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Abstract
Purpose of Review Stem cells are fundamental to tissue main-
tenance and repair; they also play a critical role in cancer
development and in determining the outcomes of cancer treat-
ment. This review explores recent mathematical and compu-
tational models that address stem cell dynamics in the context
of normal tissue regulation and cancer.
Recent Findings Quantitative approaches have yielded signif-
icant insight into the processes of tissue regulation in normal
hierarchically organized tissues. Modeling of cancer stem
cells has also illuminated important mechanisms involved in
cancer initiation and progression. In particular, mathematical
studies have been instrumental to our current understanding of
the role of stem cells in cancer therapy, resistance, and relapse.
Summary The use of quantitative methods to understand stem
cell behavior has greatly expanded in recent years. In the fu-
ture, mathematics will be an increasingly important and nec-
essary tool necessary to fully unravel the complexity of stem
cell dynamics.
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Introduction

Stem cells are unspecialized, undifferentiated cells that are
characterized by two properties, their ability to maintain their
own numbers through self-replication (called self-renewal),
and by cell potency, the ability to differentiate into specialized
cell types. Embryonic stem cells are pluripotent, being capable
of giving rise to nearly all cell types in the body. Adult stem
cells are multi-potent, having the ability to generate progeny
of distinct cell types of a specific tissue [1]. Adult stem cells
maintain and repair the tissues in which they are found and
they are the focus of this review.

Many experimental techniques such as lineage tracing and
genetic labeling have begun to identify the dynamics and ex-
act mechanisms involved in determining the fate of stem cell
populations [2]. However, it is becoming increasingly appar-
ent that quantitative and modeling methods are also necessary
to gain a thorough understanding of stem cell dynamics. In
this article, we review recent findings from mathematical
models of stem cell behavior. We focus on three aspects of
stem cell dynamics: The role of stem cells in tissue mainte-
nance and homeostasis in hierarchically organized tissues, the
importance of cancer stem cells in carcinogenesis and tumor
evolution, and stem cells in the context of cancer therapy.

Stem Cells and Hierarchically Organized Tissues

Normal tissues are organized hierarchically into cell lineages.
At the start of these lineages are stem cells, characterized by
their ability to maintain their own numbers through self-repli-
cation. Differentiated cells are the end products of tissue-
specific sequences of cell divisions that originate in stem cells
and progress through different stages of differentiation [3].
Cells at these intermediate stages of differentiation are called
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progenitors or transit amplifying cells. The association of spe-
cific cell markers with different degrees of differentiation has
led to the notion of cell compartments as a sequence of distinct
differentiation steps, where each compartment represents a
different stage of differentiation [4]. This characterization is
central to multi-compartment models of cell lineages. These
models are concerned with important features that affect tissue
dynamics, such as the number of compartments, their division
rates and self-renewal capabilities, and the number and loca-
tion of forks in the differentiation pathways, which allow stem
cells to generate all the differentiated cell types of a particular
tissue [3, 5].

The importance of stem cell dynamics and cellular hierar-
chy is clearly illustrated by models of the colon crypt. In
humans, the intestinal epithelium is renewed every few days.
This renewal process is driven by the proliferation of stem
cells, which reside near the bottom of the colon crypt, and
their direct progeny, transit amplifying cells, which migrate
outward and out of the crypt [6]. Mathematical modeling
can complement lineage-tracing experiments to elucidate
crypt dynamics. This approach is exemplified by a recent
study that looked at mtDNA mutations [7]. Modeling of
crypt dynamics is also useful in the quantification of the
functional number of stem cells as well as their mutation
rate [8]. It is also valuable to understand signaling path-
ways in the colon, including TGF-β and Wnt/β-catenin
signaling [9, 10].

The spatial arrangement and hierarchical organization
within the crypts has important consequences. Two-
dimensional modeling of the human colon crypt suggests that
cell type, phenotype, and spatial location can influence the
clonal expansion of mutated cells [11]. Crypt architecture
and cellular hierarchy also suppress the sequential accumula-
tion of mutations [12]. A recent study combining modeling
and experiments indicates that stochastic events can lead to
the replacement of stem cells carrying colon cancer mutations
by wild-type stem cells, supporting the role of crypt architec-
ture in suppressing mutant accumulation [13••]. Mathematical
models of intestinal stem cell dynamics during homeostasis,
tumorigenesis, repair, and development have led to better un-
derstanding of crypt dynamics and indicate future directions in
the field of intestinal stem cells [14–16]. For a detail review on
multi-scale mathematical modeling of the colon crypt, we re-
fer the reader to [17].

