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Abstract The formation of artificial organs with tissue engi-
neering techniques is necessary to address the growing dispar-
ity between the supply and need for donor organs. For use in
tissue engineering regenerative applications, biomaterials
should be biocompatible, porous (to allow cellular infiltration,
nutrient transport and waste removal), mechanically tunable
(to match and maintain the intrinsic mechanical properties of
the tissue through the healing process), biodegradable (to al-
low the tissue to develop as the material degrades), reproduc-
ible, easily prepared, and cell/tissue compatible. This review
will focus on various biomaterial design considerations and
their effect on regenerative outcomes. By adjusting material
designs, including pore size and degradation kinetics, in com-
bination with functionalization with cell- and tissue-specific
factors, intrinsic properties of tissue constructs can be con-
trolled to enhance remodeling and functional outcomes.

Keywords Biomaterial - Tissue regeneration - Tissue
engineering - Scaffold - Biodegradable

Introduction

According to the Organ Procurement and Transplantation
Network, there are over 120,000 patients in the USA awaiting
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organ transplantation (as of 15 November 2015). Transplanting
a tissue from one location to another within the same patient (an
autograft) or from one patient to another patient (an allograft) is
effective in many instances for replacing organs with functional
outcomes. However, many problems exist with both proce-
dures. Autograft techniques are costly, result in an additional
site of injury, increase the risk of infection or hemorrhages, and
are limited by anatomically incorrect replacements from other
regions of the body [1]. Allografts on the other hand, are often
rejected by the immune system (requiring immunosuppressant
therapies), and pose risks of infection or transfer of diseases
between patients. As an alternative, there has been growing
interest in designing replacement organs that use mechanical,
physical, and/or biological components to restore or replace
function. In particular, tissue engineering historically has in-
volved the concept of isolating cells from a patient, expanding
them in vitro, and seeding them onto a biomaterial that could be
implanted in vivo in the site of injury [2]. The formation of
artificial organs with tissue engineering techniques is necessary
to address the growing disparity between the supply and need
for donor organs, as well as the limitations associated with
autograft and allograft techniques.

For use in tissue engineering regenerative applications, bio-
materials should be biocompatible, porous (to allow cellular
infiltration, nutrient transport, and waste removal), mechani-
cally tunable (to maintain the intrinsic mechanical properties
of the tissue through the healing process), biodegradable (to
allow the tissue to develop as the material degrades), repro-
ducible, easily prepared, and cell/tissue compatible. However,
optimizing these biomaterial design criteria can result in dis-
tinct changes in regenerative potential (Table 1). Therefore,
this review will focus on various biomaterial design consider-
ations and their effect on regenerative outcomes (Fig. 1), keep-
ing in mind that tissue-specific considerations [7] will also be
required to choose the optimal biomaterial system.
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Table 1 Effects of biomaterial
characteristics on regenerative Characteristic Effect on regenerative outcomes References

outcomes
Adjust the porosity * Alter availability of integrin/ligand binding [1, 3]
sites between cells and the biomaterial
* Change cell/nutrient infiltration
» Change mechanical properties
Control degradation « Initially support seeded cells (and/or infiltrating cells) [4]
to proliferate and secrete matrix
* Gradually degrade allowing de novo tissue to fill
the empty spaces left by the scaffold

Increase bioactivity * Enhance proliferation and/or differentiation [5]
» Foster cell ingress to change remodeling rates
Alter the surface chemistry * Enhance cell adhesion, proliferation, and/or differentiation [6]
Biomaterial Sources generating the scaffolds required to engineer a tissue (exam-
ples, see Table 2): (1) construct scaffolds from natural or syn-
Biomaterials that emulate the native extracellular microenvi-  thetic sources [2, 10, 11, 14], (2) decellularize the tissue of

ronment can support or direct the proper cellular phenotypic interest leaving the extracellular matrix as the scaffolding ma-
state. Generally, there are three different approaches for  terial [12], or (3) stimulate cells to generate their own matrix

Adjust porosity/mechanical
properties

Pair with soluble

Alter surface factor release

chemistry
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Cell binding motif

(ex. RGD)
Growth factor bound to
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Fig. 1 By adjusting biomaterial designs, including: the porosity and (including soluble factors), intrinsic properties of tissue constructs can
mechanical properties, the surface chemistry, the degradation kinetics, be controlled to enhance remodeling and functional outcomes
and combining biomaterials with cell- and tissue-specific factors
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Table 2 Examples of

biomaterials used in regenerative Biomaterial Examples References
applications
Synthetic biomaterials * Poly(lactic acid) [8, 9]
* Poly-D,L-lactic-glycolic acid co-polymer
Natural biomaterials or genetically * Collagen [10, 11]
engineered variants « Silk
* Elastin
Decellularized tissue scaffolds * Dermis [12]
* Urinary bladder
* Small intestine
Cell-generated scaffolds * Collagen [13]

