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Abstract
Purpose of Review Putative studies continue to support the
assertion of the cancer stem cell (CSC) hypothesis, namely
that a very small subgroup of a malignant tumor population
initiates and drives tumor growth. These cells are purported to
possess similar biological properties to their normal adult stem
cell counterparts. The CSC hypothesis arises from the obser-
vation that tumors like normal tissues have their origin in cells
that display potential for self-renewal as well as the ability to
generate differentiated cells of various lineages. In addition,
CSCs have developed basic characteristics that enable them to
evade the effects of standard therapies and these may in fact
underlie the mechanisms leading to chemo-resistance and tu-
mor relapse.
Recent Findings In recent years, mathematical and computa-
tional modeling have emerged as powerful tools in biomedical
research that can be used to study biological systems at mul-
tiple scales ranging from molecular processes to cell-cell in-
teractions and how these interactions lead to changes at tissue
and organ levels. In addition to accelerating biomedical re-
search through computational simulation of physical experi-
ments, modeling can also be used to guide experimentalists by
identifying possible factors and mechanisms underlying the
particular problem being studied; this in turn may suggest

physical experiments that eventually lead to the resolution of
this very problem.
Summary In this paper, we review mathematical models that
explore the role of CSCs in treatment response, in developing
chemo and radio resistance, as well as those that suggest new
treatment strategies. In addition, mathematical models that
focus on optimal therapeutic protocols will also be discussed.

Keywords Cancer stem cells . Heterogeneity . Mathematical
models . Treatment response . Resistance . Targeted therapy

Scope of this Review

Cancer is a group of diseases that involves abnormal cell pro-
liferation in which the interaction of cellular mechanisms and
the tumor microenvironment imbue some tumor cells with
metastatic potential resulting in the dissemination of malig-
nant cells to other parts of the body. Tumor heterogeneity is
one of the important features that has been observed in differ-
ent types of cancers, and this has a significant impact on tumor
development and response to treatment. Both clonal evolution
and the CSC hypothesis go some way to explaining the gen-
esis and evolution of this heterogeneity [1, 2]. Cancer clonal
evolutionary theory suggests that tumor initiation relies on
multiple mutations occurring in an arbitrary single cell [3].
However, the cancer stem cell hypothesis proposes that a
small sub-population of cells, known as cancer stem cells
(CSCs), are endowed with tumor initiation and propagation
potential (Fig. 1). These CSCs are able to perpetuate them-
selves through self-renewal and to generate non-CSC proge-
nies through symmetrical and asymmetrical divisions, respec-
tively. Recent evidence suggests that the transition from CSCs
to normal cancer cells is not unidirectional, and that there is a
degree of plasticity between non-CSC and CSC states [4, 5].
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Such interconversion can arise as a result of genetic modifi-
cations to cancer cells, random mutations, or microenviron-
mental effects.

The therapies that patients receive are usually proposed
based on the type, the stage and location of a particular can-
cerous malignancy, and on the overall health of the individ-
uals. The most common types of therapeutic interventions are
surgery, chemotherapy, and radiotherapy, and in practice, a
combination of more than one treatment is applied.
Chemotherapy drugs can target tumor cells in different ways.
Generally, these drugs prevent cancer cells from growing and
reproducing rapidly through DNA damage; however, in the
process, this often results in damage to normal cells, as well.
Chemotherapy can be given before, during, and after radio-
therapy (referred to as neoadjuvant, concurrent, and adjuvant,
respectively). Current conventional radiotherapies also deliver
high-energy beams to tumor tissues, which induce various
types of DNA damage and genomic instability. Some of the
resulting types of lesions, such as double-strand breaks, are
severe enough to cause cell apoptosis. However, the majority
of treatment failures for different types of cancers are a direct
result of the emergent resistance of cancer cells to convention-
al therapies, which leaves patients with limited treatment op-
tions [6, 7]. CSCs show higher resistance to available thera-
pies due to upregulated DNA repair mechanisms. The ability
of non-CSCs to reenter the CSC state can also contribute to
poor clinical results. Furthermore, most available treatment
strategies also target cells that are actively dividing, which is
not the most efficient way to destroy CSCs since they are
relatively quiescent. In addition, dysregulated signaling path-
ways that control CSC self-renewals, including Notch, PTEN,
BMI-1, and WNT, are usually not targeted by current conven-
tional therapies [8]. Thus, understanding the tumorigenic

potentials and the effective mechanisms that CSCs develop
to enhance their aggressive phenotype is essential for the de-
velopment of more efficient and effective treatment strategies.

