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Abstract

Purpose of Review Describe growth at different periods of life to understand the effects of
genetic impairment in FGFR3-related conditions. We hope this data will be used to compare
different populations and the effects of future treatments towards growth improvement.
Recent Findings The FGFR3 plays a critical role in early mammalian skeletal development,
especially in postembryonic linear bone growth; however, little is known about its role
during all of the growth process stages. In the achondroplasia growth curve, infancy,
childhood, and puberty periods can be well recognized, coexisting with fast changes in
body proportions.
Summary FGFR3 gain-of-function mutations are responsible for autosomal dominant
chondrodysplasias characterized by a severe disproportionate short stature, as thanato-
phoric dysplasia, severe achondroplasia with developmental delay and acanthosis nigri-
cans, achondroplasia, and hypochondroplasia. While achondroplasia is homogeneous with
low variability, hypochondroplasia findings are less constant due to genotypic heteroge-
neity. In both conditions, birth size is slightly reduced, followed by a period of fast growth
deceleration during infancy and a low magnitude pubertal growth spurt, most evident in
sitting height. Some phenomena as shifting centile lines during infancy and parent-child
height correlation are well described. A slight variability is shown between achondroplasia
and hypochondroplasia populations within different ethnic backgrounds.
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Introduction

In the general population, the pattern of human linear
growth is well documented [1, 2]. During the first years
of life, the postnatal growth velocity is very fast, then
continuously decreases becoming relatively steady dur-
ing the late preschool years [1]. During those times,
shifts in linear growth may be seen, with almost 50%
of infants crossing centile lines, either up or down [3, 4].
When puberty begins, children experience a period of
fast growth, called “adolescent growth spurt” [1, 2]. This
milestone occurs, at different ages, with variable inten-
sity and duration between children; consequently, a shift
in growth channels may appear. Besides, secondary sex-
ual signs, as the occurrence of breast button or increase
in testis size, are linked to this period of fast growth [1].

Thus, in the human growth curve, we can recognize
three periods, infancy, childhood, and puberty, with
differentmajor factors involved in their regulation [1, 2].

Additionally, body proportions and the ratio be-
tween limbs and trunk length undergo important
changes from birth to adulthood. Crown-rump length
is 67% of total length at birth and only 55% at 6 years of
age, due to fast postnatal leg growth, changing body
proportions. During prepuberty, the sitting height/
height (SH/H) ratio remains quite uniform increasing
during puberty due to the spine growth spurt [5, 6].

The fibroblast growth factor receptor 3 (FGFR3)
plays a critical role in the early mammalian skeletal
development, especially in postembryonic linear bone
growth [7–9]; however, further studies are needed to
investigate the role of FGFR3 during all stages of the
growth process.

In consequence, most FGFR3 gain-of-function muta-
tions are responsible for a family of autosomal domi-
nant chondrodysplasias characterized by a severe and
disproportionate short stature with short limbs, narrow
trunk, and macrocephaly. This group is comprised by a
spectrum of conditions with variable severity in its clin-
ical and radiological presentation, ranging from mild
hypochondroplasia (HCH) (MIM 146000) to achon-
droplasia (ACH) (MIM 100800), severe achondroplasia
with developmental delay and acanthosis nigricans
(SADDAN) (MIM 616482), and the neonatal lethal tha-
natophoric dysplasia type 1 (TD1) (MIM 187600) and
type 2 (TD2) (MIM 187601) [10, 11•].

Achondroplasia is the most common form of
inherited disproportionate short stature with a preva-
lence between 1 in 10,000 to 1 in 30,000 live births
[12]. Approximately 99% of patients have one of the

two heterozygous gain-of-function mutations leading to
the same change in the FGFR3 protein: the amino acid
arginine replaces glycine at the position 380 (Gly380Arg
or G380R) [13, 14]. Suspected homozygous achondro-
plasia is a very severe, perinatal lethal condition [15, 16].

