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Abstract
Purpose of Review Recent progress in bioremediation of soils contaminated with polyaromatic hydrocarbons (PAHs) is 
reviewed. Innovative techniques, traditional approaches, and combinations of technologies are examined.
Recent Findings Bioremediation was heavily researched in past decades and continues to be studied with excellent advances. 
Phytoremediation, bioaugmentation, biostimulation, and natural attenuation remain important but are now studied in con-
junction with genetic analyses, community dynamics, and extracellular enzymes and/or surfactants. Field soils contaminated 
with heavy matrices have lower rates of degradation (often < 25%), even for the most aggressive techniques.
Summary Significant strides have been taken in improving the efficacy of bioremediation of PAH-contaminated soils and 
understanding the fundamental processes. Key genes, important enzymes, and optimal conditions have been identified. 
Research continues in the challenging and important area of degradation of PAHs in anaerobic environments. Bioremedia-
tion endures as a viable approach to decontamination of soils and a fertile area for future research.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a broad group of 
semivolatile organic compounds that are naturally occurring, 
potentially toxic, frequently carcinogenic, and persistent in soils. 
The most well-known and studied PAHs are the 16 priority pol-
lutants from the U.S. Environmental Protection Agency [1]. 
Alkyl-substituted PAHs are suspected to have health impacts 
similar to the 16 priority pollutants but are studied far less fre-
quently [2]. Nearly all environments are contaminated with low 
levels of PAHs because of the large quantities of semi-volatile 
PAHs entering the atmosphere from the burning of fossil fuels 
and natural processes, such as forest fires and volcanoes.

PAHs persist in soil because they are somewhat recalcitrant 
and strongly sorbed to organic and inorganic surfaces. How-
ever, the similarity in chemical structure between the PAHs and 
certain chemical components of plants and soil organic matter 
allows PAHs to be degraded by many of the same microorgan-
isms that attack lignin, fulvic acid, and humates.

The degradation of PAHs by organisms has been long 
recognized for its potential to efficiently remove PAHs from 
contaminated soils. Over the decades, bioremediation of 
PAHs has taken many forms: landfarming, adding nutrients 
and water with frequent tilling; bioaugmentation, adding 
microorganisms to the soil that target PAHs; phytoremedia-
tion, using higher plants to stimulate rhizosphere degrada-
tion; and natural attenuation, simply allowing indigenous 
microbes to slowly take their course. Bioremediation can 
be a passive, in situ approach (e.g., natural attenuation), an 
active in situ approach (bioaugmentation, phytoremedia-
tion), or aggressively active ex situ (stirred reactors with 
high inputs of nutrients and microorganisms). Microbes 
of various types have been selected or even genetically 
modified to enhance bioremediation. Several reviews from 
the past decade provide an overview of previous research 
[2–6]. Some of the reviews went into great depth on specific 
aspects of bioremediation, and they will be referenced in the 
appropriate sections.

The objective of this review is to provide an update of 
progress in key areas of bioremediation of PAHs in soils from 
the past 5 years. Bioremediation of PAHs continues to be a 
vibrant area of study, and the science has evolved to combine 
multiple facets of bioremediation to enhance efficiency.
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Progress in Bioremediation of PAHS in Soils

Many areas of bioremediation of PAHs in soils have wit-
nessed steady growth since 2018, others have languished, 
and new approaches are emerging. In preparing this review, 
Clarivate’s Web of Science (accessed through Texas A&M 
Libraries) was used to search peer-reviewed journals. Phy-
toremediation and the genetics of bioremediation have been 
major growth areas, while the number of published articles 
regarding bioslurries, composting, anaerobic environments, 
and soil-dwelling fauna remains small. With over 1200 peer-
reviewed publications on the general topic of “bioremedia-
tion of PAHs in soils” and over 1000 articles on the specific 
subjects covered in this review (Table 1), only a fraction of 
the recent work can be cited here.

The rows in Table 1 correspond to the subtopics in this 
review:

• Natural attenuation: the use of unmanaged, naturally 
occurring processes to remove pollutants.

• Biostimulation: alteration of the environment to enhance 
the remediation capability of existing microorganisms.

• Composting: aerobic decomposition of organic solids 
through careful management of nutrient concentrations, 
moisture content, and aeration.

• Bioslurry: another name for slurry bioreactors, soil is 
excavated and placed in a stirred tank with enough water 
to form a flowable mixture. Nutrients and other materials 
may be added.