Along with the concerted effort that is underway in differ-
ent branches of science to combat cancer, mathematical
models have also been effectively utilized to probe the under-
lying mechanisms driving tumor growth and make predictions
that can be validated experimentally [9–12]. For example,
mathematical modeling that is grounded in experimental data
can be used to predict therapeutic outcomes and improve clin-
ical results [10, 13–16]. Mathematical modeling has been ex-
tensively used to try and understand cancer on different scales,
but in this review, particularly, we focus on models that try to
simulate and predict the effects of treatment. Hence, a brief
review of these types of models will be given in the introduc-
tion. The main scope of this article is to highlight various
mathematical models that incorporate the CSC hypothesis as
well as some of the fundamental traits of CSCs. These will be
discussed in more details in Sections 1, 2, and 3.

Introduction

Earlier seminal work of Norton and Simon [17, 18] utilized
mathematical modeling to integrate biological growth informa-
tion in to treatment scheduling. This led to perhaps the greatest
clinical trial innovation in half a century and the wide spread
acceptance of the BNorton-Simon^ hypothesis in clinical circles.
Norton and Simon proposed that tumor growth dynamics fol-
lows a sigmoidal function during chemotherapy and suggested
that a dense dose protocol would have better outcomes than
standard schedules, which has been clinically verified, for exam-
ple in [19] among numerous others. In addition, a number of
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Fig. 1 Schematic diagram of
CSC hypothesis and clonal
evolution theory. In cancer
evolution theory, the acquisition
of mutations occurs, followed by
expansion of the dominant clone
(a). But, the CSC hypothesis
suggests that CSCs share similar
properties to normal stem cells
(SCs) and are responsible for
cancer initiation as well as the
generation of non-CSCs (b)
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mathematical models discussed tissue response to fractionated
radiotherapy treatments with either acute or protracted doses
[20–22]. One of the early models in this area was developed by
Thames et al. [23], Thames [24] who used it to investigate the
dynamics of radiation damage repair. The approach used a linear
quadratic model to describe cell survival, modified to account for
incomplete repairs between fractions (for fractionated acute con-
tinuous exposure) and the repair during the administration of the
fractions (for low dose rate continuous exposure). The linear
quadratic model and its modifications have been considered ex-
tensively in the literature, to simulate the response to radiation
exposure. The evolution of resistance before and during treat-
ment is also one of the first problems that was addressed in the
mathematical modeling of treatment responses [25–28].
Coldman and Goldie [25] and Goldie and Coldman [26] pro-
posed a stochastic model to explore the risk of developing resis-
tance during treatment. The model assumed that sensitive cells
can be eliminated upon receiving treatment and that resistant
mutations can occur with a certain given probability. The results
imply that the probability of resistance (when treatment includes
two drugs given sequentially) depends on the total number of
cells and their mutation rates. The authors suggested that to im-
prove success rates, drugs should be administered as soon as
possible after diagnosis. They proposed that drugs should be
given in an alternating fashion rather than sequentially to have
a significant impact on the heterogeneous cell populations; nev-
ertheless, this suggestion could not be confirmed clinically [29].

In medicine, to proceed from bench to bedside, numerous
clinical trials are needed to determine the best treatment pro-
cedure and protocol. In this context, mathematical modeling
can play an important and critical role in the prediction of the
most efficient treatment strategies, thus avoiding unnecessary
and often excessive reliance on clinical trials. Several mathe-
matical models have been developed in the literature to estab-
lish the most practical treatment protocols [30–32]. Many
models try to rapidly minimize the total tumor size; however,
successfully controlling tumor growth depends critically on
reducing effectively both drug sensitive and drug resistant
cells. Some of the early work by Costa et al. [33] describes
the dynamics of a tumor that includes drug resistant cells. The
model aims to efficiently find the optimal treatment schedule
by minimizing the total tumor size. The development of
better-designed treatment regimens is still a field of significant
research activity; nevertheless, the attainable benefits from
treatment must still be evaluated and quantified to be of any
clinically relevant significance. The tumor control probability
(TCP) is a measure that attempts to quantify the probability of
destroying or removing malignant cells using a variety of
radiation therapy schedules. In order to establish a better for-
malism for TCP, different models have been introduced in the
literature such as that of Kendal [34], Munro and Gilbert [35],
Tucker et al. [36], Yakovlev [37], and Zaider and Minerbo
[38]. For example, one model frequently discussed in the

radiation therapy literature is the so-called Poisson model of
TCP [35, 38]. This model assumes that the number of cells
that survive radiation has a binomial distribution, and if the
survival probability is small enough, the probability of no
malignant cells remaining follows a Poisson distribution after
treatment. However, the model neither captures the prolifera-
tion of cells during treatment nor the stochastic effects. Later,
Zaider andMinerbo [38] acknowledged the impact of stochas-
tic effects on radiation-induced cell death and suggested a
model based on a simple stochastic birth/death process.