Hypochondroplasia is phenotypically milder than
ACH, also characterized by disproportionate short stat-
ure and macrocephaly. Because it is radiologically
milder, diagnosis may be difficult, especially in young
infants [17–19•]. Most HCH cases are caused by the
recurrent heterozygous C1620A or C1620G transversion
in the proximal tyrosine kinase domain, causing the
change p.Asn540Lys (N540K) [20, 21]. However, differ-
ent mutations have been described, with genetic and
clinical heterogeneity [22, 23].

Thanatophoric dysplasia is usually lethal perinatally
and is due to a de novo change in the FGFR3 gene. This
condition is divided into TD type 1 (micromelia with
bowed femur) and type 2 (micromelia, straight femur,
and cloverleaf skull deformity). The prevalence of TD is
0.47 per 10,000 live births in Latin America [24].The
most common TD1 mutations affect intra- or extracel-
lular domain while the TD2 mutation affects the tyro-
sine kinase domain of the FGFR3 protein [25–27]. This
condition may be detected in utero by ultrasound stud-
ies on the basis of short limbs and the narrow thorax.
After birth, respiratory insufficiency develops and, with
intensive medical intervention, a few patients have sur-
vived for a long period [10, 28].

Finally, severe achondroplasia with developmen-
tal delay and acanthosis nigricans (SADDAN) is rare,
characterized by severe short stature, tibial bowing,
profound developmental delay, and acanthosis nigri-
cans. The acanthosis nigricans is not evident in early
childhood because it develops late in childhood [29].
Although initially reported as a unique entity, there is
significant radiographic and clinical overlap between
SADDAN and TD. An FGFR3 gain-of-function
p.Lys650Met mutation (K650M) has been identified
in affected individuals [29, 30]. This mutation occurs
within the FGFR3 tyrosine kinase domain activation
loop and affects the same codon altered in TD2
(Lys650Glu) but results in a phenotype somewhat
different from TD2. Although they share the severe
skeletal dysplasia and CNS malformation, extended
survival has not been reported in TD2, and it is not
known whether acanthosis nigricans would develop
in these individuals [29].
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This review describes the growth patterns in the spec-
trum of skeletal dysplasias related to FGFR3 gene muta-
tions, in the different periods of the human growth
curve, to better understand its impact on skeletal devel-
opment. Different studies have described the growth of

individuals with ACH from birth to adulthood [31–
39••]. However, few studies describe growth in HCH
[40••, 41], even less in those infrequent conditions as
TD and SADDAN, with fewer than 10 patients having a
molecular confirmation of the latter [29, 30, 42–49].

Size at birth

Size at birth in ACH and HCH is only slightly reduced (Table 1).
In ACH, themean birth weight and length are between 3.15 to 3.5 kg and 46

to 50 cm, respectively, depending on different populations (Table 1) [31, 32••,
36••, 37••, 38••, 50••, 51••].

Despite size at birth inHCHwas found to be between normal ranges [17], in
an Argentinian cohort of 66 children and adults carrying N540K HCH, size was
somewhat lower than in the general population, with ameanweight and length
between 3.3 to 3.1 kg and 48 to 45.7 cm respectively [40••].

In children with HCH caused by different mutations than N540K, the size at
birth ranges from normal to slightly shortened, with an evident prenatal fem-
oral shortening (supplementary table 1) [52–63••, 64].

One child affected by a homozygous N540K mutation was reported with
normal weight at birth, body length in the third centile, and greater cephalic
circumference than the normal population (+2.3 SDS) [65].

The common features described in TD1 at birth aremacrocephaly, extremely
short limbs, and narrow chest. Most of those born alive die afterwards due to
respiratory failure [66]. Baker et al. described the auxological data of a newborn
boy, with a normal weight, 3.25 kg; length, 41 cm; and cephalic circumference,
39.5 cm (−3.3 SDS and +2.35 SDS for CDC references) [45].