• Phytoremediation: the use of higher plants to accelerate 
the degradation of PAHs in the rhizosphere.

• Bioaugmentation: microorganisms are added to the soil 
to create a more effective bioremediating population.

• Wood decay fungi (includes white rot fungi): adding or 
enhancing existing populations of fungi that decay wood 
to degrade PAHs. Lignin degraders appear to possess an 
enhanced ability to degrade PAHs.

• Surfactants: generally limited to naturally produced com-
pounds such as rhamnolipids, the addition of surface-
active compounds to desorb PAHS and make the com-
pounds susceptible to degradation.

• Laccase enzymes: this class of extracellular enzyme is 
capable of cleaving the rings of aromatic compounds.

• Extracellular exudates and enzymes: the study of com-
pounds that may be responsible for enhanced PAH deg-
radation by microorganisms and/or in the rhizosphere of 
higher plants. This area of research is more fundamental 
and not often considered as a remediation method; how-
ever, this research led to the study of laccase enzymes.

• Fauna: the use of soil-dwelling animal species to enhance 
PAH degradation, usually limited to earthworms.

For this review, the mandatory criteria for the consid-
eration of published research included the following: (1) 
research published in peer-reviewed journals in 2018 or 
after; (2) studies addressing the remediation of PAHs in 
contaminated soils; (3) no review articles. Other criteria 
were deemed as highly important but could not always be 
met: (4) the contaminant PAHs were introduced in the field 
and aged at least 1 year; (5) individual PAHs must be ana-
lyzed before and after treatment. The requirement of field-
contamination eliminated “spiking” soils in the laboratory, 

Table 1  Summary of bioremediation publications from 2018 to 2023

Technology Publications Reviews Significant advances

Natural attenuation 82 11 Combining multiple technologies, benchmark for comparisons, long-term studies
Biostimulation 95 8 Expanding range of amendments; combining with bioaugmentation
Composting 7 1 Application to complex or heavy waste matrices
Bioslurry 34 1 Combining with bioaugmentation, biostimulation; branching into genetic analyses; mecha-

nisms
Phytoremediation 314 21 Expanding species database; combining with bioaugmentation, enzymes, biostimulation
Bioaugmentation 97 6 Wide-ranging variety of microorganisms added to soil; increased focus on indigenous species
Woody decay fungi 34 4 Examining more species of fungi; adding surfactants
Surfactants 68 6 Application to all forms of bioremediation; broadening the number of chemicals; microbial 

exuders
Laccase enzymes 39 1 Immobilization of laccase to enhance activity; exploring a wide range of mediators
Extracellular enzymes 145 15 Rapidly increasing field of study; isolation/characterization of enzymes
Biological communities 195 11 Tracing communities through remediation; molecular/genetic approaches; dynamics
Genes/genetics 379 34 Rapidly growing field; combining with other technologies; expanding applications
Fauna 15 0 Increasing the number of species; expanding beyond earthworms
Anaerobic/anoxic 8 0 Anaerobic degradation is slow, but this research is needed for PAHs in anoxic environments; 

wetlands
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and this criterion was met for all areas except wood decay 
fungi, extracellular enzymes, and remediation using fauna. 
In the case of extracellular enzymes, all the articles in this 
review used soils that were contaminated in the laboratory.

Natural Attenuation

Natural attenuation relies solely on unmanaged processes to 
decrease PAH concentrations. PAHs can dissipate through 
non-biological means such as irreversible sorption, inor-
ganic oxidation, and volatilization, but biologically medi-
ated degradation is the primary mechanism. In a greenhouse 
experiment using field PAH-contaminated and aged soil, dis-
sipation after 180 days using natural attenuation removed 
42% of the 16 priority pollutants, with the 2- and 3-ring 
compounds decreasing the most (48%) [7]. Seven field 
sites were monitored for natural attenuation of PAHs over 
a period of 25 years [8]. Degradation rates initially were 
rapid and declined with time, but decreases of at least 70% 
in all measured PAHs were observed in all sites at the end 
of the 25-year period. Greater plant diversity in an unman-
aged system was associated with 38% smaller concentra-
tions of PAHs than systems with limited plant diversity [9]. 
Soil from a 150-year-old manufactured gas plant (MGP) was 
treated in a series of microcosms comparing natural attenu-
ation, bioaugmentation, and bioslurries [10]. Despite the 
aggressiveness of the active approaches, natural attenuation 
was nearly as effective in removing PAHs (86%) as bioslurry 
and bioaugmentation (90%).

