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Abstract
As the Earth warms, the spatial and temporal response of seasonal snow remains uncertain. The global snow science community
estimates snow cover and mass with information from land surface models, numerical weather prediction, satellite observations,
surface measurements, and combinations thereof. Accurate estimation of snow at the spatial and temporal scales over which snow
varies has historically been challenged by the complexity of land cover and terrain and the large global extent of snow-covered
regions. Like many Earth science disciplines, snow science is in an era of rapid advances as remote sensing products and models
continue to gain granularity and physical fidelity. Despite clear progress, the snow science community continues to face
challenges related to the accuracy of seasonal snow estimation. Namely, advances in snow modeling remain limited by uncer-
tainties in modeling parameterization schemes and input forcings, and advances in remote sensing techniques remain limited by
temporal, spatial, and technical constraints on the variables that can be observed. Accurate monitoring and modeling of snow
improves our ability to assess Earth system conditions, trends, and future projections while serving highly valued global interests
in water supply and weather forecasts. Thus, there is a fundamental need to understand and improve the errors and uncertainties
associated with estimates of snow. A potential method to overcome model and observational shortcomings is data assimilation,
which leverages the information content in both observations and models while minimizing their limitations due to uncertainty.
This article proposes data assimilation as a way to reduce uncertainties in the characterization of seasonal snow changes and
reviews current modeling, remote sensing, and data assimilation techniques applied to the estimation of seasonal snow. Finally,
remaining challenges for seasonal snow estimation are discussed.
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Introduction and Motivations

For many regions of the world, seasonal snow acts as a “virtual”
reservoir that accumulates in the winter and melts in spring,
storing and subsequently providing water for urban and agricul-
tural users [166]. About 15% of the world’s population derives

the majority of its water supply from seasonal snowpack [7].
Snow also presents hazards such as flood and avalanche risks,
disruption to transportation, and impacts on livestock, wildlife,
and infrastructure [10, 31, 39, 116, 117, 138, 157]. In addition,
snow-cover strongly influences weather and climate. The highly
reflective, emissive, and insulative properties of snow compared
with other surfaces alter the heat and moisture fluxes between
the land and the atmosphere [65, 165]. The feedback effects of
snow on atmospheric circulation and downstream weather pat-
terns can have inter-continental impacts. For example, anoma-
lous snow cover conditions in Siberia strongly influence North
American weather [28, 47, 74] and spring snow cover in the
Himalaya can affect the formation of the Indian monsoon
[144, 170, 171]. Accurate representation of snow cover in
models can improve the skill of numerical weather prediction
and water resource management. Snow estimation is “a trillion-
dollar science question” [153] that is increasingly important as
global warming forces substantial change.
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Declines in snow-covered area and volume, and shifts to
earlier snow disappearance, have been observed across the
Northern Hemisphere since many satellite records began
[17, 38, 54, 72, 121]. To date, snow loss attributed to warming
temperatures has primarily occurred in spring and at the geo-
graphic margins of historical seasonal snow cover, namely at
mid-latitudes and lower elevations [72, 113, 129]. Snow cover
reductions in response to warming impact the Earth system via
complex feedbacks that are best addressed using models. For
example, while warming is accelerating the global hydrologic
cycle [79], snowmelt rates may be slower in a warmer world
due to less snow persisting into the warmest months [115].
Similarly, Arctic warming will degrade permafrost [91], yet
shallower snow provides less insulation of soils from winter
air temperatures, resulting in colder soils in a warmer world
[66]. Accurate monitoring and modeling of snow improves
inclusion of these process interactions in future Earth system
projections while also serving highly valued global interests in
water supply, weather forecasts, and agriculture [153].

