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Abstract
Manure is a valuable source of plant nutrients; however, continuous application to soils may lead to accumulation of phosphorus
(P), increasing the risk of P loss into waterways triggering freshwater eutrophication. This review paper summarizes and critically
evaluates relevant research findings published within the last 5 years on manure P mobility in soils and management strategies to
mitigate losses identifying future research needs. Past and recent research evidence on manure P mobilization and losses from
soils have yielded inconsistent and often confounding results, because of the interactive effects of source factors and the existence
of concurrent transport pathways. Although far from being conclusive, a few general trends are worth noting; P losses were
greater with (a) increasing soluble P applied with manure, (b) vulnerable soils with limited P sorption capacity and/or susceptible
to preferential flow/erosion, (c) conditions conducive to P release and transport, and (d) reduced soil-manure P interaction
following application. Effective mitigating strategies included (a) generating low-P manure, (b) processing manure to reduce
total and/or soluble P, and (c) adopting best management practices (BMPs) during and post-manure application. Future research
should focus on a better understanding of the interactive effects of source factors on short- and long-term manure P loss via
different transport pathways. Existing mitigation efforts and new directions should focus on reducing P buildup in soil by
employing a combination of strategies during generation, processing, and application of manure, coupled with site- and time-
specific BMPs selected based on the dominant pathway of P loss.
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Introduction

Global livestock production has rapidly expanded and inten-
sified over the last century, generating large quantities of live-
stock manure, annually. Livestock sector is estimated to occu-
py 30% of the world’s ice-free terrestrial surface area using
large areas of rangelands and arable croplands that provide
livestock feed [1]. The estimated stocks of livestock in 2014
was 21.3 billion chicken (Gallus gallus domesticus), 1.48

billion cattle (Bos Taurus), 1 billion pigs (Sus scrofa
domesticus), and 1.21 billion sheep (Ovis aries) globally, with
a global manure production rate of about 15 million tons of
dry matter/day [2]. Cattle contribute the most to the global
manure production (~ 60%), while pigs and poultry contribute
~ 9 and ~ 10%, respectively [3].

Livestock manures are intrinsically heterogeneous organic
material containing animal feces and urine, often mixed with
bedding material such as straw, sawdust, and/or other foreign
matter such as lime, sand, and soil, depending on the collec-
tion method. Based on the total solid (TS) content, animal
manure can be categorized as solid (> 20% TS), slurry (4–
20% TS), or liquid (< 4% TS). Since livestock manures are
valuable sources of plant macro- and micronutrients [4], they
can be recycled by application to croplands and grasslands
[5•], thus serving as a low-cost source of plant nutrients re-
placing significant amounts of commercial fertilizers. Besides
being a valuable source of plant nutrients, manure application
improves soil physical, chemical, and biological properties
mainly through increasing soil organic carbon [6], which in
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turn improves water infiltration, enhances nutrient retention,
promotes microbial activity, and reduces soil erosion [4, 7].

Despite the many benefits of livestock manure applications
to soils, there are some concerns over the potential negative
impacts on the environment and human health. Phosphorus
(P) accumulation in soils with continuousmanure applications
[5•, 8•, 9, 10] is a serious environmental concern because of
the potential P transport to freshwater bodies [11, 12••] that
may lead to eutrophication, a process that is primarily con-
trolled by concentrations of dissolved P in fresh water [13,
14]. Ratio of N/P of most livestock manures are much lower
relative to plant uptake; thus, manure application rates based
on crop N requirements often lead to an excess application of
P [15, 16•], leading to a P buildup in soils. Moreover, large
amounts of livestock manure is generated in localized areas
with manure disposal mainly via on-farm applications in ex-
cess of crop nutrient needs, which aggravates the P buildup in
localized areas.

Phosphorus accumulation in soil and losses from soils to
waterways with the land application of manure had been ex-
tensively reviewed and documented [11, 14], and possible
management strategies to mitigate P loadings to water bodies
have been identified and evaluated [17–19]. The goal of the
current review paper is to summarize and critically evaluate
recent advances on mobilization of manure P in soils focusing
mostly on research published within the last 5 years, and to
present an overview on recent management efforts to mitigate
P losses from manure-amended soils and their implications.
The term BP losses^ in this review paper refers to mass loss of
P from soils in kilograms per hectare.

Mobility of Manure Phosphorus

Agricultural soils receiving continuous applications ofmanure
have a greater potential for P transfer to water bodies, thus
becoming a non-point source of P if not properly managed.
The concept of critical source area, defined as the overlap of
land area with a high P source and high P transport potential,
has been widely used in assessing the risk of P loss from
agricultural soils, and planning management strategies [20•].
In the following section, we summarize recent research find-
ings that have focused objectively on the influence of source
and transport factors on P mobility in manure-amended soils
with an attempt to place recent findings in context with earlier
published work.