In reports of six SADDAN term newborns, weight and length at birth were
normal, ranging 2.8 to 3.7 kg and 43.0 to 48.3 cm respectively. The head
circumference was large, between 37.5 and 41.5 cm. Long bones were short in
the prenatal ultrasound examination [30, 46•, 49].

Growth in infancy and childhood

In the ACH population, studies of growth in height show that children experi-
ence a period of fast growth decreasing during infancy [31, 32••, 35, 38••,
39••, 50••, 66], with a curve which is similar in shape but lower in magnitude
in comparison to the general population [35].

After a period of fast decreasing growth velocity since birth, with a mean
growth velocity of approximately 15.5 cm/year and 9.5 cm/year at 6month and
1 year old, respectively, the growth velocity is stable in late preschool years, with
a mean of 4.3 cm/year in both sexes [35, 39••, 66]. Therefore, the length at 12
and 24 months old is approximately −4.3 and −4.8 SDS respectively when
compared to the general population [32••, 35–36••, 37••, 38••, 67]. At 5 years
old, the growth velocity is between 2.6 and 5.9 cm/year and the growth deficit
remains constant during childhood until puberty begins [35].
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Interestingly, del Pino et al. described that during the first 5 years of life,
50% (41/84) of ACH children shift centile lines changing 1 SDS or more,
with a similar number of children shifting upwards and downwards. Nev-
ertheless, no shifting growth is seen in familial cases. A boy (heterozygous
case) with both parents affected was reported growing up in the lower ACH
centiles [35].

Regarding differences in height between sexes, during infancy and child-
hood, boys are approximately 1 to 3 cm taller than girls [32••, 36••, 38••,
67].

HCH children may have a broad spectrum of severity, including children
with severe height deficit and body disproportion since birth, to children
with growth close to normal until their adolescence, when disproportionate
short stature becomes evident. In the UK and France historical cohorts of
HCH children without molecular confirmation, a mean height between −2
and −3 SDS until 14 years of age has been reported, then falling below −3
SDS [68, 69].

As described in the ACH population, a growth study performed in children
with N540K-related HCH in Argentina shows a period of decreasing growth
during infancy. Most of the 66 children’s height was below the 3rd centile of the
general population reference. However, there is an overlap between the 97th
centile of HCH children and the lower centiles of the general population, until
they are 13 and 10 years old in males and females respectively [40••]. In other
populations, the height of children with HCH caused by N540K mutation
ranges from nearly below the 50th centile to severly short stature [70–76]
(supplementary table 1).

In children with HCH caused by different mutations than N540K, the
phenotypic variability is wide, ranging from a severe height impairment
and body disproportion noticed since the prenatal period to children
with a less height deficit and body disproportion secondary to greater
growth of the lower limbs [52–61, 63••, 64, 77–83] (supplementary
table 2).

In a child carrying a homozygous N540K mutation, severe postnatal
growth retardation in body length was described at 16 months with −4.0
SDS and 6.2 SDS at 26 months compared to the general population.
The cephalic circumference on both occasions was on 97th centile [65].

Regarding TD1, there are few long-term survivor descriptions including
growth data [42, 43]. McDonald et al. reported two children alive at 4.0 and
4.75 years [44]. In addition, Baker et al. described the auxological data of a 9-
year-old boy, with normal weight, severe length deficit, and macrocephaly at
birth. During his follow-up, he showed severe growth retardation and the
estimated adult height was near 85 cm (height at 8 years of age and at adult-
hood −11 SDS for CDC references) [45, 84, 85]. Body disproportion had
persisted with marked short rhizomelic compromise; his head circumference
shifted from near the 50th percentile to +1 SSD during childhood, compared to
the general population [45].

The last reported height in two SADDAN children was 63.5 cm at 5 years old
and 103.6 cm at 16 years old (−9.2 SDS and −7.25 SDS for CDC references,
respectively) with a head circumference of 51.0 and 50.0 cm respectively [30,
84, 85].
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Growth during adolescence and puberty

When ACH children start puberty, their height is 5.00 SDS below the 50th
centile for the general population, losing almost one additional SDS during
adolescence. [34••, 36••, 37••, 38••, 39••].

