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Abstract
Purpose of Review The purpose of this study is to outline how
ideas from information theory may be used to analyze single-
cell data and better understand stem cell behavior.
Recent Findings Recent technological breakthroughs in
single-cell profiling have made it possible to interrogate
cell–cell variability in a multitude of contexts, including the
role it plays in stem cell dynamics. Here we review how mea-
sures from information theory are being used to extract bio-
logical meaning from the complex, high-dimensional, and
noisy datasets that arise from single-cell profiling experi-
ments. We also discuss how concepts linking information the-
ory and statistical mechanics are being used to provide insight
into cellular identity, variability, and dynamics.
Summary We provide a brief introduction to some basic no-
tions from information theory and how they may be used to
understand stem cell identities at the single-cell level. We also
discuss howwork in this area might develop in the near future.

Keywords Heterogeneity . Variability . Single-cell
sequencing . Entropy .Mutual information

Introduction

Stem cells are characterized by their ability to self-renew and
differentiate along multiple distinct lineages. Due to these re-
markable properties, there is much hope for stem cell-based
therapies in regenerative medicine. However, the develop-
ment of such therapies will require a thorough understanding
of the molecular mechanisms by which stem cells balance
self-renewal and differentiation. Since stem cells are often rare
(as in the adult) or exist only transiently (as in development),
recent years have seen a growing focus on using single-cell
profiling technologies to understand stem cell dynamics.
These studies have indicated that apparently functionally ho-
mogeneous stem cell populations can vary widely in their
expression of important regulators of self-renewal and
multipotency. In some cases, this variability is driven by dy-
namic fluctuations of important master transcription factors,
suggesting that stem cell heterogeneity has an important func-
tional role [1, 2, 3••]. However, the relationship between mo-
lecular heterogeneity and stem cell function are still not well
understood.

Recent years have seen remarkable advances in single-cell
sequencing techniques, and it is now possible to profile large
portions of the genome, or the entire transcriptome, in hun-
dreds to thousands of individual cells in a single experiment
[4••, 5, 6]. Advances in single-cell epigenetics and proteomics
are not far behind [7–10]. These advances promise to trans-
form our understanding of cellular identities, yet they also
produce vast amounts of complex data, making it a significant
challenge to distinguish meaningful biology from experimen-
tal noise. In the context of stem cell dynamics, numerous
reports have indicated that functionally homogeneous stem
cell populations, both from the adult and the embryo, are
highly heterogeneous with respect to their patterns of gene
and protein expression [11–15]. However, the extent to which
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this variability plays a functional role, and the extent to which
it represents variability due to inherent, but non-functional,
expression noise are not clear. Therefore, in order to under-
stand stem cell function at the individual cell level, it has
become increasingly necessary to use high-throughput profil-
ing techniques to explore co-expression dynamics at the
single-cell level to identify rare (yet potentially functionally
important) cells and determine how co-expression patterns
change over time. The data provided by these experiments
are fundamentally different from those obtained from mea-
surements on cellular aggregates. While bulk methods typi-
cally provide estimates of the mean expression of each vari-
able (e.g., gene) profiled over all cells in the aggregated sam-
ple (perhaps along with estimate of variance when the sample
mean of multiple replicates are taken), they are not generally
well suited to exploring dependencies between variables be-
cause they are only capable of examining expression patterns
on average, not within individual cells. By contrast, since
single-cell methods profile co-expression patterns within indi-
vidual cells they are able to provide a sample from the joint
distribution of all the variables being profiled and so are much
better suited to explore functional relationships between vari-
ables. Importantly, recent years have seen significant improve-
ments in the efficiency of single-cell RNA-sequencing
methods, which now allow profiling of many tens of thou-
sands of individual cells thereby improving estimates of joint
expression distributions [6, 16•, 17•]. The experimental prog-
ress made in capturing multivariate single cell data has also
stimulated research into new analysis techniques that are spe-
cifically designed to handle high-dimensional single-cell data
[18, 19]. These new analysis methods often make use of clas-
sical multivariate statistics and statistical approaches have pro-
vided insight into many stem cell systems including identifi-
cation and characterization of mixtures of cellular states [20],
comparison of different stem cell lines [21], rare cell identifi-
cation [22], and cell lineage decision-making [23]. However,
methods from information theory are increasingly also being
used to better understand how cellular expression patterns de-
termine cellular identities.