Source Factors

Soluble and Total P in Manure

Recent research corroborates previous findings that dissolved
reactive P (DRP) losses through surface and subsurface

pathways from manured soils are closely related to the water
extractable P (WEP) rather than total P (TP) in manure, irre-
spective of animal species generating manure [21, 22•, 23].
This trend was observed mostly for freshly applied manure
where runoff or leaching event occurred immediately after or
within a few days of manure application. In situations where
runoff or leaching event occurred a few weeks after manure
application, WEP in some studies was poorly related to DRP
loss with runoff and leaching [24, 25]; whereas, labile–P con-
centrations in manure measured as water + NaHCO3 extract-
able P [25] was better related to dissolved P losses. The WEP
may not be a good predictor of P loss when contribution from
particulate P (PP) loss to TP loss is high as in preferential flow,
tile drainage, and surface erosion, since analytical procedure
of WEP involves measuring dissolved P in filtered (0.45 μ)
extracts, thus excluding the P bound to large (> 0.45 μ)
suspended particulates [26]. Although WEP, by itself, may
not be a good predictor of potential P transport from a manure
source, WEP combined with other factors is widely used in P
indices to evaluate risk of P runoff loss frommanure-amended
soils [27, 28].

Total carbon (C), TP, and ratio of C/P in manure can influ-
ence the amount of P loss from manured soils; however, the
effect of manure TP and the ratio of C/P in manure on P losses
is inconsistent. In a field lysimeter study, greater P leaching
was observed with dairy and poultry manure containing low P
than high P, when surface applied to provide the same amount
of TP [22•]. This effect was attributed to the higher quantity of
manure, and thus, greater C added with low-P manure, which
may improve soil structure, promotes the activity of microor-
ganisms and earthworms, and thereby maintain macropore
flow paths through which unreactive P can leach [22•].
Increased dissolve C with application of high C-containing
manures or applying at higher rates significantly reduced P
sorption capacity and thereby increased the mobility of P,
posing greater risks of P losses [29, 30]. In contrast, leaching
losses of soluble P decreased when more C was added (e.g.,
with manures of high C/P compared with low C/P manure
compost). This may be attributed to enhanced decomposition
and mineralization with application of low C/P composts re-
leasing soluble P [31••].

Manures from Different Animal Species

Estimated potential risk of P loss and actual P loss from
manure-applied soils reported by various researchers for ma-
nures from different animal species show inconsistencies
when ranked. For example, liquid swine > liquid dairy > solid
poultry > solid beef (based on P source coefficient calculated
using extractable P after incubation) [32]; ruminant + horse
species > non-ruminant species (based on inorganic P extract-
ed by water + NaHCO3) [33]; dairy manure > boiler litter >
swine manure (based on water + NaHCO3 extractable P
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concentrations) [34]; liquid swine manure > solid cattle ma-
nure (based on water + NaHCO3 extractable concentrations
and actual runoff P loss with simulated rain) [25]; and solid
fraction of swine manure > cattle manure compost (based on
actual total P loss with runoff and sediments) [35]. Somewhat
contradicting findings confirm that making generalized com-
parisons on the potential risk of manure P loss based on the
animal species can be misleading, since manure P composi-
tion within an animal species is highly variable depending on
factors such as the diet, manure collection, processing, and
storage [34, 36, 37]. For example, supplementing P in dairy
heifer diet increased WEP in manure by 100% [37]. Other
studies showed that increasing dietary P supplementation with
diets containing wheat dried distillers’ grain with solubles
(DDGS) increased not only manure TP but also the proportion
of WEP [31••, 38]. Manure processing techniques such as
composting, increased TP content by about 10–55%, with a
corresponding decrease in WEP by about 5–17% [34].

Comparison of actual or potential P loss from liquid
manure/manure slurries with solid manure however, showed
a consistent trend; greater and more rapid losses from liquids
and slurries than solids [25, 32, 39]. With high TS and less
water contents, solids require a large amount of rain or irriga-
tion water to be absorbed prior to P release, during which
mixing and dilution occurs [26], which slow down the P losses
as well as reduces P concentration in runoff or leachate
generated.