In 1978, Horton et al. published the first growth charts from birth until
adulthood. Unfortunately, beyond 10 years old, measurements were limited
and Horton could not assure if this was a pubertal growth spurt [31]. Subse-
quently, no pubertal growth spurt was reported by Merker and Hoover Fong
when they performed the analysis of the average curves in cross-sectional design
studies [36••, 38••]. Nevertheless, some individual growth patterns published
by Merker showed a clear acceleration in growth velocity during early pubertal
ages [38••].

However, del Pino et al. clarified this point in a longitudinal design
study, showing that during adolescence, there is a period of rapid increase
of growth velocity with a later slowdown, confirming the “adolescent
growth spurt.” It is similar in shape and lesser in magnitude than in the
general population, with a peak height velocity between 3.2 and 6 cm/year.
The range for age at height velocity peak includes a period of about 3 years
for boys and girls. After the height velocity peak, growth velocity decreases
until they final growing stop. Moreover, del Pino described in ACH girls the
presence of a pubertal growth spurt in the trunk, with a mean velocity peak
of 3 cm/year [34••].

Merker found no differences in height between sexes from 10 to 14
years of age; however, in other studies, boys are taller in infancy, becoming
more evident during adolescence [32••, 34••, 36••, 38••, 39••, 51••]
(Table 1).

Regarding puberty, del Pino described starting during growth velocity in-
crease in boys (genital stage 2 and testis volume of 4 mL), reaching adult stage
(genital stage 5 and testis volume of 20mL) after the height velocity peak, in the
“adolescent growth spurt” deceleration phase. In girls, breast 2 befalls during
the increase of growth velocity, breast 3 close to the mean age of the height
velocity peak, and menarche in the deceleration phase of the growth spurt
[34••].

Unfortunately, there are no growth longitudinal studies describing puberty
in HCH; but in the Argentinian cohort, the analysis of the average curves shows
that there is an evident pubertal growth spurt in the trunk length, which occurs
between 11 and 14 years in males and between 10 and 13 years in females,
being more prominent in first of them, but this was not evident in the lower
limbs [40••].

In HCH children with N540K mutation as in a group without molec-
ular confirmation, puberty onset befalls at similar ages than in general
population adolescents [68, 86]. In twelve boys and six girls, the median
age was at 12.2 and 11.1 years respectively [68]. These authors also
reported that there was no peak of pubertal growth, causing an impact
on adult height [68].
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Adult height

For ACH patients, the mean height at 18 years of age or older is
between 128 to 134 cm and 120 to 125 cm for males and females,
respectively, with a sex difference between 6 to 9 cm according to
different reports [32••, 36••, 37••, 38••, 50••] (Table 1). The adult
height deficit corresponds to 5.8 SDS to 7.4 SDS below the median for
national references.

Although the height in adults with ACH is quite homogeneous, argentine
males and females are 2–5 and 4–5 cm shorter than people in Australia, the
USA, Northern Europe, and Japan at 18 years of age [32••, 36••, 37••, 38••,
50••] (Table 1 and Fig. 1). It is difficult to know if this is a true difference in
height between populations, explained by a population-wide phenomenon
[31, 32••, 36••, 37••, 38••] or if it is due to other causes, such as methodo-
logical differences in data collection, sample size at older ages, or methods to
process the data [31, 32••, 84, 85].

One of the first reports of HCH adult height was done by Maroteaux and
Falzon, being 146.1 cm (138–153) inmen and 137.6 cm (128–147) in women
with clinical-radiological diagnosis [87]. Later, Appan and Pinto reported an
adult height in the UK and France groups of HCH, between 145 to 165 cm and
133 to 151 cm for males and females respectively [68, 69].

