others raised, diverting cells from
their normal differentiated states (the ends of the valleys,
rolling down) and possibly trapping them in basins
representing immature states, e.g., myeloblasts in the case of
hematopoiesis. A way to represent such phenomena in math-
ematical models is to use, at the cell population level, PDEs
structured in antagonistic variables, that are themselves at the
single-cell level solutions of a dynamical (ODE) system on the
parameters of which the tumor environment may act, as pro-
posed in [87, 88], where an illustration was given on a model
of differentiation of T cells between Th1 and Th2 cells,
governed at the cell level by dynamic transcriptional regula-
tion of transcription factors T-bet and GATA-3.

Conclusions and Possible Use of This Review

In this second paper, we have recapitulated, from a theoretical
biology point of view, the main features of cancer cell popula-
tions that should be retained to understand drug resistance in
order to design mathematical models to represent and analyze
drug resistance, and predict its evolution. This interdisciplinary
field of research also needs, in order to be properly explored in
collaborative studies between biologists, oncologists, andmath-
ematicians, a clear understanding of what different types of
mathematical models can do and cannot do. This is naturally
clear to mathematicians, and to avoid any misunderstanding, it
should be made clear also to biologists before any common
research effort is undertaken. This was the main purpose of this
second part of our review, which we hope will serve as a pre-
view for future interdisciplinary studies on stem cells and drug
resistance in cancer in light of mathematical models.
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