Manure Rate, Timing and Placement

Results of recent research investigating the effects of manure
application rates, time, and placement methods more or less
confirm and reiterate previous findings; (a) actual and poten-
tial runoff and leaching losses of manure P are greater at
higher rates of manure P added to soil [40–42]; (b) with sur-
face applications, the risk of P losses are high when manure
application is immediately followed by a runoff event [43],
and decrease with increasing time duration between manure
application and the first runoff event [43–46]; (c) high risk of
P losses with runoff when manure is surface-applied to frozen
and/or snow-covered ground particularly when runoff oc-
curred soon after manure application [39, 47]; and (d) total
and dissolved P loads in runoff and leaching is less with ma-
nure injection or incorporation as compared with surface ap-
plication without incorporation [37, 46, 48•, 49•]. Some ex-
ceptions to these general trends do exist; for example, while
runoff dissolved P losses were greatest at the first runoff event
after application of dairy manure [44], the leachate-dissolved
P losses were greatest when the soils had the highest P satu-
ration which coincided with leaching at 4 weeks after surface
application of poultry manure [50]. A study comparing tillage
and liquid swine manure application method showed reduced
overland runoff PP with minimum tillage and injected manure

compared with conventional tillage and broadcast manure but
not the DRP load [51]. Inconsistent and often confounding
effects of source factors on manure P losses arises because
of their cumulative interactive effects as well as the existence
of concurrent transport pathways that are influenced different-
ly by source factors.

Transport Pathways

Manure P can be transported from soils in two forms, partic-
ulate P or dissolved P, via a number of surface and subsurface
flow pathways namely, soil erosion, surface runoff, matrix
leaching, and preferential flow [11, 20•, 27, 41, 51]. The dom-
inant mechanism/s under a given situation depends on soil,
climate, topography and management factors. Significant cor-
relations have been observed between total P loads in runoff
with storm intensity, runoff/leachate duration and volumes,
snow water equivalent, and sediment losses [12••, 26, 43,
46, 52].

Contrary with the traditional misconception that surface
runoff of particulate and dissolved P is the major pathway of
P loss from soils, the significance of leaching and preferential
flow has been clearly demonstrated and documented [11, 19,
48•, 53]. Greater P leaching was observed in soils with pref-
erential flow pathways [22•], compared with soils lacking
preferential flow pathways that allowed dissolved P to diffuse
into the soil matrix. In tile-drained field, mobilization of P
with leaching contributed to more than 40% of total P loss
[54], where P transfer to tile drains mostly occur through pref-
erential flow [48•, 54, 55••, 56]. While the vast majority of
documented research focused predominantly on rainwater-
and irrigation-driven mobilization of particulate or dissolved
P from manure [41, 43, 48•, 57], recent efforts included ma-
nure P mobilization via snowmelt-driven overland runoff and
drainage [51, 57, 58, 59•], two major pathways of P loss under
colder climates. Estimated contribution of snowmelt-driven P
loss from soils could be > 50% of the runoff and dissolved P
load over the year [58]. Using SurPhos computer model with
over 100 site-years of weather and runoff data, the estimated P
loss with winter application of manure was 2.5 to 3.6 times
greater than with non-winter applications [12••]. Complexity
of manure P mobility is further compounded in soils prone to
prolonged seasonal flooding during snowmelt or storm events,
since anaerobic conditions often result in greater P mobiliza-
tion from soils, thus enhancing the risk of runoff and leaching
losses [60]. Research on P release from manured soils under
prolonged flooding is limited to a few laboratory scale studies
[60] and showed substantial increases in P release from ma-
nured soils to pore water and floodwater, with the magnitude
of increase varying depending on soil properties. More re-
search on redox-induced losses of manure P under flooded
conditions is needed to assess the risks and identify mitigation
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measures for soils prone to flooding with snowmelt and
precipitation.

Transport Factors

Phosphorus losses from manure are influenced by factors that
influences transport pathways such as soil characteristics,
drainage, land use, hydrology, and climatic conditions.
Dissolved P and PP behave differently with regard to the
means of their transport [61] and thus on their response to
changes in source and transport factors influencing manure
P loss. For example, manure P losses though preferential flow
was greater from fine-textured, well-structured soils than
coarse-textured soils [62], while manure P mobility through
matrix leaching was greater in a coarse-textured than a fine-
textured soil [63]. Thus, there is a need for long-term field
scale research adopting a holistic approach to understand the
interactive effects of multiple source and transport factors on
manure P loss via various pathways that occur concurrently.
Since field scale research evaluating multiple factors on P loss
from soils is expensive and time consuming, mathematical
models are increasingly being used to evaluate the potential
impact of different management options in reducing P loss
from soils, of which some models (e.g., SurPhos, APLE,
SWAT) are designed to include P loss from manure applica-
tions [12••, 64, 65]. The use of models can complement long-
term field studies in evaluating the interactive effects of source
and transport factors on manure P losses via different path-
ways and identify alternative management options to reduce P
losses.