In normal tissues, cell lineages are highly regulated to
maintain tissue homeostasis and to promote the rapid regen-
eration after an injury. The control mechanisms involved have
different performance objectives, which include the fast re-
generation from a variety of initial conditions, the mainte-
nance of high ratios of differentiated to undifferentiated cells,
and the robustness of target population size to perturbations
[3]. The study of these objectives lends itself quite naturally to
mathematical modeling and analysis.

Feedback loops that act in a paracrine or autocrine fashion
are fundamental to establish homeostatic control and the na-
ture of these control mechanisms determines the dynamics
and stability of the system [18]. Of especial importance are
the regulation of stem proliferation and the probability of stem
cell self-renewal vs. differentiation [3, 19–22]. In particular,
the stability properties of two and three cell compartment
models for cell lineages have been extensively studied in cases
where the regulation of stem cell proliferation is modeled
using Hill equations [23–25]. The use of Hill equations to
model control of stem proliferation has also been successful
at describing data from a wide range of experimental systems,
including measurements from the process of hematopoiesis
and data obtained from the experimental manipulation of the
mouse olfactory epithelium [3, 26].

Different aspects of control networks have been investigat-
ed. An important adaptation is the ability of systems to recover
rapidly after an injury and maintain high ratios of differentiat-
ed to undifferentiated cells while keeping a low variance with
regard to the equilibrium number of cells. It has been shown,
for example, that there is a trade-off between requiring a small
equilibrium fraction of stem cells and the speed at which a
system is able to recover from a perturbation [24, 27].
Furthermore, besides the aforementioned importance of feed-
back on stem cell proliferation, mathematical modeling also
suggests that the interplay between genetic and epigenetic
regulation plays an important role in adult stem cell regener-
ation [28•].

While most models assume a certain functional form of
control loops that regulate stem cell lineages, a different ap-
proach was adopted in [29••]. The goal was to identify math-
ematically the different types, possible numbers, and direc-
tions of control loops that ensure stability, keep the variance
low, and possess some robustness. It was found that exactly
two possible minimal control networks exist in a two-
compartment system, and 20 minimal control networks in a
three-compartment model [29••]. A general methodology
termed Bstochastic near equilibrium calculus of stem cells^
was subsequently developed in [30••] that generalized these
results to lineages with any number of compartments, and
allowed to calculate the means and the variances of cell num-
bers in all the compartments based on local properties of the
controls. Applications to the airway epithelium were investi-
gated in [30••], and the role of symmetry of stem cell divisions
in tissue stability was studied in [31].

The basic principles of cell lineage regulation apply to a
wide variety of tissues. From amodeling perspective however,
blood presents an especially attractive system. Since blood has
no spatial structure, it is especially amenable to modeling with
ordinary differential equations. This technique is central to a
recent sequence of mathematical models dealing with cell lin-
eage regulation in blood [32–34]. These studies focused on
the process of hematopoiesis of white blood cells, stem cell
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dynamics in acute leukemias, and myelodysplastic syndromes
caused by problems in feedback signals affecting hematopoi-
etic stem cells [32–34].

Several of the studies previously discussed follow the
multi-compartment model of cell differentiation. However,
in some systems, it has also been proposed that cells can
change their differentiation level independently of cell divi-
sion, for example, by moving away from the stem cell niche
[35]. Moreover, for certain tissues, the different differentiation
stages are not well identified [36]. These types of scenarios
can be modeled by assuming that cell differentiation occurs as
a continuous process, rather than progressing through a dis-
crete sequence of differentiation stages [37]. Alternatively, a
hybrid formulation is possible by considering a differentiation
process that consists of discrete and continuous transitions
[38]. For a comparison of two discrete and continuous math-
ematical approaches applied to hematopoietic networks, in-
cluding advantages and constraints, see [39].

Stem Cells and Cancer

Because the stem cell lineage is a basic unit of cellular prolif-
eration that maintains tissue turnover, its dynamics are inti-
mately related to the origins of cancer. In fact, the design
principles that shape the architecture of SC lineages have been
hypothesized to be under selection to minimize the risk of
malignant transformations [40•]. In [41•], the generation of
two-hit mutations was studied (which is important in the con-
text of e.g., tumor suppressor gene inactivation events). It was
suggested that not only are hierarchical tissues more effective
in delaying the generation of two-hit mutants compared with
non-hierarchical ones, but also that symmetrically dividing
stem cells lead to slower cancer generation compared to asym-
metrically dividing SCs. Refs [42, 43] further explored spatial
SC lineage models, focusing on division patterns that mini-
mize mutation generation.