Information Theory

Information theory has its roots in Shannon’s work on com-
munication and his famous 1948 paper laid out the mathemat-
ical theory of information [24, 25]. Shannon realized that in
order to quantify the information content of a message, it is
necessary to consider the message’s context, or how probable
it is. An intuitive understanding of this can be seen in the
following example. Consider a search for this article using
only the last name of one of the authors. Which one is it best
to choose? The knowledge that BSmith^ is a very common last
name and BMacArthur^ is less common means that searching

for BMacArthur^ is more likely to narrow the search and
therefore likely to provide more information. The fact that
BMacArthur^ is a more complex word than BSmith^ is irrele-
vant: it is the rarity of each name that dictates which to choose,
not the name itself. In the context of gene expression, the fact
that a cell has seven transcripts of a particular messenger RNA
(mRNA) does not in itself carry any information: this obser-
vation requires context in order to understand how much in-
formation is gained from the measurement. Without the con-
text of how likely a read of seven transcripts is, the informa-
tion gained from the measurement is unknown (colloquially
this is known as Shannon’s zeroth law). So how do we calcu-
late information gain? Shannon argued that any measure of
information should satisfy three basic requirements: monoto-
nicity, independence, and branching. Monotonicity ensures
that the information gained from a question with a wide vari-
ety of answers is greater than the information gained from the
answer to a question with only a few possible answers. For
example, to identify a specific person an answer to the ques-
tion Bwhere do they come from?^ provides more information
than an answer to the question Bare they female?^
Independence ensures that the total information gained from
two independent questions is a sum of the information gained
from the questions separately. So, for example, the order in
which the questions are asked should not matter. Lastly,
branching ensures that when a series of questions is composed
in a tree-like structure, the overall information gained by pass-
ing along a path through the tree is a weighted sum of the
information gained from each branch point [25].

Shannon proved that the following function, which he
called the entropy by analogy to the closely related thermody-
namic entropy, uniquely satisfies these conditions. The
Shannon entropy H is the expected amount of information
gained from answering a question for which the probability
of answer x is given by p(x),

H Xð Þ ¼ −∑
x
p xð Þlogp xð Þ:

The entropy is a property of the probability distribution
p(x), in the sameway that the mean and variance are properties
of p(x). Informally, the entropy is simply a measure of how
Bflat^ or close to uniform p(x) is, and the Bflatter^ a distribu-
tion is, the greater the entropy and information gained. The
units of entropy depend on the base of the logarithm: when the
logarithm is taken to the base 2, as is common in information
theory, entropy is measured in bits (one bit is the amount of
information provided when observing one of two equally like-
ly outcomes, e.g., the flip of a fair coin). Alternatively, entropy
is measured in nats when using the natural logarithm (as is
typically the case in statistical mechanics), and in hartleys
when using base 10 (one hartley is the amount of information
provided when observing one of 10 equally likely outcomes,
e.g., a uniformly randomly chosen decimal digit). The
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equation for the entropy given above assumes that the random
variable X is discrete. In practice, many measures of interest,
such as molecular concentrations, are continuous and the con-
tinuous analogue to the entropy above is known as the differ-
ential entropy [26]. In the discrete case, the entropy has some
useful properties (for example,H(X) ≥ 0) that are not inherited
by the differential entropy. To account for these differences,
several closely related variations such as the Kullback-Leibler
divergence (also known as the relative entropy) and its gener-
alizations are commonly used to assess similarity between
continuous expression distributions [27, 28]. For example,
the widely used t-SNE dimensionality reduction algorithm
[29] (which has been used in several recent stem cell studies
to explore heterogeneity in stem cell identities and cluster cell
states [16, 17•, 22, 23]) uses the Kullback-Leibler divergence
to assess the similarity between the observed co-expression
distribution and that obtained by projecting the data to a
lower-dimensional space.

Information Theory and Stem Cell Biology

The utility of the entropy in understanding cell identities many
be illustrated by returning to our example of the measurement
of seven mRNA transcripts in a cell. To gain context to this
reading, we need to better understand the natural variability of
mRNA expression in the cell population of interest to deter-
mine how unusual this reading is. Consider the following two
hypothetical scenarios formRNA expression in a population of
stem cells, as shown in Fig. 1a: (Scenario 1) all cells in the
population have seven mRNA transcripts (i.e., 7 is the only
answer to the question how many transcripts are in the cell?
and occurs with probability 1). In this case, since all cells are
the same with respect to their transcript counts, the observation
of seven transcripts cannot be used to discriminate one cell
from another, and therefore does not impart any information.
Accordingly, the entropy is H = − 1 log(1) = 0 bits. (Scenario
2) Two stem cell subtypes are present in the population (types
A and B). Cells of type A occur with probability 0 < p < 1 and
have seven transcripts, while cells of type B occur with prob-
ability (1 − p) and have zero transcripts. In this case, the obser-
vation of seven transcripts allows us to positively discriminate
cells of types A from those of type B and so imparts useful
information. Furthermore, the amount of information we gain
is related to the relative rarity of types A and B. In particular,
the entropy is given by, H = − p log(p) − (1 − p) log(1 − p).
Thus, when p is small, the observation of seven transcripts in
a cell is a rare event, but the observation of zero transcripts is a
common event and so the entropy is low. Conversely, when p
is large the observation of seven transcripts is a common event
while the observation of zero transcripts is a rare event and
again the entropy is low. However, when cells of both types
are common in the population (i.e, if p ~ 0.5) then the entropy

reaches its maximum. In this example, it is worth noting that
the fact that cells of type B express no transcripts is not relevant
to the calculation of entropy, they could have expressed any
number of transcripts not equal to seven: all that is important is
that cells of type B can be distinguished from those of type A
by their mRNA transcript count.