Management Strategies to Mitigate Losses

Manipulation of source and transport factors has been exten-
sively researched asmeans of mitigatingmanure P losses from
soils through different pathways [19, 37, 44, 49•, 55••, 66•, 67,
68••, 69], with greater emphasis on control at the source level
which is more effective and less complex than controlling
transport factors. Management efforts that have been evaluat-
ed at different scales to manipulate source and transport fac-
tors to mitigate manure P losses are summarized in Fig. 1.
Transport of manure P at a given time occurs through both
particulate and dissolved forms via concurrent pathways; thus,
attempts to minimize P loss through one pathway may en-
hance losses through another. It has been noted that some of
the best management practices (BMPs) effective in reducing
erosion and particulate P (PP) transport such as minimum or
zero tillage, buffer strips, etc. can inadvertently increase DRP
export via surface runoff and subsurface drainage [70, 71].
Research into mitigating manure P losses from manure-
amended soils should therefore, address both dissolved and
particulate P forms and also take into account the lower

bioavailability of PP in aquatic ecosystems [61], posing a
different level of environmental threat to water quality than
dissolved P.

Controlling Source Factors

Reducing the rate of P applied with manure undoubtedly, is
the most cost-effective approach to mitigate P losses from
manured soils. Many countries have established strict regula-
tions regarding manure P application rates to agricultural
fields based on soil P thresholds [48•, 72] where STP is often
used to establish an upper limit to P application. Various ap-
proaches to reduce the rate of manure P loading to soils in-
clude, but not limited to, (a) generating manure with low TP
and/or WEP (b) processing manure to reduce TP and/or WEP,
(c) converting soluble P in manure to less available forms
prior to or during application, and (d) decreasing manure ap-
plication rates and transporting excess manure elsewhere.
Based on data reported in recent literature, the relative change
in TP and WEP of manure that were generated and/or proc-
essed through various P-reducing techniques, as compared
with unprocessed manure or manure generated under conven-
tional methods, are summarized in Table 1. The amount of
WEP added with the same rate of TP was calculated and
compared among different techniques tested with various ma-
nure types (Table 1).

Generating Low P Manure

Reducing TP concentration in manure and thereby increasing
N/P in manure is an attractive option to effectively control soil
P buildup even with an N-based manure application rates.
Various approaches such as livestock diet manipulation, ma-
nure separation and processing, and amendment treatments
have been used with varying success in reducing TP and/or
WEP concentrations in manure (Table 1). Reduced P supple-
mentation in feed [82], increasing fiber content in diet [83],
and supplementing monogastric animal diets with phytase to
increase the bioavailability of phytate-P and thereby reduce
inorganic P supplementation, have resulted in manure with
lower TP and/or WEP [84, 85].

Manure Processing to Reduce P Content

A number of manure processing techniques have been evalu-
ated and are presently being used [86•] while emerging tech-
nologies continue to develop to process manure with the target
of reducing TP and/or WEP contents. For manure slurries
such as swine and dairy slurries, solid-liquid separation is an
option to reduce the rate of P applied, since separation usually
result in an N-rich liquid separate (LS) with less TP, which can
be used on-farm as a N fertilizer, while P-rich solid separate
could be transported elsewhere [77–79, 87–89]. Average N/P
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ratio increased by 1.5- to 6-fold in LS compared with raw
slurry (RS) of swine manure depending on the separation
technique [77–79], an advantage since more N is provided
per unit P than unseparated RS. Estimated TP loadings with
the application of LS of swine slurry were only 50 to 70% of
that of RS at equivalent rates of total N applied [88], which
may or may not result in a reduction in WEP loading, since
WEP/TP in LS can be more than RS depending on the sepa-
ration technique (Table 1). Moreover, for manure slurries with
a larger proportion of dissolved inorganic P, solid-liquid sep-
aration may result in LS with even greater TP than RS [90].

Composting of manure mixed with high C materials may
result in a stable product with lower TP and higher C/P ratio
and a lower risk of runoff and leaching losses when applied to
soils [73•, 80, 91, 92]. Depending on the materials used in
composting, TP may increase [31••, 73•] or decrease [92],
resulting in a wide variation of C/P [31••, 73•, 80].
Composting often resulted in a significant reduction in
water-extractable P [31••, 73•, 74] via the formation of recal-
citrant P forms [74]. Thus, when added to provide the same
rate of TP, composted manure resulted in about 26–52%

reduction in WEP added than uncomposted manure
(Table 1). Greater TP leaching losses with composted versus
uncomposted cattle manure had been observed [31••] despite
lower WEP in composted manure, which was attributed to the
relatively lower C/P ratio in composted manure used. The
contradicting results emphasize the need for careful selection
of composting material that will reduce C/P while decreasing
TP andWEP during composting. It has also been documented
that P losses with runoff could be high during the early stages
of composting which has to be contained [93].