Biostimulation

Modification of the contaminated environment to enhance 
the ability of existing bacteria to degrade PAHs is called 
biostimulation. Soil modifiers include water, nutrients, and 
electron donors in anaerobic processes. Recent advances 
have focused on recycling of high-carbon wastes to increase 
microbial activities and provide greater opportunity for 
PAH dissipation. Sewage sludge and sludge compost were 
added to moderately contaminated soils (< 600 µg total PAH 
[kg  soil]−1) and up to 65% degradation was observed after 
126 days [11]. Actinomycetes and gram-positive bacteria 
were found to be the most important variables. Spent mush-
room substrates were added to aged PAH-contaminated soil 
(total PAH ≤ 2.5 mg  kg−1), and PAH dissipation ranged from 
2.5% in the unamended check samples up to 41% in fresh 
mushroom compost + soil after 60 days of incubation [12]. 
Adding pea straw enhanced PAH degradation (45%) com-
pared to natural attenuation (27%) for the first 30 days of 
experimentation, but both methods had similar endpoints 
by day 102 (64%) [13]. Twelve types of biochar were added 
to contaminated soil from a coking facility, and the most 

effective material resulted in 58% degradation of the PAHs 
after 180 days [14].

Biostimulation and most other forms of bioremedia-
tion involve the action of microorganisms on PAHs. The 
individual species of bacteria and fungi have been heavily 
reviewed, and knowledge of the participating species can 
provide important insights into bioremediation strategies 
[4, 5, 15]. The details of pathways of PAH degradation also 
have been summarized [3, 6].

Composting

One of the least operationally complex forms of bioremedia-
tion is composting, a controlled process in which biodegrad-
able, usually organic, materials are mixed with water and 
nutrients to enhance biological transformations. The organic 
material can be contaminant free, and PAH dissipation occurs 
coincidentally, or the organic material may be contaminated 
with the target PAHs. In examining strategies for biochar com-
posting, dissipation of PAHs was measured concurrently, and 
decreases in PAH concentrations after 180 days were small 
(3–21%), possibly due to limiting nitrogen concentrations 
[16]. Oil sludge with > 500 mg total PAH  kg−1 was com-
posted with three animal manures for 10 months; total PAHs 
decreased 77–99% [17]. Adding ammonium persulfate, a 
chemical oxidant, prior to composting significantly increased 
the efficiency of PAH removal [18]. Using cattle manure and 
wheat straw for the composting of PAH-contaminated MGP 
soil, known to be resistant to treatments, did decrease PAH 
concentrations [19]. Composting of crude oil sludge was 
found to be highly effective for high molecular weight PAHs 
(nearly 100% dissipation) but somewhat less efficient for low 
molecular weight compounds [20]. The authors also charac-
terized genes of certain fungi and bacteria associated with 
PAH degradation. Contaminated, rural sewage sludge was 
composted with sawdust, reducing the total PAH concentra-
tions by 94% after 30 days [21].

Soil‑Slurry Bioreactors

The soil-slurry bioreactor approach to bioremediation is 
ex situ and not directly transferable to large-scale remedia-
tion projects. Valuable information is provided concerning 
mechanisms and interactions among many variables. Five 
coal-tar-contaminated soils were treated in a simple slurry 
bioreactor for 35 days, after which 80–90% of the total PAHs 
had degraded [22]. Combinations of algae (Chlorella spp.) 
and Rhodococcus wratislaviensis in slurries of aged, PAH-
contaminated soil degraded up to 75% benzo[a]pyrene, 80% 
pyrene, and nearly 100% phenanthrene in 30 days [23]. Two 
bacterial strains (Rhodocccus erythropolis and Pseudomonas 
stuzeri) were added to soil slurry [24]. After 15 days, total 
PAHs declined from 330 to < 75 mg  kg−1. To evaluate only 
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physical processes of removal in spiked-soil slurries, mer-
cury was added to the reactors and monitored [25]. After 
8 h, removal of the PAHs varied from 0.5 to 82% and was 
strongly correlated with PAH vapor pressure. Slurries were 
bioaugmented with a consortium of indigenous bacteria, 
resulting in some enhancement during a 410-day experi-
ment on coal-tar-contaminated soil [26].