There is growing evidence that only a rare subset of cells,
referred to as cancer stem cells (CSCs), are the driving force
behind tumor growth, resistance, and recurrence. These CSCs
share a number of similarities with normal adult stem cells. In
particular, CSCs have the ability to self-renew and differenti-
ate, giving rise to all the differentiated cell types that make up
the bulk of the tumor. Like normal stem cells, they also have a
large proliferative potential being the only cancer cells capable
of repopulating a tumor and initiating metastasis. John Dick
observed the first CSC in acute myeloid leukemia in 1994, and
accumulating evidence since then has supported the existence
of CSCs in many different types of cancers [44].

The modeling literature on CSCs is vast. Mathematical
models of cancer have provided important insights into the
processes of carcinogenesis, tumor evolution, and metastasis
[45, 46, 47•, 48, 49]. Recent quantitative methods can help

elucidate the type of phenotypic transitions that lead to uncon-
trolled cellular growth in stem cell-driven tumors [20]. Tumor
characterization via quantitative methods can also occur at an
individual patient-specific level as shown in a recent frame-
work called the Spatial Cell Ancestral Inference (SCAI) [50].
Modeling can also aid in the measurement and identification
of crucial parameters relevant to carcinogenesis. This type of
approach can lead to excellent agreement between clinical
data and theoretically derived results [51]. Researches have
also explored mathematically the role of CSCs in hematopoi-
etic malignancies. In leukemias, for example, a study based on
ordinary differential equations characterized how changes in
parameters describing proliferation rates and self-renewal
properties can lead to the expansion of the leukemic cell pop-
ulation [52]. Stochastic modeling is also an important tool to
understand the dynamics of blood cancers. In particular, for
chronic myeloid leukemia (CML), stochastic fluctuations in
the number of stem cells are important to explain some of the
variability observed in treatment responses [53•]. The impor-
tance of tracking down fluctuations in hematopoietic stem
cells is also important to accurately describe the process of
hematopoiesis in CML [54]. In addition, modeling can help
to characterize the tumor growth dynamics in terms of the
strength of the inhibitory signals still acting in non-spatial
cancers [55]. Recent quantitative studies also focused on the
role of stem cells in the epithelial-mesenchymal transition in
the context of cancer [56, 57].

The CSC paradigm assumes that tumor formation results
from the unidirectional differentiation of CSCs. In some tu-
mors however, new evidence supports the existence of a bidi-
rectional hierarchy, in which non-CSCs can dedifferentiate.
This phenomenon is referred to as plasticity between CSC
and non-CSC populations [58]. Recent quantitative studies
have investigated this possibility [59]. Modeling results sug-
gest that the probability of a non-CSC dedifferentiating into a
CSC influences the likelihood of carcinogenesis [60]. Indeed,
in a three-compartment Moran-type model, dedifferentiation
was found to be a crucial contributor to mutant fitness [61•].
Cellular plasticity was also implicated in the probability of
cancer cell survival [62]. In contrast, a different modeling
study suggests that perceived tumor plasticity is really the
consequence of imperfect cell markers not identifying all
CSCs in a tumor [63].

Normal somatic cells are capable of only a limited number
of divisions; this phenomenon known as Hayflick’s limit or
replicative senescence acts a tumor suppressive mechanism.
Stem cells and the majority of cancers (~90%) escape replica-
tive limits by expressing the enzyme telomerase at sufficiently
high levels. The remaining cancers escape senescence through
the alternative lengthening of telomeres (ALT) pathway [64].

A simple approach to model replicative senescence is to
associate a number, called the replication or proliferation ca-
pacity, to every non-stem cell [5]. When a non-stem cell
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divides, the replication capacity of the daughter cells will be
one unit less than that of the parent cell. When the replication
capacity of a cell is exhausted, cell division is no longer pos-
sible. This approach has been used to explore the role of rep-
licative senescence as a possible evolutionary force behind
commonly observed features of cell lineages [5] (including
the self-renewal probability, division rate, and number of in-
termediate cell compartments, and as a mechanism acting
against precancerous non-neoplastic mutations in healthy tis-
sue [65]. This basic idea has also been used to model compe-
tition between CSCs and non-CSCs in solid tumors [66]. In
another recent study related to senescence, mathematical
modeling was used to reconstruct the cell division dynamics
of hematopoietic stem cells [67].