Manure incineration (direct combustion in the presence of
air) is a process that converts fresh manure to a P-rich ash
[94•], which essentially contain zero nitrogen because of gas-
eous losses of nitrogen during the incineration process [86•],
thus reducing its value as a nutrient source. Compared with
fresh manure, manure ash releases P slowly [95]; thus P re-
lease with cattle manure ash-amended soil was found to be
significantly lower than compost amended soil at the same P
application rate [96].

Producing biochar from manure through incomplete com-
bustion under anaerobic conditions (pyrolysis) immobilizes P

Fig. 1 Schematic illustration of
mitigation strategies for
controlling P accumulation in
soils with manure application at
various levels

166 Curr Pollution Rep (2018) 4:162–174



Ta
bl
e
1

To
ta
l
P
(T
P)

an
d
w
at
er

ex
tr
ac
ta
bl
e
P
(W

E
P)

in
m
an
ur
e
ge
ne
ra
te
d/
pr
oc
es
se
d
th
ro
ug
h
va
ri
ou
s
P-
re
du
ci
ng

te
ch
ni
qu
es

an
d
in

co
rr
es
po
nd
in
g
m
an
ur
e
ge
ne
ra
te
d
un
de
r
co
nv
en
tio

na
l
m
et
ho
ds
/

un
pr
oc
es
se
d
ra
w
m
an
ur
e,
w
ith

ca
lc
ul
at
ed

re
la
tiv

e
ch
an
ge

in
T
P
an
d
W
E
P
an
d
th
e
pe
rc
en
ta
ge

re
du
ct
io
n
in

W
E
P
fo
r
sa
m
e
ra
te
of

T
P
ad
de
d
(b
as
ed

on
da
ta
re
po
rt
ed

in
re
ce
nt

lit
er
at
ur
e)

Pr
oc
es
s

M
an
ur
e
ty
pe

D
es
cr
ip
tio

n
T
Pa

(g
kg

−1
)

R
el
at
iv
e

ch
an
ge

in
T
P

W
E
P
a

(g
kg

−1
)

R
el
at
iv
e
ch
an
ge

in
W
E
P

R
ed
uc
tio

n
in

W
E
P

fo
r
sa
m
e
T
P
ra
te
(%

)
R
ef
er
en
ce

D
ie
tm

an
ip
ul
at
io
n

D
ai
ry

m
an
ur
e

P
su
pp
le
m
en
te
d

3.
9

–
0.
99

–
[3
7]

P
no
ts
up
pl
em

en
te
d

3.
1

0.
79

0.
63

0.
64

19
.9

D
ai
ry

m
an
ur
e

P
su
pp
le
m
en
te
d

5.
1

–
0.
94

–
–

P
no
ts
up
pl
em

en
te
d

4.
3

0.
84

0.
42

0.
45

47
.0

C
om

po
st
in
g

B
ro
ile
r
lit
te
r

U
nc
om

po
st
ed

8.
9

–
2.
27

–
–

[7
3•
]

C
om

po
st
ed

9.
8

1.
10

1.
21

0.
53

51
.5

B
ee
f
ca
ttl
e

U
nc
om

po
st
ed

5.
2

–
1.
29

–
–

[3
1•
•]

C
om

po
st
ed

5.
8

1.
12

1.
06

0.
82

26
.4

C
at
tle

m
an
ur
e
fe
d
w
ith

D
D
G
S

U
nc
om

po
st
ed

8.
8

–
2.
57

–
–

[3
1•
•]

C
om

po
st
ed

13
.7

1.
56

2.
44

0.
95

39
.0

Po
ul
tr
y
lit
te
r

0
da
y
of

co
m
po
st
in
g

49
.4

–
12
.4

–
–

[7
4]

7t
h
da
y
of

co
m
po
st
in
g

53
.2

1.
08

5.
53

0.
45

58
.6

Py
ro
ly
si
s

D
ai
ry

m
an
ur
e

R
aw

m
an
ur
e

5.
6

–
1.
47

–
–

[7
5]

B
io
ch
ar

(3
50

°C
)

10
.0

1.
78

0.
38

0.
26

85
.6

B
io
ch
ar

(7
00

°C
)

16
.9

3.
01

0.
10

0.
07

97
.8

P
av
ed

fe
ed
lo
t

R
aw

m
an
ur
e

7.
1

–
3.
07

–
–

[7
5]

B
io
ch
ar

(3
50

°C
)

11
.4

1.
61

0.
46

0.
15

90
.7

B
io
ch
ar

(7
00

°C
)

17
.6

2.
49

0.
18

0.
06

97
.6

Po
ul
tr
y
lit
te
r

R
aw

m
an
ur
e

13
.9

–
2.
90

–
–

[7
5]

B
io
ch
ar

(3
50

°C
)