Phytoremediation

Phytoremediation of PAHs in soils is the use of higher 
plants to enhance biodegradation by rhizosphere micro-
organisms. Unlike phytoremediation of other organic 
contaminants (such as pesticides or chlorinated solvents), 
PAH uptake by higher plants is minimal, and degradation 
of PAHs within the plants is not an important pathway of 
PAH bioremediation [27]. Early phytoremediation stud-
ies aimed to optimize nutrient additions and to screen 
for plant species best suited for degradation. Hundreds 
of studies were published between 2018 and 2023 with 
recent advances combining phytoremediation and other 
bioremediation approaches (e.g., bioaugmentation), study-
ing PAHs in metal co-contaminated soils, while others are 
continuing the “traditional” approach of testing individual 
plant species. Several publications investigated the use of 
a mix of Festuca L. species [28, 29] with decreases in total 
PAH concentration of 75%; a mixture of Medicago sativa 
and Bromus inermis [30] decreased individual PAHs from 
13 to 61%; and the single species (Cynodon dactylon; [31]) 
showed a 56% decrease in total PAHs. Co-contamination 
with heavy metals is thought to complicate the phytoreme-
diation process due to the potential toxicity of the metals 
to plants and microorganisms, and recent research focused 
on co-contamination with cadmium [31, 32] or multiple 
metals [33, 34]. PAH removal exceeded 50% when nitro-
gen was added to stimulate plant growth [32] or when a 
sequence of remedial steps was taken [33]. Although nutri-
ent addition is a routine aspect of phytoremediation, other 
amendments also can be useful. The combination of starch 
with a Fusarium species significantly enhanced PAH deg-
radation beyond 50% for all compounds [30]. Bioaugmen-
tation in conjunction with phytoremediation has attempted 
to take advantage of the ideal rhizosphere conditions for 
added microbes. Mycobacterium species were identified in 
the past as having excellent PAH degradation potential and 
were recently examined further [35, 36]. Phytoremediation 
in the presence or absence of Mycobacteria increased PAH 
degradation (52% total removal) compared to the unveg-
etated control (41%), and the contribution of the Myco-
bacteria was not as great as that of phytoremediation. In 

addition to monitoring the dissipation of PAHs, bacterial 
community structure was examined and identified the most 
important degraders [28, 34, 37]. Trends in degradation of 
PAHs in response to phytoremediation do not follow any 
particular trend in the selected studies. The lowest degra-
dation (42%) was seen in a 60-day treatment of agricul-
tural soil contaminated by irrigation with wastewater [37], 
whereas the highest degradation was observed for some of 
the more recalcitrant matrices: steel mill waste (90%, [34]) 
and petroleum-associated waste (> 75%, [28, 29, 36]). The 
duration of the experiment was not correlated with the 
percentage of the PAHs degraded.

Bioaugmentation

Degradation can be enhanced by the addition of specific 
microorganisms, combinations of two or three specific spe-
cies, or adding an entire consortium of microorganisms, and 
this process is called bioaugmentation. The concept of bio-
augmentation for PAH degradation has existed for decades, 
and new microbes are frequently tested. Bioaugmentation 
by wood-degrading fungi is one of the most studied areas 
and will be given its own section in this review. In recent 
years, several studies examined PAH degradation through 
bioaugmentation with individual bacterial species includ-
ing the Burkholderia cepacian complex [38], Paracoccus 
sp. [39, 40]. Three species were introduced simultaneously 
(Bacillus spp., Pseudomonas sp., Acinetobacter sp.) [41]. 
These studies were generally successful in removing PAHs 
but often required additional amendments, and overall bio-
diversity decreased in the amended soils. Soil-borne, sap-
rotrophic fungi were amended to PAH-contaminated soil, 
and up to 44% degradation of benzo[a]pyrene was observed 
after 9 days [42]. Some researchers recognized the benefits 
of adding a consortium of microorganisms, either specifi-
cally cultured (methylotrophic, [43]; PAH-degrading iso-
lates, [44]) or indigenous [45]. The approach to introducing 
exogenous degraders into aged, contaminated soil was modi-
fied to overcome initial problems of ecological adaptation 
[45], resulting in increased bioremediation efficiency (over 
50% PAH degradation vs. 10% by biostimulated control). 
The approach was generally successful, but the degree of 
degradation was dependent upon the specific PAH in ques-
tion. Degradation of PAHs in response to bioaugmentation 
does not appear to be related to the contaminant matrix: the 
smallest rate of degradation (25%; [42]) and highest rate 
(99%, [44]) were observed in MGP soils, and a modest rate 
of degradation (56%, [39]) was found in a contaminated 
agricultural site.
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Wood Decaying Fungi