Future biomaterials

« Elastin

* Patient-specific architecture
» Patient-specific degradation kinetics

* Spatially specific cues within a scaffold

 Temporal control of factors within a
scaffold (release of factors over time)

» Hybrid biomaterials

[13]. Each method has advantages and disadvantages that
make them more appropriate for certain circumstances based
on their inherent biocompatibility, reproducibility, and ease of
preparation.

Intuitively, the optimal biomaterial would be the na-
tive extracellular matrix of the tissue of interest [7].
Both decellularized tissues and cell-generated materials
have specific ligands for cell adhesion, can be degraded
and remodeled readily by cells, and have other tissue-
specific cues consistent with the native organ, such as
signaling epitopes and/or sequestered growth factors
[12]. These matrices are naturally biocompatible, how-
ever are not easily prepared or reproducible, with rela-
tively low yields of material. Therefore, generating scaf-
folds from natural or synthetic sources has some advan-
tages over decellularizing tissues or stimulating cells to
generate their own matrix. For instance, there is a great-
er supply of natural and synthetic sources from which
to generate the scaffolds. Due to control of processing
methods, there is also greater control over the resulting
shape and related physical and chemical features of the
scaffolds when compared with decelluarized options.
Further, the process time required to obtain the material
is often faster. Comparing synthetic to biological mate-
rials, synthetic materials have minimal lot-to-lot vari-
ability, are highly tunable (chemical and mechanical
properties), are easier to obtain a purified form, and
are generally more reproducible then natural sources
[14]. However, natural sources of scaffold materials
have advantages such as potentially enhanced biocom-
patibility, ease of chemical functionalization or seques-
tering of growth factors, in some cases biological rec-
ognition, and susceptibility to cell triggered proteolytic
degradation and remodeling [14].
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Tuning Mechanics

The appropriate mechanical characteristics of a biomaterial
are highly dependent on the regenerative application. For ex-
ample, mesenchymal stem cells differentiate into different lin-
eages, such as neurons, myoblasts, and osteoblasts, on pro-
gressively stiffer substrates [15]. There are many ways of
changing the mechanics of a biomaterial (depending on what
type it is). Some common approaches include: crosslinking
materials [16], controlling crystallinity during processing
[17], and using inorganic reinforcing fillers (to enhance the
stiffness of the matrix [18]). Greater precision in scaffold pro-
cessing such as microfabrication techniques [19] and
employing mechanical gradients within the same scaffold sys-
tem (for soft-to-hard interfaces [20+]) are also being used to
more closely mimic in situ architecture.

Porous Structures

Pores are necessary to allow cells and the nutrients they re-
quire to migrate and infiltrate into the bulk of the scaffolds.
Pores can be formed by many different processing techniques,
including: freeze drying, porogen leaching, gas foaming,
microfabrication, and three-dimensional (3D) printers (for a
review on processing techniques that result in differences in
pore sizes see reference [21¢¢]). While increasing the pore size
of a scaffold increases infiltration of cells and improves trans-
port, there is a trade-off with mechanical properties. For ex-
ample, when biomaterials are implanted in vivo to promote
bone ingrowth, higher porosity, and pore sizes result in greater
osteo-integration with a reduction of mechanical strength [3].
Larger pore sizes also result in decreased integrin/ligand inter-
actions between cells and the biomaterial [1]. On the other
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hand, decreasing the pore size significantly limits cell migra-
tion (surface growth versus bulk infiltration) and can lead to
cellular encapsulation of the scaffold [1]. While larger pores
and enhanced porosity increases nutrient transfer, this can also
be achieved by adding channels to scaffolds [22-26]. In some
tissue engineering constructs, these channels are lined with
endothelial cells [27-30] to recreate the network of vascula-
ture that provides nutrients in vivo. It is important to consider
the dynamic nature of endothelial networks, however, which
is dependent on the type of mural cells and the mechanical and
bioactive properties of the matrix [31]. In addition, the inter-
connectivity of pores and adding channels to the materials,
affects the mechanical properties where randomly oriented
defects from both processing techniques soften the bulk prop-
erties of tissue constructs resulting in problems generating
structurally robust tissues (compared with more ordered ar-
rangements). Therefore, careful consideration should be taken
when choosing the porous (and/or channel) structure of
biomaterials.