20
.8

1.
50

0.
43

0.
15

90
.1

B
io
ch
ar

(7
00

°C
)

31
.2

2.
24

0.
90

0.
31

86
.2

Sw
in
e
so
lid

s
R
aw

m
an
ur
e

24
.7

–
11
.0

–
–

[7
5]

B
io
ch
ar

(3
50

°C
)

38
.9

1.
57

0.
39

0.
04

97
.7

B
io
ch
ar

(7
00

°C
)

59
.0

2.
39

0.
06

0.
01

99
.8

T
ur
ke
y
lit
te
r

R
aw

m
an
ur
e

16
.1

–
9.
11

–
–

[7
5]

B
io
ch
ar

(3
50

°C
)

26
.2

1.
63

1.
06

0.
12

92
.8

B
io
ch
ar

(7
00

°C
)

36
.6

2.
27

1.
75

0.
19

91
.5

D
ai
ry

m
an
ur
e

R
aw

m
an
ur
e

8.
6

–
0.
76

–
–

[6
7]

B
io
ch
ar

25
.2

2.
93

0.
04

0.
05

98
.2

Po
ul
tr
y
lit
te
r

R
aw

m
an
ur
e

13
.7

–
2.
95

–
–

[7
6•
]

B
io
ch
ar

27
.1

1.
98

0.
17

0.
06

97
.1

H
yd
ro
th
er
m
al
ca
rb
on
iz
at
io
n

C
at
tle

m
an
ur
e

R
aw

m
an
ur
e

~
14

–
6.
80

–
–

[6
6•
]

H
yd
ro
ch
ar

~
19

~1
.3
5

˂
2.
0

~0
.2
9

~7
8.
3

So
lid

-l
iq
ui
d
se
pa
ra
tio

n
S
w
in
e
sl
ur
ry

R
aw

sl
ur
ry

30
.1
b

–
2.
11

b
–

–
[7
7]

L
iq
ui
d
se
pa
ra
te
(C
N
)

27
.9
b

0.
93

1.
77

b
0.
84

9.
1

R
aw

sl
ur
ry

22
.1
b

–
3.
32

b
–

–
[7
7]

L
iq
ui
d
se
pa
ra
te
(C
F)

31
.0
b

1.
41

4.
79

b
1.
44

−2
.8

R
aw

sl
ur
ry

26
.4
b

–
3.
49

b
–

–
[7
7]

L
iq
ui
d
se
pa
ra
te
(R
F)

28
.9
b

1.
10

5.
07

b
1.
45

−3
2.
7

Sw
in
e
sl
ur
ry

R
aw

sl
ur
ry

20
.9
b

–
12
.2
b

–
–

[7
8]

L
iq
ui
d
se
pa
ra
te
(S
P)

8.
3b

0.
46

8.
08

b
0.
76

−6
6.
8

Sw
in
e
sl
ur
ry

R
aw

sl
ur
ry

2.
1b

–
0.
23

b
[7
9]

L
iq
ui
d
se
pa
ra
te
(S
P)

3.
0b

1.
42

0.
30

b
1.
35

5.
1

Curr Pollution Rep (2018) 4:162–174 167



and consequently reduces the risk of runoff and leaching
losses [67, 76•, 94•, 97]. Pyrolysis of various manures resulted
in an increase in TP, with increment ranging from ~ 24 to >
200% depending on pyrolysis temperature [67, 75, 76•, 94•,
98], with greater TP at higher temperatures of up to 1000 °C
[75, 94•]. Despite the increase in TP, pyrolysis reduced the
WEP dramatically [67, 75, 76•, 94•, 98] by transforming labile
P in manure to more stable forms such as Mg/Ca phosphate
minerals [67, 99]. The decrease in WEP with manure pyroly-
sis in different studies ranged from 68 to 99% and is influ-
enced by manure type [67, 75, 76•]. Based on the TP and
WEP of biochars reported in recent literature, application of
biochar may result in a reduction of > 85% of WEP for the
same rate of TP added compared with raw manures (Table 1).
When applied to soils, P release rate was slower and steadier
over a longer time period with biochar than from raw manure;
thus biochar could potentially be a slow-release P source that
may result in more efficient uptake by plants and reduced
losses from soils [76•, 95].

Compared with manure biochar, much less is known about
manure hydrochar produced through direct pyrolysis of wet
manures through hydrothermal carbonization. Since this rela-
tively new technology avoids the step of evaporating water,
and uses a relatively low temperature (180–350 °C), the ener-
gy requirement is much less than pyrolysis for wet manures
[86•]. Hydrothermal carbonization of cow manure increased
the TP content substantially by ~ 30% with a significant de-
crease in WEP by > 70% [66•]. More research on P release
characteristics and P speciation of hydrochars produced
through this emerging technology is needed for different ma-
nures under varying conditions.