Generally, most of the primary mathematical models are
established based on the clonal evolution theory, where all
cells are capable of giving rise to mutants that lead ultimately
to the formation of tumors. However, the emerging CSC hy-
pothesis has become the subject of theoretical analysis to ex-
plore the role of CSCs in tumor response to treatment and the
acquisition of resistance, which will be discussed in the fol-
lowing sections.

The Roles of CSCs in Evolving Resistance
and Tumors Response

Despite much improvement in the design of practical cancer
therapies, the majority of patients often develop tumor resis-
tant to standard therapies [39, 40•, 41, 42]. It may be that
conventional cancer treatments act more efficiently on highly
proliferating cells and thus leave the quiescent CSCs relatively
unscathed. For example, resistance to imatinib is one of the
complications that can arise for patients treated for chronic
myelogenous leukemias (CML), which can cause initial re-
fractoriness of the disease and relapse. The evolution of resis-
tance from an exponentially growing cell population was stud-
ied using a continuous time branching process by Iwasa et al.
in [43]. The model starts with a single sensitive cell that can
undergo mutations and become resistant to imatinib. Finally,
the probability of resistance at the time of diagnosis was cal-
culated and it was concluded that a higher number of cell
divisions increase the occurrence of resistant cells. The quies-
cence of cancer stem cells is also a critical characteristic that
safeguards them from imatinib. Hence, a mathematical model
has been developed to explore the impact of cellular quies-
cence on the dynamics of drug resistance [44]. For a single
drug, if the resistant cells exist before treatment, the quiescent
cells do not modify the chance of resistance, although they can
increase the probability of developing resistant mutants when
patients receive a combination of more than one drug with
various targets. In fact, the therapy phase is not important for
emergence of mutants since they existed before the diagnosis,
but the dormant cells may delay the time that is required for
the therapy to eliminate the tumor burden. The authors ulti-
mately suggested that reducing the number of quiescent stem
cells during therapy is not beneficial for reduction of
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resistance risk, since plasticity is another key factor that con-
tributes to resistance and invasion. Poleszczuk et al. [45] used
a mathematical model to simulate and investigate the effects
of different rates of transitions (from non-CSCs to CSCs) on
tumor growth and treatment response. The results show that
tumors with low rates of plasticity can regrow after radiother-
apy. Nevertheless, for tumors with high plasticity rates, post-
therapy cancerous cells undergo remission after regrowth, be-
cause radiotherapy appears to increase CSC depletion.
Although the results seem interesting, more experimental in-
vestigation is required, to ensure this is not a computational
artifact.

Gupta et al. [4] combines both biological experiments and
mathematical simulations to examine the sensitivity of distinct
phenotypic states (Stem like, basal, luminal) to treatment. For
this purpose, breast cancer cell lines (SUM159 and SUM149)
have been treated with two conventional chemotherapy drugs:
paclitaxel and 5-fluorouracil (5-FU), which resulted in in-
creasing the portion of cancer stem-like cells for both cell
lines. To gain a comprehensive understanding of these results,
a Markov model has been established to examine the dynam-
ics of breast cancer cell populations and transition between
different states. The results indicate that basal cells are more
sensitive to paclitaxel in comparison to the other two states for
the SUM159 line. Moreover, the proportion of both stem-like
cells and basal cells show approximately a fivefold increase
after receiving paclitaxel, but the growth in basal cells is due to
the resistance of stem-like cells to the treatment, which can
regenerate basal cells afterwards. In addition, Gao et al. [46]
demonstrate that resistance to radiotherapy is not the only
critical factor responsible for CSC enrichment in gliomas
and that repeated exposure to radiotherapy can create a micro-
environment that tilts the proliferation in favor of symmetric
divisions.