In practice, we would not expect that all cells express a
given mRNA at one of two fixed levels; rather, intrinsic noise
in gene expression naturally gives rise to variations in gene
expression levels over time within each individual cell, and
within the cell population at any fixed time (see Fig. 1b).
While it cannot often be calculated explicitly as above, the
entropy can nevertheless be estimated from experimental data
to better understand this natural variation (it should be noted
that entropy estimation is subject some technical issues in-
cluding the effect of data binning and bias on entropy estima-
tion [30–32]). For example, it has been suggested that a high
degree of cell–cell variability in gene expression patterns
within a functionally pure population, as quantified by the
entropy of the joint expression distribution, is characteristic
of undifferentiated pluripotent cells [33, 34•, 35]. Similarly, by
considering patterns of gene expression in light of a known
signaling networks, Teschendorff and colleagues have argued
that both pluripotent cells and cancer cells are associated with
a state of high network entropy, characterized by the promis-
cuous co-expression of important hub proteins [36–38].
Relatedly, it has been observed that the entropy of gene ex-
pression developing tissues increases with time in a manner
that is closely related to differentiation dynamics [39–41].

While the entropy is good at assessing how likely it is that a
particular expression value will occur, it is not well suited to
assessing relationships between co-expression patterns. To do
so, a related measure, the mutual information (MI), is also
widely used. Consider two discrete random variables, X and
Y, which may be related in some unknown way. The entropy
of the joint probability density p(x, y) is:

H X ; Yð Þ ¼ −∑
x

∑
y
p x; yð Þlog p x; yð Þ

Informally, this is a measure of the information content of
the joint distribution, but it is not a direct measure of associ-
ation between the two random variables. In order to assess
whether one variable provides information about the other,
the mutual information I(X; Y) may be used [26]. The mutual
information compares the observed joint probability density
with that which would be observed if the two random vari-
ables were independent. In particular,

I X ; Yð Þ ¼ ∑
x

∑
y
p x; yð Þlog p x; yð Þ

p xð Þ p yð Þ ;

¼ H Xð Þ þ H Yð Þ−H X ; Yð Þ;
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whereH(X) andH(Y) are the marginal entropies. If X and Yare
independent then p(x, y) = p(x) p(y), so log p x;yð Þ

p xð Þ p yð Þ ¼ log1 ¼
0 for all x and y and therefore I(X; Y) = 0. In this case,
knowledge of one variable does not provide any information
about the other variable. More generally since I(X; Y) = I(Y;
X) ≥ 0 , the magnitude of the MI is a measure of the extent to
which the observed joint distribution deviates from indepen-
dence: larger values of MI indicate a stronger dependency
between X and Y. The advantage of MI as a measure of asso-
ciation is that it does not specify in advance the nature of the
relationship between X and Y so it can capture non-linear, non-
monotonic, dependencies between variables in a general way

that traditional correlation measures cannot (see Fig. 1c for
some examples).

Since the mutual information assesses the extent to which
two random variables are independent of one another, it can be
used to identify putative functional relationships between ex-
perimentally observed variables (e.g., genes or proteins) [42,
43]. For this reason, there has been much interest in using
information-theoretic methods to infer genetic regulatory net-
works (GRNs) from gene expression data, in order to better
understand cellular dynamics. Inferring a GRN first involves
constructing a matrix of Bsimilarities^ between genes based
upon pairwise comparisons of their expression profiles.
Typically, similarity is assessed using either correlation-based

Fig. 1 Entropy and mutual information. a Entropy of hypothetical binary
cell types: Scenario 1: all cells have 7 mRNA transcripts and entropy is
zero (there is no uncertainty). Scenario 2: cells are either type A (7
transcripts), which occurs with probability p, or type B (zero
transcripts), which occurs with probability 1 − p. When there is an equal
probability of observing either cell type (p = 0.5), we are maximally
uncertain about the identity of a randomly draws cell and the entropy
H = 1 bit, the same as for tossing a fair coin. When there are unequal
probabilities, for example when p = 0.25, uncertainty is reduced and the
entropy is less than 1 bit. The final panel gives the relationship between
entropy and p from which it can be seen that maximum entropy occurs
when p = 0.5. b Entropy of distributions: distributions of transcript
abundance are typically not binary, but rather exhibit a spread of
possible outcomes. Examples of a unimodal and a bimodal distribution
with the samemean and variance, but different entropies are shown. In the
unimodal case the measures such as the mean and variance may make
good sense. However, in the bimodal case the population mean is not