Wood decaying fungi have captured the interest of the biore-
mediation field for decades. “White rot” fungi were the first 
group of these fungi studied in depth, but the research has 
expanded to include all fungal genera involved in the deg-
radation of wood. Some of the advances have combined the 
fungi with other approaches. (Note that nearly all the studies 
using wood decaying fungi used soil that was contaminated 
in the laboratory.) Laboratory-contaminated soils amended 
with 9 to 17% crude oil were inoculated with the bacterium, 
Ochrobactrum intermedium, and the wood decaying fun-
gus, Pleurotus ostreatus [46]. The greatest removal of PAHs 
(84%) occurred when the organisms were added together, 
but they were also effective when added individually (70% 
removal). Pleurotus dryinus was used as an inoculant in a 
study that found that high concentrations of soil organic 
matter had little impact on PAH degradation in laboratory-
spiked soils [47]. Degradation of phenanthrene was nearly 
100% in all treatments, and benzo[a]pyrene degradation was 
approximately 50% even in the presence of 12% soil organic 
matter. Additions of Crucibulum leave in combination with 
phytoremediation were compared to phytoremediation alone, 
and the combined treatments were generally more effective 
in removing PAHs from laboratory-contaminated soil [48]. 
A 180-day pot experiment contrasted various combinations 
of Crucibulum leave and phytoremediation against natural 
attenuation in a field-contaminated soil and found that the 
phytoremediation + bioaugmentation treatments were the 
most effective [7]. In this study, natural attenuation degraded 
42% of the total PAHs, phytoremediation 45%, and wood 
decaying fungi 39%. The fungi were most effective for the 
higher-ring PAHs.

Surfactants

Enhanced degradation of highly sorbed compounds by some 
microorganisms is achieved by increasing the lability of the 
contaminants through the exudation of surface-active agents. 
The impact of surfactants on PAH bioremediation has been 
studied by adding surfactant compounds, bioaugmentation 
with organisms known to exude surfactants, or biostimula-
tion to optimize surfactant production. Surfactants have been 
combined with other forms of bioremediation. Fundamental 
aspects of surfactant production, critical micelle concentra-
tions, and solubilization were quantified to help optimize 
the process [49]. In the presence mono-rhamnolipids, 20% 
of the PAHs were desorbed, and a total of 80% had dissi-
pated after 360 h. Addition of rhamnolipids was investigated 
in untreated soil with high levels of PAH contamination 
(4370 mg  kg−1) from creosote and in soils that had been pre-
viously bioremediated [50]. Dissipation of the PAHs in the 
soils was high for total PAHs (> 85%) and pyrene (> 87%) 

but smaller for benzo[a]pyrene (mean of 58%). The efficacy 
of bioaugmentation (Arthrobacter globiformis) was com-
pared to no treatment and enhancement with two levels each 
of a synthetic surfactant (Tween 80) and a rhamnolipid [51]. 
After 150 days, the control (absence of all additions) was the 
least effective (28%), and all surfactant treatments enhanced 
rates of PAH dissipation (36% for rhamnolipid; 30% for A. 
globiformis alone; 29% for Tween 80). Rhamnolipid addi-
tions were combined with phytoremediation and solarization 
[52] or biostimulation with lipids [53]. The combination of 
solarization + phytoremediation + biosurfactant was the most 
effective treatment with 95% PAH reduction [52]. Treatment 
of a contaminated smelting plant soil with phytoremediation, 
lipids, and ryegrass removed 40% of the total PAHs [53].

Laccase Enzymes

Laccase enzymes are naturally occurring in bacteria, fungi, 
and higher plants and are capable of oxidizing compounds 
containing phenolic substrates. Their apparent involvement 
in the degradation of PAHs has led to many investigations. 
To be effective, laccase systems must attack compounds 
with lower redox potential than the laccase, although media-
tor compounds can be introduced that enhance the oxidative 
potential of the enzyme. Dodor [54] optimized the laccase 
system for oxidation of several PAHs using two mediator 
compounds in combination with the laccase stabilized on 
kaolinite or stabilized on soil. Some PAHs interfered with 
the oxidation of others, and efficiency was lost as the system 
became more complex, but degradation efficiency ranged 
from 25% for benzo[a]anthracene and pyrene to nearly 100% 
for anthracene and benzo[a]pyrene. Degradation of pyrene 
(90%) and benzo[a]pyrene (58%) in laboratory-contaminated 
soil increased with immobilization of laccase, and 40 °C and 
pH 4 were the optimal conditions for degradation [55]. Sim-
ilarly, optimal degradation was found to be between pH 5 
and 7, and the mediator ABTS significantly increased PAH 
degradation (85% for anthracene, 70% for benzo[a]pyrene) 
[56]. Others have examined specific stabilizers, including an 
Fe-based compound [57] and calcium alginate beads [58]. 
Ferulic acid and ABTS mediators were found to be superior 
to coumaric acid in decreasing PAH concentrations in a field-
contaminated soil to 13% of the original concentrations [59]. 
Two alternative laccase mediators were evaluated and found 
to interfere to some degree with the oxidation of PAHs in 
field-contaminated soils [60].