Cell surface protein expression profiles are the main tool
used to isolate cancer stem cells in different tissues. For ex-
ample, CD34highCD38low, CD133+, and CD44highCD24low

are common biomarkers used for leukemia and brain and
breast tumors, respectively, see [47] and references there in.
However, clearly not all cells that have the same protein ex-
pression are necessarily cancer stem cells, and it appears that
both cancer stem cells and early generations of progenitors
often express the same protein markers [48]. These findings
have been taken into consideration in developing a hierarchi-
cal model that includes stem cells, the Nth generation of pro-
genitor cells, and mature cells. Dhawan et al. [14] have
employed a fully stochastic model for a hierarchy of hetero-
geneous cell populations and used numerical simulations to
obtain the tumor control probability (TCP). The TCP is de-
fined as the probability of eradicating all cancerous cells in a
particular tissue and is used as a measure of radiotherapy
efficacy. Based on the CSC hypothesis, removing CSCs is
essential to achieve a cure. Therefore, the probability of

controlling cancer stem cells only (TCPs) was also deter-
mined. Furthermore, because of imperfect biomarkers for
CSCs, the probability of eliminating biomarker positive cells
(TCPCDþ ) was calculated. Finally, it is suggested that TCPCDþ

can be used as a clinically relevant alternative for TCPs.

New Therapeutic Strategies Targeting CSCs

CSCs are generally not targeted by commonly used treatment
strategies, so designing therapies that are able to specifically
target CSCs is of paramount importance [49••, 50, 51]. For
example, it has been shown that the fraction of CSCs is
enriched after radiotherapy due to the highly efficient DNA
damage response in gliomas [39]. Thus, developing effective
treatment strategies that target and eradicate CSCs is crucial to
improving clinical results and minimizing recurrence.
Consequently, designing therapies that include both standard
anticancer treatments and CSC-targeting agents may be an
effective double-pronged attack to eliminate various types of
cancer cells. For instance, Goldman et al. [52••] used both
mathematical modeling and experimental studies to investi-
gate the mechanisms behind adaptive resistance in breast can-
cer patients treated with a high concentration of taxanes. The
results indicate that treatment with taxane leads to a pheno-
typic cell state transition to the CSC population, which can
contribute to tumor resistance. Moreover, it is demonstrated
that applying inhibitors that can control the SFK/HcK path-
ways in a proper temporal schedule (after exposure to taxanes)
increases the sensitivity to chemotherapy treatment and thus
increases cell death. Furthermore, a simple mathematical
model has been presented [53] to illustrate the importance of
eradicating CSCs. The model includes two layers of differen-
tial equations to account for the hierarchy of stem cells and
differentiated cells for both normal and tumor cells. Analysis
of different therapeutic possibilities implies that increasing
apoptosis or decreasing the generation of malignant mature
cells are not useful approaches to controlling and removing
the disease due to plasticity and replenishment of CSCs.
However, the therapeutic protocols that prevent CSCs from
reproduction have the potential to eradicate the disease if
CSCs are subjected to such a therapy for an extended period
of time. Furthermore, it is predicted that agents that either
decrease the division rate or increase the death rate of CSCs
can improve the results; however, the eradication of cancerous
mature cells is needed to minimize the risk of failure and
eliminate the potential impact of plasticity. Additionally, a
mathematical model has been developed based on the work
of Youssefpour et al. [54] to explore the advantage of
Bdifferentiated^ therapies and radiotherapy combinations,
which push CSCs to differentiate into descendants that are
more sensitive to radiotherapy [55]. Consequently, applying
Bdifferentiated^ therapies along with radiotherapy appears to
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improve treatment success and decrease side effects for head
and neck, brain, and breast cancers.

Piccirillo et al. [56] have reported that exposure to bone
morphogenetic proteins (BMPs) decreases proliferation and
increases the expression of non-cancer initiating cells in glio-
blastomas (GBMs). This study demonstrated that brain tumor
stem cells (BTSCs), identified by biomarker CD133+, are in-
duced by BMPs to differentiate into CD133− cells, which are
not tumourigenic and are more responsive to conventional
cancer therapies. These findings suggest that adding proteins
like BMPs to the currently available radiotherapy protocols
might significantly improve outcomes; nevertheless, more in-
vestigation is required due to other possible interactions in the
complicated underlying mechanisms driving tumor growth.
From this perspective, Turner et al. [57] have proposed a
mathematical model that represents the effect of BMPs on
radiotherapy results for glioblastoma based on the cancer stem
cell hypothesis. The model describes the stochastic effects of
the small number of cells for different types of BTSC divi-
sions, symmetric self-renewal S→ S + S, asymmetric self-
renewal S→ S + P, and symmetric proliferation S→ P + P.
These two subgroups of cells can also undergo apoptosis
and be discarded. On a larger scale, however, the model con-
siders the corresponding average equation to study the role of
BMPs and the cell kill response of radiotherapy on tumor
dynamics. The model is mathematically given by:

dS tð Þ
dt

¼ ~ρs S;Pð ÞrS−Γ sS−αsS ∑
j
d j f

t−t j
τ s

� �

dP tð Þ
dt

¼ ~ρp S;Pð Þ 1−rð ÞS−Γ pP−αpP∑
j
d j f

t−t j
τp

� �

where ~ρp S;Pð Þ ¼ ρs 1− S
Slim

− S
Slim

� �
, which employs logistic

growth dynamics to capture the competition between species
for limited nutrition. Here, Slim and Plim stand for the maxi-
mum population of BTSCs and progenitors, respectively.
Additionally, ρs denotes a rate of proliferation for stem cells
that can occur with probability r = r1 − r3, where r1and r3 are
the probability that BTSCs go through symmetric self-renewal
and symmetric proliferation, accordingly. These two types of
cells can undergo apoptosis with probability Γi (i ∈ {S, P}). In
addition to apoptosis, cells can also be removed with radiation
dose dj given at time tj on jth fraction of treatment. Here, the
function f is assumed to be exponential for x≥0 and 0 other-
wise. The clearance times for dead BTSCs and progenitors
after radiation are given by τs and τp, respectively. Further,
αi for i ∈ {S, P} represents the radiobiological parameters for
BTSCs and progenitors. Experimental results demonstrate
that BTSCs are more resistant to radiation than CD133− cells
[39]. Therefore, the radiosensitivity parameter for CD133−

cells is chosen to be $3$ fold more than the radiosensitivity
parameter for CD133+cells (αs<αp).

The effect of BMPs ismathematically captured by reducing
the probability r together with fixing r2, which is the proba-
bility of BTSCs going through asymmetric self-renewal.
Following Piccirillo et al. [56], it is assumed that r = r1 − r3
is changed from the pretreatment value 0.1 to a negative value
−0.1 after receiving BMPs. Modifying r to a negative value
implies an increase in symmetric differentiation divisions and
a decrease in symmetric self-renewing divisions. The effect of
radiation kill is also examined for different treatment sched-
ules. Since the model assumes a higher radiosensitivity for
CD133− cells, the fraction of BTSCs is elevated. In addition,
eradicating CD133− cells raises the number of CD133+ due to
the logistic growth impact on cell proliferation that necessi-
tates a small increase in the number of BTSCs after radiother-
apy (in comparison with the control group). But, BMP
therapy-only lowers the number of BTSCs at the expense of
a slight increase in the number of CD133− cells. Regardless,
the results have shown that adding BMPs or probably any
other CSC targeting agents in addition to radiation therapy
effectively shrinks the tumor along with an associate decrease
in CD133+ cells.

Finding the Optimum Treatment Schedule
Under the CSC Hypothesis

Cancer treatments have evolved over time with the purpose of
enhancing life expectancy for cancer patients. In the last two
decades, mathematical modeling has started to play an impor-
tant and pivotal role in developing optimal treatment strategies
and protocols as well as providing a new experimental tool for
investigating the impact of a new proposed therapy on tumor
cells, in silico [58–61]. For instance, the analysis and simula-
tion of Powathil et al. [61] suggest that the combination of
neo-adjuvent chemotherapy followed by radiotherapy might
be a better treatment strategy than adjuvant chemotherapy for
gliomas. Understanding the importance of targeting CSCs and
their distinct properties may lead to the development of new
therapeutic protocols, which might achieve better tumor con-
trol. As an example, Enderling et al. [15] presented a mathe-
matical model that studies the effect of CSCs and quiescent
cells on treatment outcomes. The CSC fraction size and the
stem cell proliferation rates have been reported as critical fac-
tors determining treatment response. Assuming less radiosen-
sitivity for quiescent cells, which are mainly located in the
core of a solid tumor, it has been suggested that applying
hypofractionated radiation protocols can control the disease
if the CSC pool size is small and as long as the CSC repopu-
lation does not interfere with the higher capacity of radiation
kill. Moreover, heterogeneity and instability among various
lineages of cancer cells can reduce the potency of available
treatment options. Hence, a mathematical model and an ex-
perimental study were designed to predict an efficient
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radiotherapy regimen for glioblastoma [60]. The model con-
siders plasticity between CSCs and differentiated cells and
assumes that CSCs are more radioresistant. Furthermore, sur-
viving cells lapse into a quiescent state after radiotherapy, but
can repopulate again, after exiting quiescence. Consequently,
two radiotherapy protocols, which deliver larger fractions at
the beginning and end of radiotherapy treatment, have been
recommended claiming to lead to better outcomes than con-
ventional therapies. These predicted regimens have been test-
ed experimentally and demonstrated to lead to greater survival
in mice. The model was later extended to predict a radiother-
apy regimen maximizing survival and minimizing toxicity in
the corresponding tissues arising from exposure to larger
doses of radiation at the beginning and end of the therapy
[62]. The problem is reduced to two optimization problems:
the first deals with optimization of the total dose and dose per
fraction, and the second handles optimization of time intervals
for each fraction. The results obtained imply that the best
arrangement for the time intervals corresponds to the dose
distribution that maximizes the return to the stem-like state.
However, these approaches may lead to a growth in CSC
population, which can contribute to therapy resistance and
recurrence.