Converting Manure P to less Soluble Forms

Various amendments can be added to manure prior to or dur-
ing manure application to convert the soluble manure P to
more stable, recalcitrant forms. Use of industrial by-products
as amendments to reduce soluble P concentrations in animal
manure, and thereby minimize the potential for P transport to
surface waters after land application of the manure was recent-
ly reviewed [18]. Flue gas desulfurization (FGD) gypsum is
one of the most evaluated industrial by product as a manure
amendment as well as a soil amendment. The FGD gypsum
was effective in reducing P concentration of dairy liquid ma-
nure in the settling tanks within about 4 h of reactions, thus
could be used prior to field application of manure [100]. This
amendment showed a reduction of 53–91% in leachate P com-
pared with unamended poultry litter [73•, 91], a 54% reduc-
tion in runoff P during initial runoff event compared with
unamended poultry litter [101•], and 47–81% reduction in
leachate when amended to composted manure [73•].
Reduction in runoff P loss with FGD gypsum continued over
successive runoff events indicating a persistent effect over theT
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growing season [101•]. Other amendments that were evaluat-
ed recently showing significant reductions in P losses from
soils include alum and alum mud with a 29–84% decrease in
DRP loss with runoff compared with unamended poultry ma-
nure and swine slurry [23, 69, 102], liquid ferric chloride and
liquid poly-aluminum chloride, both with a 84% reduction in
DRP runoff losses compared with unamended swine slurry
[69] and combined amendments of zeolite with polyaluminum
chloride with an 87 and 81% reduction in runoff TP losses
compared with unamended dairy and pig slurries, respectively
[103]. Other amendments such as activated red mud [104],
mine drainage residue [105], lime [81], bauxite [68••, 106],
and sulfuric acid mixed with alum and bauxite [68••] were
effective in reducing WEP in various manures (Table 1) and
warrants field scale evaluation in reducing P losses from ma-
nured soils. Enhanced reduction of P losses through combined
amendments compared with single amendment [68••, 103]
indicate the possible synergies among different amendments,
which needs to be better understood and utilized.

Reducing Manure Application Rates

Repeated land applications of manure based on plant N needs
results in excessive P concentrations in soils because of lowN/
P ratio of manure compared with crop requirement [107, 108];
thus, shifting from N-based to P removal-based manure appli-
cation has been recognized as a potential alternative to reduce
P buildup in soils with continuous manure applications [16•,
109•, 110]. Recent research evidenced approximately 40%
less P accumulation in soil from P-based compared with N-
based application of dairy manure compost [15, 110], while
the reduction in P accumulation with liquid dairy manure with
P-based manure application was about 7% [110].

Manure rates should also be adjusted based on soil proper-
ties, adding less to high runoff-prone and leaky soils. Both
leaching and runoff losses of manure P are enhanced when
soils have low P sorption capacity with high degree of P sat-
uration [23]. While low application rates of manure P can
reduce P buildup in soils with repeated manure application,
it may involve hauling excess manure generated from live-
stock farms elsewhere. Granulating and pelletizing of manure
can enhance the ease of transporting [86•]. Solid-liquid sepa-
ration of manure slurries is also effective since N-rich liquid
can be applied on-farm, while P-rich solid which is about one-
tenth of the total mass of slurry [77] could be easily
transported off-site to be used as a P fertilizer.

Comparing different processing techniques, P availability
was shown to decrease in the order of drying > composting >
pyrolysis > combustion with increasing degree of processing,
with negligible WEP with pyrolysis above 700 °C or combus-
tion above 400 °C [94•]. Based on proportion of WEP to TP
calculated using recent data from various processing tech-
niques and manures, P bioavailability generally decrease in

the order solid-liquid separation > composting > pyrolysis
(Table 1).

Controlling Transport Factors

While manipulating at source level is the more effective ap-
proach to minimize P accumulation in soils with manure ap-
plications, controlling transport factors is effective in reducing
P mobility from manure-amended soils to sensitive locations
such as fresh water bodies. Past and recent approaches to
regulate manure P transport from soils to waterways focused
mainly on enhancing manure P-soil interaction (e.g., proper
timing, placement, and methods of manure application), and
controlling soil erosion, surface runoff, and preferential
leaching (e.g., minimum tillage, terracing, controlled drain-
age, etc.) [17–19, 20•].

Enhancing Manure P Interaction with Soils

Soil particles can retain manure P; therefore, enhancing ma-
nure P interaction with soils can reduce P mobility. Manure
application to wet soils, frozen ground, and during late fall and
winter seasons when temperatures are low, can significantly
increase manure P losses because of low P retention, and thus,
should be avoided [12••, 111, 112]. Incorporation and injec-
tion of manure enhances soil-manure contact and facilitates P
retention. When compared with surface application of pig
slurry, incorporation and injection resulted in a > 50% reduc-
tion in TP and dissolved P loads with runoff and leaching [46,
48•] and is usually a recommended practice to reduce manure
P losses.