The height in 33 Argentinian N540K HCH adults was between 131.0 and
154.5 and 124.0 to 138.0 cm in men and women, respectively, corresponding
to −4.21 SDS and −4.93 SDS according to Argentina references [40••, 88].
Height in five Russian N540K HCH adults ranged from −3.62 to −5.14 SDS
[71].

Stature in HCH adults carrying other mutations than N540K varies between
severely short to normal in lower centiles [52, 53, 55–57, 59, 62–64, 77–79, 83]
(supplementary table 2).

Nikkel et al. reported one of the older TD patients; she was 23 years old and
her long bones were extremely short: the length of her femur and tibia was
8 and 5.7 cm [46•].

The oldest SADDAN patient reported was 30 years old; his height was
104 cm (−9.1 SDS for CDC references) [30].

Association between mid-parental height and offspring

Parental height of de novo ACH cases in the different reports is normal [38••,
89••, 90–91].

In 1970, Murdoch et al. found that mean parental height did not signifi-
cantly influence the adult height in the novo ACH cases: in males, the correla-
tion was +0.02 and in females +0.18 [90]. However, del Pino et al. estimated
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parent-child correlations at different ages, finding that at birth, it is only 0.17,
then it rises, and at 3 years of age, it reaches about 0.4, remaining stable
thereafter until adulthood [89••]. Later, Merker reinforces this fact describing
a positive association between parental and adult height in de novo ACH cases
(r = 0.54) [38••].

Fig. 1. Median growth curves of height in different cohorts of achondroplasia populations: females (a) and males (b).
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Body proportions in FGFR3

FGFR3 plays an important role in prenatal skeletal development, with a greater
negative influence in the epiphyseal growth plates of the limbs, inhibiting
endochondral ossification and disturbing their growth [7–9]. Otherwise, de-
spite modifying the anatomy of the vertebral bodies, the FGFR3mutation only
slightly disturbs the growth of the trunk.

Consequently, at birth, ACH infants are severely disproportioned with short
limbs. The sitting height/height ratio, which quantifies body disproportion, has
a mean of + 5 SDS at birth compared to the general population, although the
body length is slightly reduced [5, 33]. This body disproportion becomes more
evident throughout their lifetimewith a SH/H ratio of +10 SDS at 2 years of age,
+20 SDS before puberty, and +17 SDS at adulthood compared to the general
population [5, 33, 92].

Regarding leg length in ACH newborn, this is 3 cm shorter than in the
general population, and this difference increases to 7 cm at 1 year, 10/14 cm
at 2 years, 23 cm at 6 years, and 36/40 cm at 18 years of age [6, 31, 33, 92, 93].

Although del Pino, Horton, and Merker leg length growth charts show a
similar slope, there are subtle differences between them, being in Argentinian
females at 20 years of age 1 cm shorter than the USA and Northern Europe
females. However, no differences are seen in males [31, 33, 92].

No pubertal growth spurt in leg length is observed in ACH adolescents; this
maybe secondary to the severe growth retardation or to the legs bowing which
shadows its detection [33, 34••, 38••, 92].

The spine, measured as sitting height, grows in the lower normal range
during infancy and childhood. During adolescence, its growth decreases mod-
erately and reaches 87 and 80 cm at 18 years of age in males and females,
respectively, only 5 cm below the mean compared to the general population [6,
31, 33, 34••, 91, 92, 94]. Trunk length pubertal spurt in girls as published by del
Pino is 3 cm/year, being 72% of the peak growth velocity [34••, 92].

As described for leg length, despite sitting height growth charts show a
similar slope between different populations, there are subtle differences, being
in Argentinian females at 20 years old 2.5 cm shorter than in USA and Northern
Europe females. No differences were seen in males [31, 33, 92].

When the differences in segmental growth between Argentinian, USA,
and North Europe females were analyzed, the sum of these differences is
equal to the observed difference in total height, approximately 4 cm [31–33,
92].