Conclusion

The emergence of resistance to conventional therapies
has been long recognized as one of the major causes
of tumor relapse and recurrence. CSCs, also known as
cancer initiating cells, develop superior mechanisms
such as activated DNA damage repair, upregulated drug
transporters, and maintenance of cellular pathways
which allow them to survive standard therapeutic proto-
cols and trigger relapse in many cases. Therefore, iden-
tifying and understanding the role of CSCs in therapeu-
tic resistance can improve the overall efficacy of avail-
able treatments and assist in the development of new
treatment strategies targeting CSCs. Here, mathematical
modeling following experimental validation is useful to
understand the underlying mechanisms and design new
treatment approaches.

In this review paper, we have presented an idiosyn-
cratic survey of mathematical models that investigate
the impact of different characteristics of CSCs such as
differentiation, quiescence, and plasticity, on treatment
response and emergent tumor resistance. However,
CSCs employ other complex mechanisms such as upreg-
ulated drug transporters, which play critical roles in the
development of tumor resistance. Mathematical oncolo-
gy is a nascent field of research with the potential for
significant clinical impact, but this requires much more
theoretical investigation using mathematical and

computational modeling validated through experimental
results. Moreover, studying the impact of microenviron-
mental effects (e.g., hypoxia) on the proliferation and
control of CSCs may lead to significant advances in
clinical oncology.

Furthermore, in this article, we have also reviewed mathe-
matical models that provide experimental predictions in the
quest to develop new therapeutic strategies targeting CSCs.
The main purpose of these new treatment strategies is to in-
crease the sensitivity of CSCs to chemotherapy and radiother-
apy. This includes a combination of conventional therapies
with molecular inhibitors controlling CSC pathways, which
enhance CSC death. Self-renewal is considered to be the main
reason for radioresistance in CSCs, but understanding other
pathways such as those contributing to apoptosis is also of
clinical interest [51]. Here, mathematical modeling can be
applied to predict other critical pathways and possible clinical
outcomes, which can be validated experimentally. In addition,
using chemotherapeutic agents together with radiotherapy to
increase the effect of radiation on CSCs have been shown to
improve results. However, it is important that these agents
inflict minimal damage on normal stem cells since they share
many of the same features as CSCs [6, 51].

Current radiotherapy and chemotherapy schedules have
been improved in an attempt to optimize treatment outcomes
and minimize toxicity. Mathematical models actively play a
crucial role in attempts to design better treatment strategies.
Nevertheless, most current clinical protocols still focus on
reducing the tumor burden and normally disregard CSCs.
This can lead to the emergence of resistant CSCs which in
turn leads to relapse and aggressive metastatic invasion.
Thus, developing mathematical models suggesting new ther-
apeutic schedules that at the same time reduce the fraction of
CSCs or include recent molecularly targeted approaches can
be helpful. Moreover, clinical and experimental research to
improve clinical outcomes are fields that have seen rapid
growth in recent years. For example Klement et al. [63] sug-
gested a combination therapy comprised of continuous low
dose chemotherapy regimen and a VEGF receptor-2 antibody,
to increase the antivascular effects of the treatment in order to
shrink the tumor and reduce the evolution of drug resistance.
Mathematical and computational approaches herald a new era
in clinical oncology with the potential to address questions
arising from experimental studies and vice versa to guide ex-
perimental studies to resolve many of the puzzles and para-
doxes that are part and parcel of cancer biology. Indeed, we
are optimistic that these approaches will not only accelerate
clinical developments, but elucidate and reveal some of the
basic mechanisms driving tumor growth.
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