Exudates and Extracellular Enzymes

Exudates from soil microorganisms and higher plant roots 
are frequently involved in bioremediation of PAHs. In addi-
tion to the laccases reviewed in the previous section, other 
enzymes and water-soluble compounds have been identified 
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as directly contributing to PAH degradation. The research 
cited in this section generally dealt with identifying exu-
dates and enzymes rather than quantifying PAH degrada-
tion, and none of the studies used field-contaminated soil. 
Phytoalexins present in the apoplast of higher plants have 
the potential to interact with endophytic bacteria and accel-
erate PAH degradation. At relatively low concentrations, 
three phytoalexins increased removal of phenanthrene and 
anthracene to 50% by Methylobacterium extorquens [61]. 
Phytoremediation with Zea maize and mycoremediation 
with Pleurotus ostreatus resulted in increased degradation 
of PAHs and increased concentrations of several extracel-
lular enzymes [62]. Remediation of PAH-contaminated soil 
with Pseudomonas brassicacearum decreased PAH con-
centrations in the soil, and an enzyme participating in the 
degradation was identified [63]. After degradation of PAHs, 
four Bacillus species were identified and found to be highly 
in efficient in bioremediation [64]; catechol 1,2 dioxygenase 
was isolated and deemed to be an important contributor to 
the process. Contamination of soil with coal tar increased 
the activities of several oxidoreductive enzymes [65]. Dur-
ing rhizoremediation of petroleum hydrocarbons by Vigna 
unguiculata and Vigna radiata, the composition of root exu-
dates was measured as were the enzyme activities of the 
microbes Micrococcus luteus and Bacillus cereus [66]. A 
multifaceted study examined the degradation of PAHs dur-
ing phytoremediation with Salix viminalis with or without 
three species of mycorrhizae; degradation ranged from 84 
to 80% after 90 days [67]. Bioremediation increased in the 
presence of the Salix viminalis and increased further when 
mycorrhizae were present; organic acid exudates and various 
enzymes (including laccase) were quantified.

Changes in Microbial Communities During 
Bioremediation

All facets of bioremediation attempt to optimize the biologi-
cal breakdown of PAHs, and a shifting microbial population 
is a logical consequence. Classic culture techniques, phos-
pholipid fatty acids analysis (PLFA), genetic sequencing, and 
the identification of specific PAH degrader genes have been 
used to monitor population dynamics. Initial contamination 
often dramatically changes microbial populations, and further 
changes are observed during remediation, the magnitudes 
of which are dependent upon the technologies employed 
and subsequent land use [68]. Based upon enzymatic activi-
ties, PLFA analyses, and microbial mass, the impact of PAH 
contamination is strongly dependent upon the environment 
prior to contamination [69]. In creosote-contaminated soil 
containing PAHs highly resistant to degradation, bacterial 
strains with higher capabilities for PAH bioremediation were 
enhanced [70]. In laboratory-contaminated soils evaluated for 
bacterial diversity and metabolism using metagenomics, no 

correlation was observed between changes in high molecular 
weight PAH concentrations and specific microbial taxa, but 
degradation of low molecular weight PAHs appeared to be 
related to Betaproteobacteria [71]. Additions of rhamnolipid 
surfactants altered the community composition through 
selection for certain species [72]. Mixed surfactants were 
added to contaminated soils and enhanced biodegradation 
of PAHs in the first 20 days of the experiment. Microbial 
population parameters were analyzed in detail, but clear pat-
terns of impacts on specific genera did not emerge [73, 74]. 
In another surfactant study, addition of the surfactant to the 
critical micelle concentration lowered microbial diversity, 
partially due to enhanced populations of surfactant-degrading 
species [75]. Although additions of rhamnolipid enhanced 
PAH biodegradation by increasing degrading species, the 
microbial richness was diminished [76]. Assessment of the 
bacterial community and genes responsible for PAH dissipa-
tion in polluted soils found Actinobacteria, Betaproteobacte-
ria, and Chloroflexi to be the most important [77]. Analysis 
of a field-contaminated soil identified bacterial strains that 
produce biosurfactants: Bacillus spp., Priesta spp., Pseu-
domonas spp., Enterobacter spp., and Kosakonia spp. [78].