There is debate over the cell of origin of CSCs, whether
they originate from normal stem cells or from more differen-
tiated cell types that acquire stem cell characteristics. In mul-
tiple cancers, there is evidence that the initiating mutations
originate in cells with limited proliferative potential, such as
progenitors [68]. Furthermore, frequent somatic mutations
that activate the core promoter of telomerase have been iden-
tified in multiple types of cancers [69], which suggest a pos-
sible tumor origin in more differentiated telomerase-negative
cells. Indeed, mathematical modeling has shown that in an
expanding clonal cell population, the probability of escaping
replicative limits through telomerase activation is far from
negligible [70]. Moreover, modeling results also suggest that
the fact that most cancers are telomerase positive is not an
indication that tumors initiate in telomerase-positive cells
[71].

Stem Cells and Cancer Therapy

Cancer therapy is limited by our incomplete understanding of
the mechanisms governing cancer dynamics. Over the years,
treatment has evolved into more personalized, targeted thera-
py [72]. As biological experiments may be expensive and time
consuming, mathematical models are extremely useful in in-
vestigating different potential scenarios of carcinogenesis and
treatment. These models are able to investigate such things as
the efficacy of drug treatment or combination therapy, and
cancer relapse and treatment resistance.

Critical to more effective, cancer therapy is the understand-
ing and characterization of tumor growth. Computational
models, such as the model introduced by Pappalardo et al. that
simulates interactions in the pathways potentially involved in
the development of melanoma, can be used to suggest new
therapeutic strategies and improve drug treatment [73].
Another method of modeling tumor growth and the dynamics
of tumor subpopulations is a Bchemical reaction^ approach
where each event related to cell division, differentiation, and
cell death is modeled as a chemical reaction. Following this

approach, one recent study considered a three-compartment
system consisting of stem cells, transit cells, and differentiated
cells and identified kinetic relationships necessary for solid
tumor growth. This study suggests that inducing stem cell
differentiation may improve the efficacy of cancer treatment
when combined with other types of cancer therapy [74].

One interesting set of studies deals with the so-called tumor
growth paradox. When spatial constraints are taken into ac-
count, quantitative models suggest that while increasing the
cell death rate results in short-term tumor reduction, the free-
ing of CSCs and the formation of self-metastases could result
in higher tumor burdens in the long-term [66, 75•]. These
studies provide modeling support to as of yet limited, but
intriguing data that suggest that under certain conditions, ther-
apeutic interventions might lead to higher tumor growth [76,
77].

Mathematical modeling performed in tandem with biolog-
ical experiments can aid in the identification and measurement
of key parameters that drive tumor progression. This is exem-
plified by a recent model that investigated the initial phase of
tumor growth using data from in vivo and in vitro experiments
of ErbB2+ mammary cancer [78]. The identification of impor-
tant tumor-related parameters could also inform the design of
effective drug therapy. Recently, a statistical framework was
developed to quantify the effect of multiple drugs on the re-
sponse of genes controlling tumor growth, as well as the effect
of those drugs on inhibiting tumor growth in individual pa-
tients [79]. This approach aims to characterize stem cell re-
sponse to therapy and to provide information necessary for
more effective personalized drug treatment. Surprisingly, due
to intra-tumor heterogeneity, mathematical models have
shown that the most effective drug combination may not in-
clude drugs that have been shown to be most effective against
any particular tumor cell subpopulation [80, 81]. Thus, know-
ing the predominant tumor cell subpopulation in a heteroge-
neous tumor may not be helpful in determining the best drug
combination. Recent models search for drug combinations
capable of overcoming the challenges imposed by intra-
tumor heterogeneity [82].

Effective use of chemotherapeutic drugs in cancer therapy
must overcome several difficulties, one of which is the timing
of drug administration. Dosing schedules can influence the
probability of developing treatment resistance as well as the
total number of drug-resistant cells. This information can in
turn be used to optimize the scheduling of chemotherapeutic
drugs [83]. For example, one mathematical model based on
glioblastomas detected two optimal dosing schedules, which
were validated in mouse models [84]. These schedules exploit
intra-tumor heterogeneity and the dynamic instability of
radioresistance. Another approach to identify optimal drug
schedules for individual patients uses the circadian expression
of clock genes. One such study modeled optimal drug sched-
uling based on drug toxicity in colorectal cancer [85].
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Another well-recognized obstacle to effective anticancer
drug treatment is drug resistance. In [86•], stochastic modeling
of resistance of CML to small molecule inhibitors (e.g., ima-
tinib) was described, including topics such as cross-resistance,
the role of cell quiescence, drug combinations, and optimal
treatment strategies. Resistance to the new drug ibrutinib in
chronic lymphocytic leukemia (CLL) treatment was studied in
[87].