Controlled Degradation

One of the goals of tissue engineering is to design the degra-
dation and remodeling kinetics of a biomaterial to: (1) initially
support seeded cells (and/or infiltrating cells) to proliferate
and secrete matrix, and (2) gradually degrade allowing de
novo tissue to fill the empty spaces left by the scaffold. In this
way, paired scaffold degradation and tissue remodeling can
maintain the intrinsic mechanical properties through the
healing process. Unfortunately, each tissue requires unique
degradation/resorption kinetics based on differences in matrix
properties, cell types, and bioactivity of other factors in the
extracellular matrix. An added confounder is that the regener-
ative capacity of patients varies, for example, children exhibit
higher regenerative capacity and will likely require a faster
degrading scaffold than adults that have a slower healing capac-
ity [4]. Other variables aside from age include patient nutritional
status, disease state, lifestyle, sex, and other related factors.
Materials can be biodegradable, bioresorbable, bioerodible,
or bioabsorbable [32]. Biodegradable materials break down
due to macromolecular degradation to byproducts that can
move away from the implantation site but are not necessarily
removed from the body [32, 33]. In contrast, bioresorbable
materials break down due to bulk degradation and are elimi-
nated through natural pathways (such as metabolism by cells)
with no residual side effects [32, 33]. This is ideal in some
circumstances, as complete removal of the biomaterial elimi-
nates any remaining foreign body reaction. Alternatively,
bioerodible polymers degrade and resorb only at the surface
[32, 33]. Finally, bioabsorbable materials dissolve in body
fluids without a decrease in molecular mass (a bioabsorbable
material is bioresorbable if the byproducts are excreted). All

classifications result in different regenerative outcomes, and
are highly dependent on tissue-specific requirements.

An important consideration is whether the degradation
byproducts will have toxic effects on cells and the surrounding
tissue. To address degradation and remodeling concerns, it is
important to consider the source of the material. Many syn-
thetic polymers are biodegradable, for example, the co-
polymer poly-D,L-lactic-glycolic acid (PLGA). However, the
acidic environment generated by the degradation of PLGA is
detrimental to cell mobilization and angiogenesis [8]. Proteins
derived from the extracellular matrix, on the other hand, are
naturally susceptible to proteolytic degradation and remodel-
ing by cells. The byproducts of degradation are less likely to
have toxic effects; however, the byproducts may cause down-
stream impact. For instance, byproducts of collagen degrada-
tion control cell migration of vascular smooth muscle cells
which are responsible for de novo synthesis of specific extra-
cellular matrix components (including restenosis after balloon
angioplasty) [34].

An interesting approach to controlling degradation in poly-
mers is with biological triggers. In this approach, labile chem-
ical groups are conjugated into the backbone of polymers that
can be degraded by physical or chemical signals, such as near-
infrared light [35], ultraviolet light [36+], ultrasound [37, 38],
redox [4], various enzymes [39, 40], and pH changes [41]. As
an example, a peptide-conjugated polymer was generated,
which underwent degradation when it was exposed to colla-
genase [39]. When designing these systems, the physical or
chemical cue must be carefully designed to avoid off target
effects. For instance, some enzymes, such as collagenase, can
cause further damage to the surrounding tissue. Targeting lo-
cal cell types that release the enzyme of interest (for instance
MMPs [40]), or directly injecting biological triggers into the
implantation site [4], are approaches that can be explored to
reduce injury to the surrounding tissue.

Release of Soluble Factors

To improve biological activity, controlled biomaterial degra-
dation can be paired with the release of soluble factors to
enhance regenerative outcomes. Drugs have been incorporat-
ed in many biomaterial scaffolds, for example, to promote
angiogenesis in ischemic tissues [42]. Another important area
of research is the controlled delivery of growth factors, which
are important mediators of cellular signaling, migration, pro-
liferation, differentiation, and maturation [2]. To incorporate
both drugs and growth factors in regenerative approaches,
local and temporal control is required to improve clinical out-
comes [43]. To accomplish this task, soluble factors have been
delivered from particles (at the micro- and nano- scale), from
scaffolds, and also encapsulated to release as the biomaterials
are degraded [5]. Binding of growth factors and drugs to
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biomaterials can occur through covalent [44] or ionic
bonds [45] and depends on the properties of the soluble
factors and the biomaterial. Encapsulating growth fac-
tors or drugs helps to control the release profile and
can protect the unstable bioactive molecules from deg-
radation (and loss of activity). However, covalent/ionic
bonds and encapsulation alone often lead to an initial
burst release of soluble factors. Many approaches aimed
at accomplishing sustained release and zero-order re-
lease have been proposed to address the burst issue
(for reviews see: [46, 47]). For example, in one system
[48], bone morphogenetic protein 2 was encapsulated in
a nano-sphere which was encapsulated in a micro-sphere
scaffolding system to enhance bone regeneration. The
hierarchical structure minimized the initial burst from
the nano-sphere by confining it within the scaffolding
system of the micro-sphere. Other biomaterial ap-
proaches control temporal timing of factors to release
different factors over time. For example, epidermal
growth factor at early time points and mitomycin C at
later time points [49].