Specific Genes and Genetic Analyses

Increased understanding of the microbial species and enzymes 
responsible for PAH degradation has been coupled with the 
quest to better predict and optimize bioremediation [79]. Vari-
ous forms of genetic analysis were used by researchers cited in 
previous sections, particularly in monitoring shifts in micro-
bial populations during contamination and subsequent biore-
mediation. The encoding genes of PAH-degrading enzymes 
were examined in fungal isolates [80, 81]. Genomic and tran-
scriptomic approaches to fungal bioremediation revealed an 
array of inducible genes specific to degradation of PAHs [82]. 
Amplicon-based metagenomics were applied to a PAH-con-
taminated site and identified Geobacter spp., Mycobacterium, 
and Sphingomonas spp. as key components of bioremediation 
[83]. Six pyrene degraders were identified using DNA stable 
isotope probing [84]. Functional genes were identified for sev-
eral PAH-degrading enzymes, including naphthalene dioxy-
genase (nahAc) [85–90], PAH hydratase-aldolase (pahE) [85, 
86, 88], and catechol dioxygenase (xylE) [85, 88, 91].

Bioremediation by Fauna

Bioremediation is generally viewed as involving microorgan-
isms (e.g., bacteria or fungi) or higher plants, but soil-borne 
animals also can contribute. In petroleum-contaminated soils 
spiked with up to 30,000 gm  kg−1 total petroleum hydrocar-
bons (TPH), earthworms Eisenia fetida reduced TPH content 
by 50% after 200 days compared to 25% in soils without worms 
[92]. The accumulation of contaminant hydrocarbons in the 
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earthworms in the contaminated soils was indistinguishable 
from worms clean soils. In aged, field-contaminated soils, two 
species of worms (Porcellio scaber and Lumbricus terrestris) 
were evaluated for their ability to survive in contaminated soils 
and to decrease contaminant concentrations [93]. The dissi-
pation of contaminants was limited (approximately 20% after 
28 days), and many of the contaminants proved to be toxic to 
the worms. Worms also have been used in conjunction with phy-
toremediation [94] and phytoremediation plus bioaugmentation 
[95]. A laboratory-contaminated soil had greater degradation of 
a single contaminant (anthracene) in the presence of plants and 
Eisenia fetida than in the absence of worms [94]. In an aged, 
field-contaminated soil, all remediation approaches were at least 
somewhat effective, but trends of the effects combinations of 
treatments were not clear [95]. Contaminant degradation aver-
aged approximately 65% removal for total PAHs and individual 
compounds. The introduction of mussels to a constructed wet-
land improved removal of PAH contaminants [96].

Bioremediation of PAHs in Anoxic Environments

Degradation of PAHs is more rapid and more likely to reach 
complete mineralization under aerobic conditions. However, 
PAHs can be found as contaminants in anaerobic conditions, 
and increasing degradation efficiency in the absence of oxy-
gen is an ongoing pursuit. In controlled conditions, a faculta-
tive anaerobe (PheF2, a strain of Trichococcus alkaliphilus) 

was able to nearly eliminate phenanthrene in anaerobic con-
ditions using  Fe3+ as the electron acceptor; the kinetics of 
degradation were approximately one-half those in aerobic 
conditions [97]. A field-contaminated soil was incubated in 
a glovebox in an anoxic atmosphere, and nitrate was used 
as the electron acceptor [98]. Additions of nitrate enhanced 
dissipation of 3- and 4-ring PAHs but had little impact on 
5- and 6-ring compounds after approximately 1 year. Labo-
ratory-contaminated soils were bioaugmented under anaero-
bic conditions, and naphthalene (85%) and benzo[a]pyrene 
(52%) were significantly degraded [99]. Bacillus firmus was 
isolated and used as a bioaugmentation source for labora-
tory-contaminated soil [100]. The additions of nitrate alone 
or nitrate in combination with Bacillus firmus dramatically 
reduced PAH concentrations over 56 days.