While spring snow cover reductions are evident in satellite
records [13], station observations [87, 113], and global model
reanalysis [140, 169], there remains much variability and un-
certainty in the spatial and seasonal patterns. For example,
increasing autumn snow cover trends in the Northern
Hemisphere, especially at Eurasian high latitudes, have been
attributed to seasonal precipitation increases (e.g., [2, 75]).
Several studies have questioned this positive trend, arguing
that it is inconsistent with North American autumn surface
temperature warming trends (e.g., [14, 75]). Similarly, while
there is a general consensus that snow volume and mass over
the terrestrial Arctic is decreasing, the literature has reported
highly variable regional trends [17]. The limited unanimity on
how global snow patterns have changed is likely due the lack
of comprehensive and accurate snow estimates from models
and/or remote sensing observations. There is a critical need to
improve snow estimates in reanalysis products, operational
models, and future climate projections.

Modeling and remote sensing approaches have inherent
uncertainties and limitations [57]. Uncertainties in models
are mainly associated with their physics and parameterization
schemes or error-prone input forcings such as precipitation,
temperature, and windspeed [114, 131]. Model errors can be
reduced with careful configuration. For example, when run at
sufficiently high grid spacing, a properly parameterized re-
gional climate model can resolve orographic precipitation
fields better than observation networks [102]. Similarly, re-
mote sensing techniques have inherent limitations due to tem-
poral, spatial, and technical constraints on critical snow vari-
ables. Careful assessment and model process representation
are required to represent global snow patterns and to disentan-
gle the relative contributions of internal climate variability and
anthropogenic forcing.

Simulating and observing fine-scale spatial and temporal
seasonal snow-cover patterns have historically been chal-
lenged by a high degree of environmental complexity and
limited in situ observations [128]. Important advances by the
snow science community allow us to better understand the
role and interactions of snow in Earth systems. These ad-
vances are possible as remote sensing products and models
continue to increase in granularity and physical fidelity [25].
Nonetheless, there remain fundamental knowledge gaps. A
critical area is the need to document and narrow the uncer-
tainties in snow estimates [17] from observations and
modeling.

A promising method to alleviate shortcomings in snow
models and observations and to improve our ability to monitor
changes in seasonal snow is data assimilation (e.g., [4, 59, 77,
156]b). Data assimilation combines existing and emerging
observations (both in situ and satellite observations) with
model estimates, thus bridging scale and limitation gaps be-
tween observations and models. Data assimilation can inte-
grate measurements from multiple sensors to improve model
estimates of snow properties including mass, commonly re-
ferred to as snow water equivalent (SWE). Thus, data assim-
ilation offers the potential to document and reduce uncer-
tainties in snow representation. We argue that only through
the assimilation of ground observations and model data can
satellite-derived snow depth and SWE fields reach the accu-
racy level required by the current user community including
climatologists, hydrologists, and weather and climate fore-
casters [162].

The purpose of this article is to review current techniques
used to estimate seasonal snow and to elucidate outstanding
challenges that could be addressed by combining model esti-
mates with remotely sensed observations. The first two sec-
tions report the key benefits and limitations of remote sensing
and modeling of seasonal snow. The third section presents the
concept of data assimilation. Finally, section four provides a
brief summary and conclusions of the current techniques for
estimating seasonal snow.

Snow Modeling

A half-century of thorough inquiry has established numerical
representations of the effects of wind (e.g., [142]), topography
(e.g., [108]), and vegetation (e.g., [64]) on snow distribution.
However, the complex relationships between these variables
and their high variability in time and space and at different
scales continue to challenge snow model predictive skill [83].
Despite these challenges, the need for accurate predictions of
snow water resources has prompted the development of oper-
ational numerical snow models for a range of applications
including hydrological forecasting (e.g., [3]), weather predic-
tion (e.g., [120]), avalanche forecasting (e.g., [92]), climate
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modeling (e.g., [12]), and retrieval of snow characteristics by
remote sensing (e.g., [107]). Snow models differ in their de-
gree of process representation depending on the intended ap-
plication [49, 159]. In this regard, snow models fall into two
general categories: temperature index models and energy bal-
ance models.