In cancers that follow the CSC paradigm, mathematical
modeling suggests that the CSC subpopulation might expand
under current anticancer therapies resulting in treatment resis-
tance and relapse [88–90]. For instance, a mathematical model
driven by information from patients with chronic myeloid
leukemia being treated with the drug imatinib predicted that
after a year of targeted treatment, the proportion of CSCs will
increase 100-fold and will continue to increase up to 1000-
fold after 5 years of treatment [91•]. These findings suggest
that complete and efficient tumor treatment necessitates the
eradication of the entire CSC population. Indeed, modeling
and clinical evidence from malignant tumors indicate that
the repopulation of treatment-resistant tumors by only a small
population of resistant tumor cells may occur within several
months post-treatment [92]. Modeling can also contribute to
our understanding of important mechanisms behind treatment
resistance, such as the impact of cell density and mutation
frequency in multi-drug resistance [93]. A recent study also
examined the different levels of resistance that resulted from
various chemotherapeutic and cytostatic treatments [94].

Stem cell dynamics could also influence the efficacy of
radiotherapy treatment. Evidence suggests that there is a dis-
tinct radiosensitivity between CSCs and differentiated cancer
cells. In particular, glioma stem cells have been shown to be
highly radioresistant through preferential activation of the
DNA damage response [95, 96]. Computer simulations reveal
that tumor heterogeneity and radioresistance of CSCs can
modulate the kinetics of tumor repopulation after therapeutic
irradiation [97, 98]. Identification of the optimal doses of ra-
diation is of particular interest in cancer modeling.
Heterogeneous tumors for instance may be more effectively
targeted by radiation dosimetries specifically designed to
boost radiation in areas containing more CSCs [99].

In addition to drug resistance, effective cancer therapymust
overcome the phenomenon of cancer relapse. Computational
studies of acute myeloid leukemia (AML) and chronic lym-
phocytic leukemia (CLL) suggest that relapse is due mainly to
the selection of pre-treatment clones rather than mutations
acquired during therapy [87, 100]. A model of acute leuke-
mias found that clonal selection is highly influenced by self-
renewal and that highly self-renewing but slowly proliferating
cells trigger relapse [100]. Recent findings in breast cancer
also suggest that decreasing the rate of self-renewal of
CSCs, along with the disruption of inflammatory feedback
loops contributes to the elimination of mesenchymal and

epithelial breast CSCs, significantly reducing the probability
of relapse [101].

Quantitative models of CSCs have enhanced our under-
standing of cancer biology and treatment [102]. Despite these
numerous contributions, there are many areas where quantita-
tive approaches are still sorely needed. One of these areas is in
the emerging field of immunotherapy, which aims to treat
cancer by using the patient’s own immune system [103].
CSCs may possess the ability to evade host antitumor immu-
nity and be the source of immunotherapeutic resistance [104,
105]. There are multiple valuable models of immunotherapy
(see e.g., [106, 107]). There are however, very few recent
modeling studies of immunotherapy that consider the role of
CSCs and the possibility of treatment resistance [108]. On
important future challenge will be the development of com-
prehensive mathematical models of immunotherapy that take
into account tumor stem cell dynamics and intra-tumor
heterogeneity.

Conclusion

Mathematical modeling in biology is a relatively new disci-
pline. Yet, it has already provided fundamental insights into
the fields of stem cell dynamics and cancer development and
treatment. In this article, we focused on recent mathematical
and computational studies related to stem cell dynamics. We
began by looking at the role of adult stem cells in tissue reg-
ulation and maintenance of homeostasis. As part of this dis-
cussion, we examined models in the context of hematopoiesis
and tissue regulation of the colon crypt. We then looked at the
CSC paradigm, and discussed the concepts of stem cell plas-
ticity, replicative senescence, and tumor-initiating cells. We
ended by surveying recent mathematical research in the area
of cancer therapy. In particular, we discussed studies dealing
with quantitative approaches to understand radio and
chemoresistance and the mechanisms of cancer relapse.
While our quantitative understanding of normal and CSCs
has increased significantly in the last few years, many chal-
lenges remain ahead. One important future direction will in-
volve the modeling of stem cell dynamics in novel cancer
treatment strategies, including oncolytic viruses, telomerase
inhibitors, and immunotherapy.
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