Summary and Conclusions

Bioremediation of PAHs in soils has progressed steadily 
since 2018. The more traditional areas (e.g., bioaugmen-
tation, phytoremediation) have expanded into finding new 
species of remediators, and the identifying pathways of 
degradation continue to be a focus. Laccase has emerged 
as an important extracellular enzyme, an extension of 
the research using wood decaying fungi. An entire book 
was dedicated to reporting progress on the use of wood 

Table 2  Results of selected studies to compare bioremediation rates

Technology Soil contaminant Duration (days) % Degradation Reference

ΣPAHs 3-ring 4-ring 5-ring

Natural attenuation Manufactured gas plant 105 86 85 71 72 10
Sediment 8125 80 81 72 72 8

Biostimulation Coke plant 180 43 45 29 41 14
Sewage sludge 126 60 60 55 50 11

Composting Manufactured gas plant 56 0 0 0 0 19
Sewage sludge 30 94 73 100 60 21

Bioslurry Coke plant 210 93 80 80 78 26
Manufactured gas plant 35 84 nd nd nd 22

Phytoremediation Oil field 150 80 75 80 73 29
Agricultural wastewater 60 42 42 50 40 37

Bioaugmentation Manufactured gas plant 30 25 30 40 22 42
Agricultural contaminated 84 56 63 63 28 39

Wood decay fungi Aged agricultural 180 39 37 39 43 7
Laboratory spike 110 84 79 95 100 46

Surfactant Wood treatment plant 20 85 86 86 35 50
Agricultural contaminated 150 36 28 19 10 51

Lacasse enzymes Petroleum waste 12 54 58 53 30 59
Dredged sediments 40 nd 65 60 80 57

Vermiculture Petrol waste 112 68 63 67 70 95
Laboratory spiked diesel fuel 28 20 (total petroleum hydrocarbons only) 93
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decaying fungi with a chapter dedicated to PAH degrada-
tion [101]. Bioaugmentation studies have recognized the 
vulnerability of isolated, non-indigenous species of bacte-
ria and fungi in the harsh soil environment and have been 
tending toward using species naturally found in these soils 
with a greater probability of survival.

Combining multiple bioremediation approaches pro-
duced excellent success. Phytoremediation paired with 
bioaugmentation or adding surfactants enhanced deg-
radation even for highly contaminated sites with diffi-
cult residues (e.g., coal tar or creosote). Using mediator 
compounds with laccase enzymes improves efficiency of 
decomposition, and alternative mediators have been tested. 
Examining the response of soil microbial communities to 
contamination and subsequent remediation lends insights 
into the potential for full ecological recovery.

In this review, the contaminant matrix was frequently 
included in the summary of published studies because PAHs 
in soils are rarely found alone or in the absence of a contam-
inant matrix (airborne deposition being an exception), and 
the nature of the matrix is critical in dictating the efficacy 
of bioremediation. Creosote and coal tar, for example, are 
particularly challenging because the PAHs are embedded 
in a matrix that is aged and resistant to degradation. When 
PAHs are applied to soil in the absence of a matrix, such as 
dissolving in water or acetone and spraying on the soil, the 
PAHs are highly labile and readily susceptible to degrada-
tion. For this reason, studies using laboratory-contaminated 
soils were avoided when possible in this review.

To compare the efficacy of the various bioremediation 
techniques, two representative studies from each approach 
were compiled (Table 2). For each study in Table 2, the 
source of contamination, the duration of the study, and 
the amount of PAH degradation are listed. At least one 
of the studies in each approach used soil with a highly 
recalcitrant matrix: MGP residue, coke plant waste from 
coal or steel industries, or wood preservatives. The second 
study in each method was generally from a site with lower 
contaminant concentrations and/or a less resistant matrix. 
For example, diesel fuel spill sites in agricultural soils 
tend to be easily remediated.

An examination of Table 2 does not reveal any obvious 
trends that would separate one method as being superior 
or inferior compared to others. The removal of total PAHs 
ranges from 25% degraded in an MGP site by augmenta-
tion to 94% removal by composting of contaminated sew-
age sludge. However, the lowest removal rate (0%) also was 
observed in composting.

Bioremediation continues to be one of the most promising 
technologies for remediating PAH-contaminated soils. The 
balance between moderate expense and high efficiency while 
preserving the soil resource combine to create an attractive 
cleanup alternative.
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