Other Surface Chemistry Considerations

When cellular binding sites are not present on the material,
cell adhesion ligands such as proteins, peptides, and oligosac-
charides can be added to enhance cell adhesion. Coating with
extracellular matrix proteins which are specific for certain
tissues is commonly used to enhance adhesion, differentiation,
and/or proliferation of certain cell types. For instance, fibro-
nectin [50], collagen [51], and laminin [52], some of the most
common protein coatings used, have all been recently used to
enhance tissue-specific regenerative outcomes for periodontal
ligament, smooth muscle, and tracheal epithelial tissue,
respectively.

Coating with proteins has several drawbacks. Proteins
must be isolated and purified from an organism, making
large-scale production challenging, or they can be gener-
ated by recombinant DNA methods, which adds cost and
purification challenges. They may also elicit immune re-
sponses and can be proteolytically degraded [6].
Decorating the materials with immmobilized peptides for
cell recognition motifs, such as RGD (arginine (R), gly-
cine (G), aspartic acid (D)) therefore can be used to coun-
teract the issues associated with protein coatings since
they are easily characterized, cost effective, exhibit higher
stability, and can be packed at a higher density on the
surface of biomaterials [6]. However, immobilized cell
recognition motifs may have lower cell adhesion activity
and are specific to only one cell adhesion motif (whereas
matrix proteins have many) [53].
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Future Considerations for Biomaterials Aiding
Tissue Regeneration

Creative approaches to adjust material designs, including pore
size and degradation kinetics, in combination with
functionalization with cell- and tissue-specific factors will re-
sult in enhanced tissue remodeling and functional outcomes.
Greater precision in scaffold processing is required to provide
control over the structure of biomaterials to recreate tissue-
specific features. Advances in 3D printing and nanotechnolo-
gy development will likely be paramount for this precision. In
particular, patient- and tissue-specific architectures and degra-
dation kinetics will be a goal. In this way, scaffolds can be
designed to match the geometry of the patient-specific defect
and account for location, age, or disease state for degradation
properties. In addition, it will be important to modulate spe-
cific cues spatially and temporally within a scaffold, for in-
stance by coating specific regions with different extracellular
matrix proteins or by pairing degradation with the release of
specific soluble factors. This approach will be especially im-
portant in cases where multiple cell types or tissues exist with-
in one organ. Likewise, creating gradients and accounting for
interfaces (i.e., between soft and hard tissues) with different
biomaterial processing techniques will be crucial. Hybrid ma-
terials that combine the advantages of different materials will
also be essential in many applications. As an example, extra-
cellular matrix/fibrin scaffolds were generated, which com-
bined the highly angiogenic properties of fibrin with cardiac
extracellular matrix to promote both vascular and cardiac dif-
ferentiation within the same scaffold [54¢]. This hybrid system
also resulted in varying levels of mechanics, which will be an
important consideration for biomaterials moving forward. As
these new areas of biomaterial development are explored,
standardization, good manufacturing practices, and cost-
effective methods will be essential for translation toward clin-
ical utility.

Conclusions

Emulating the extracellular microenvironment is essen-
tial for establishing proper cellular phenotypes required
for tissue regeneration. Careful consideration of bioma-
terial choices in tissue engineering can improve regen-
erative outcomes. For instance, by making adjustments
to the material design, including pore size and degrada-
tion kinetics, intrinsic properties of tissue constructs can
be controlled to enhance remodeling and functional out-
comes. Additionally, the extracellular matrix is a repos-
itory for a variety of growth factors and other signaling
ligands, which can be incorporated in biomaterial ap-
proaches to improve regenerative outcomes.
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scaffold was generated that explores the effects of exploiting
both composition and mechanical properties to control the dif-
ferentiation of vascular and cardiac components.
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