Controlling Soil Erosion, Surface Runoff, and Preferential
Leaching

Loss of PP from manured soils is highly correlated with sed-
iment loss [41] and can be greatly reduced through controlling
soil erosion and preferential flow. While strategies commonly
used for erosion control such as conservation tillage, terracing,
contour tillage, and cover crops were often effective in reduc-
ing PP loss from soils via surface runoff, they are less effective
in reducing dissolved P losses and may increase the total dis-
solved P in losses over time [19, 20•]. For example, a study
analyzing a database of drainage-associated nutrient loads in-
dicated that conservation tillage, an effective measure for re-
ducing PP losses with surface runoff, can increase DRP loss
with rain water- and snowmelt- driven surface and subsurface
pathways [53], largely due to P accumulation in surface soils
with conservation tillage leading to vertical stratification in
relation to STP.

Controlled drainage reduced manure P loss to tile drainage,
with a 40-fold reduction in leachate DRP concentration com-
pared with free drainage 1 week after manure application
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[55••]. This was attributed to a reduction of preferential flow
through macropores allowing more time for P sorption to oc-
cur. A significant redox-induced DRP release was not ob-
served during 3-week subsurface water retention; however,
other studies reported significant increase in P release from
manured soils with longer periods of water retention [60].
Lack of redox-induced P release in the former study [55••]
could be soil specific; thus, more research is needed using
soils with a wide range of properties. While controlled drain-
age decreased DRP losses in leachate through preferential
flow [55••], how it influences P loss from other pathways is
uncertain; and authors cautioned that the impact of controlled
drainage on surface water hydrology, erosion potential, and
overall P loss risk, need to be evaluated.

Increasing time between manure application and runoff
event can reduce both particulate and dissolved P losses, par-
ticularly with surface-applied manures as shown by actual P
loss from manured fields and predicted P loss using different
models [12••, 44–46, 113]. Predictions using SurPhos model
suggest that enhanced soil-manure P interactions is not the
dominant mechanism that decreased available P for runoff as
thought earlier; rather, decreased runoff P loss was primarily
caused due to less runoff generated from drier soils with in-
creasing time after manure application [46], which may also
result in more manure P infiltration into soil. Thus, it is clear
that storm hydrology is the driver of manure P loss when
manure is applied on soil surface, rather than the time gap
between manure application and runoff event.

The complexity of concurrent processes of manure P trans-
port clearly indicates that effectiveness of BMPs tested for a
particular scenario may not be transferable to a different loca-
tion, or moment of time. Selection of appropriate BMPs there-
fore should be site and time specific based on the dominant
mechanism/s by which manure P is transported.

Conclusions

Manure is a rich source of plant nutrients that can significantly
reduce the use of mineral fertilizers in crop production; how-
ever, proper management is crucial to avoid non-point pollu-
tion of freshwater with P. Manures differ in their P content and
forms of P present, and when applied to soils with varying
properties under a range of environmental conditions, a large
number of interactive factors influences manure P accumula-
tion and mobility in soils. Based on research findings, P losses
from manure-applied soils in general, is greater with (a) in-
creasing soluble P applied with manure, (b) vulnerable soils
with limited P sorption capacity and/or susceptible to prefer-
ential flow/erosion, (c) physical/chemical conditions condu-
cive to P release and transport (e.g., water-logged conditions),
and (d) reduced soil-manure P interaction following applica-
tion (e.g., manure application when rainfall is imminent).

Since manure P can be transported as particulate P or dis-
solved P from soils, via a number of surface and subsurface
flow pathways which occur concurrently, attempts to mini-
mize P loss through one pathway may enhance losses through
another. Future research therefore, should focus on a better
understanding of the interactive effects of source factors on
short- and long-term manure P loss via different transport
pathways that occur concurrently. Special attention should
be paid to vulnerable conditions such as water-logged and
frozen soils, with more research on snow-melt driven P losses
to better understand the factors controlling manure P loss un-
der such conditions.

Mitigating strategies to reduce P transport from amended
soil to waterways can be achieved at multiple stages; during
manure generation, processing, application and post-applica-
tion. Future research should continue to hone existing tech-
niques to reduce P buildup in soils with manure applications
while developing novel cost-effective and environmentally
friendly options. Mitigation efforts should focus on reducing
P buildup in soil by employing a combination of strategies
during generation, processing, and application of manure,
coupled with site- and time-specific BMPs selected based on
the dominant pathway of P loss.
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