characteristic of either of the two subpopulations (it is rare to find a cell
with the mean level of expression) and the variance as a measure of the
spread about this mean is also misleading. By contrast, the entropy, which
measures the amount of uncertainty we have concerning the identity of a
randomly draw cell from the population, provides useful information
about cell–cell variability. c Mutual information as a measure of
association: association between two random variables can be assessed
by Pearson’s correlation coefficient (PCC), which considers the strength
of linear association, Spearman’s correlation coefficient (SCC) which is
based on rankings, and mutual information (MI) which assesses how
much information one variable provides about the other. All three mea-
sures can assess linear associations well (left panel), SCC is a good mea-
sure of non-linear, monotonic associations (middle panel), but neither
PCC nor SCC are good measures of association for non-linear, non-
monotonic associations (right panel). However, the MI may be used to
determine that the two variables are related
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measures or information-theoretic-based measures.
Comparisons of different measures and their implementations
can be found in a number of recent reviews [44, 45, 46••]. In
order to infer a network of regulatory links from the similarity
matrix, some form of filtering is required to exclude spurious
links or links with little statistical support. The simplest form of
filtering is thresholding. However, since thresholding does not
take into account the local context of the interactions, it is a
crude approach that does not necessarily retain important inter-
actions or exclude unimportant interactions. To address this
shortfall, information theory can be used to refine networks
based upon thresholding and thereby infer regulatory interac-
tions with greater accuracy. These methods are typically based
upon more advanced information-theoretic notions such as the
data processing inequality (DIP), which allows indirect regula-
tory links to be removed from a network (the well-used
ARACNE algorithm [47•, 48] makes use of the DIP); condi-
tional mutual information, which assesses the dependency be-
tween two random variables conditioned on a third and can be
used to uncover genes that have shared upstream co-regulation
[49]; the maximum relevance/minimum redundancy (MRMR)
strategy, which ranks potential interactions for a given gene
based on the difference between MI for the gene and a putative
target (maximum relevance) and the average MI of the putative
target with all previously ranked targets (minimum redundan-
cy). The aim of this last approach is to rank highly the most
informative interactions and is implemented in theMRNETand
MRNETB algorithms, for example [50]. Other GRN inference
methods make use of closely related information-theoretic mea-
sures such as the transfer entropy (as implemented in the
MIDER algorithm, for example [51]) and multivariate mutual
information measures [52]. In the context of stem cell biology,
information-based network reconstruction methods have been
used with some success to identify novel regulators of
pluripotency and lineage specifiers [53, 54] as well as track
changes in network structures during cellular differentiation
[52, 55].

Conclusions

Here, we have summarized some of the ways that information
theory can be used in combination with multivariate statistics
to investigate stem cell identities. Although information-
theoretic measures are not always intuitive and their practical
application needs careful consideration, information theory
provides a suite of tools that can help make the most of ex-
perimentally hard-earned data. As well as providing improved
measures of variability and association, information theory
also has a natural relationship with statistical mechanics [56,
57], and thereby provides a natural approach to the investiga-
tion of cellular dynamics. Statistical mechanics addresses the
question of how observable Bmacroscopic^ properties of a

system arise from unobserved Bmicroscopic^ dynamics. For
example, the pressure of a gas in a confined container (a
macrostate) depends upon the average kinetic energy of the
molecules in the gas and can therefore be predicted without
detailed knowledge of the instantaneous position and velocity
of all the individual gas molecules involved (a microstate). In
the 1950s, Jaynes showed that statistical mechanics could be
derived directly from information-theoretic principles [56,
57]. For example, he observed that the Boltzmann distribu-
tion, which is ubiquitous in statistical mechanics, arises natu-
rally as the maximum entropy probability distribution subject
to appropriate physical constraint. It would be interesting to
see if similar approaches can be used to better understand cell–
cell variability in stem cell systems: do observed patterns of
variability in stem cell populations reflect natural biological
constraints? If so, what are they? To what extent does cell–cell
variability relate to stem cell function? Can a general theory of
regulated cellular variability be derived using physical and
information-theoretic principles? Some minor progress has
been made towards these aims [33, 58–60] and this is an
exciting area of current research, yet there is still much to be
done. Although the relationships between cell–cell variability,
entropy, and cell function have yet to be fully deciphered,
ongoing research indicates that information-theoretic mea-
sures can provide insight into cellular identities that are not
apparent from more traditional multivariate statistical
methods. We anticipate that advances in the accuracy and
reductions in the cost of single-cell methods are likely to see
increased interest in the development and use of these
methods in the near future.
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