As early as 2 years of age, arm span is 14 cm shorter than in non-ACH
children and this deficit almost doubles at 5 years of age [92]. At adulthood,
arm span is approximately 65 cm shorter than in the general population, with a
mean of 124 ± 6 cm and 115 ± 9 cm in males and females respectively [92].

ACH population has real macrocephaly (head circumference more than + 2
SDS for age and sex) and relative macrocephaly (head circumference/
height—HC/H—ratio more than 2 SDS for age and sex, i.e., big cephalic
circumference for the subject’s height). In ACH children, the HC/H ratio
decreases from 0.79 at birth to 0.47 in the adolescence, compared to the general
population [5, 33, 95].
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Body disproportion due to limb shortening is a hallmark in HCH with
variable severity [17]. It was described in N540K and in other mutations in
different populations [52–64, 68–73, 77–83] (supplementary tables 1 and 2)

In the Argentinian N540K HCH cohort, body disproportion assessed as SH/
H ratio was observed in early childhood, being evident in every child at 24
months of age, even in the absence of short stature. This disproportion in-
creased with age due to a greater compromise in the growth of limbs compared
to the trunk [40••].

Regarding pubertal growth spurt, the Argentinian N540K HCH cohort
showed a “growth spurt” in the trunk length, which occurred between 11 to
14 years inmales and 10 to 13 years of age in females, beingmore prominent in
first of them. However, this spurt was not evident in the lower limb growth
curves [40••]. At these ages, trunk and leg length are 7 and 25 cm shorter in
HCH children compared to the general population, contributing to the loss in
height and increasing body disproportion [40••].

A median head circumference of + 2.1 SSD compared to British standards
has been described in the HCH Argentinian group, this being a predictor of
N540K mutation in children with clinical and radiological findings suggestive
of HCH. A head circumference 91.86 SSD has a sensitivity of 73.3%, a specific-
ity of 100%, a positive and negative predictive value of 100%, and 73.3% for
detecting the N540K mutation [41]. However, although not all of the children
in the Argentinian N540K HCH cohort had real macrocephaly for age, all of
them had relative macrocephaly, even evident in the first years of life [40••].

TD and SADDAN children are reported to have extreme micromelia and
macrocephaly, evident at birth and when performing a prenatal ultrasound [30,
45, 47].

The severe growth retardation and increasing disproportion during infancy
and teenagers in FGFR3-related disorders could be related to the fact that these
periods are characterized by high velocity growth, especially in leg length,
mostly affected in FGFR3 mutations [33, 35, 38••, 92].

Conclusion

The FGFR3 plays an important role in prenatal skeletal development, inhibiting
endochondral ossification and retarding growth, leading to a severe height
deficit. Despite this, size at birth in ACH and HCH is only slightly reduced.
During the whole growth process in ACH children, three periods are well
recognized: infancy, childhood, and puberty, with similar shape but less mag-
nitude in comparison with the general population [34••, 35, 39••].

On the other hand, there is a parental and offspring height positive correla-
tion in ACH and an evident crossing of centiles, either up or down, during the
first years of life; both phenomena are also described in the general population.
These facts, together with the presence of the three periods in the growth curve,
suggest that multigenic influences on growth are not fully abolished by the
presence of the ACH mutation [35, 38••, 39••, 89••].

Unfortunately, no longitudinal growth studies allow us to confirm that
HCH children have the three phases of the human growth curve similar to the
general population. Nevertheless, the height curve of cross-sectional studies
shows a period of fast growth during the first years of age and the slope seen
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in the sitting height curve during teen ages could be the pubertal spurt [40••].
Even though height deficit and body disproportion at different ages in ACH

and N540K HCH populations, with different ethnic backgrounds, seem to be
similar, there are subtle differences [31, 32••, 36••, 37••, 38••]. It is difficult to
interpret if this is a true difference in height or due to other causes, such as
methodological issues [31, 32••, 84–86].
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