Temperature index models use empirical relationships be-
tween local air temperature and snowmelt to estimate snow
depletion [123]. Although limited in their representations of
physical processes, such models have often been used in hy-
drological forecasting and climate impact studies. Energy bal-
ance snowmodels, on the other hand, are designed to simulate
all energy fluxes into and out of a snowpack and are used to
predict snowmelt as a result of the computed net internal en-
ergy. These process-based models have been shown to yield
improved local SWE estimates over temperature index
methods [167]. Even within general snow model categories,
models differ in their representation of snowpack stratigraphy
and vary from single-layer (e.g., [50, 141]), to three-layer
(e.g., [155]), to detailed multilayer (e.g., [18, 82]) snowpack
representations. Detailed knowledge of the internal snowpack
structure is critical for radiative transfer applications in remote
sensing [168] and avalanche forecasts [92] and has utility in
hydrological and climate change sensitivity applications [9],
presumably due to the correlation between snow material
structure and surface–atmosphere interactions.

Physically based snow energy balance models permit the
assessment of how snow properties such as density, albedo,
emissivity, and conductivity may impact other environmental
processes and states. However, their estimates rely on accurate
representation of snow physics and input forcings such as
precipitation, temperature, and windspeed [114, 131]. That
is, snow model estimates remain hindered by uncertain forc-
ing (e.g., meteorological conditions) and weaknesses in the
snow model, associated with both the fidelity of the equations
used to simulate snow processes (structural uncertainty) and
the parameter values selected for use in the model equations
[150]. In the case of high uncertainty, simple snowmodels can
be a viable alternative to physically based energy balance
models; however, the latter offer more flexibility to benefit
from the increasing availability and performance of satellite
remote sensing techniques (“SnowModeling” section) to val-
idate prognostic model states that simpler models may not
track (e.g., surface temperature; [70]). The process-based
models are often better structured to improve state estimates
through data assimilation (“Remote Sensing of Seasonal
Snow” section).

Over the past decade, much progress has been made on the
evaluation of snow inmodels, in particular through the Project
for Intercomparison of Land-surface Parameterization
Schemes (P ILPS ) [ 149 ] and t h e Snow Mode l
Intercomparison Project (SnowMIP) [51]. This progress has
recently been extended to snow modules of global land

surface schemes in the Earth system Model (ESM)
SnowMIP [89]. Despite decades of marked model improve-
ments, the comment by Dirmeyer et al. [41] still holds that
“Generally there is mediocre agreement among the models for
most of the snow-related variables, suggesting a potential area
of continuing weakness in global land surface schemes.”
Model uncertainty remains a persistent gap in snow estima-
tion. Clear avenues for improvement are (1) better character-
ized sources of model uncertainty and 2) improved model
structure, forcing data, and algorithms to reduce that uncer-
tainty. The assimilation of remotely sensed and in situ obser-
vations could address these points by characterizing forcing
errors (e.g., snowfall precipitation; [100]) and by improving
model parameterization (e.g., snow albedo; [119]) while
tracking and reducing the inherent uncertainty in the system.

Remote Sensing of Seasonal Snow

Advances in satellite remote sensing systems continue to rev-
olutionize the way we monitor snow. New generations of
sensors and platforms now provide more extensive and global
coverage of mountainous regions where seasonal snow accu-
mulates [57, 143]. To date, however, no satellite mission ded-
icated to the estimation of snow water equivalent exists.
International community efforts such as NASA’s SnowEx
[86] and the Nordic SnowRadar Experiment [94] aim to better
characterize sensor performance and to identify optimum
multi-sensor synergies to map critical snowpack properties
in future satellite missions.

Due to the nature of interactions between snow cover and
electromagnetic radiation of different frequencies, snow can
be distinguished from other terrestrial surfaces using satellite
observations with various active and passive sensor tech-
niques. Active sensors provide their own source of energy
and illumination to the observed objects and the remote sensor
detects the return illumination or energy that is backscattered
from the target object. Active remote sensing technologies that
have been used for estimating seasonal snow include active
microwave and light detection and ranging (lidar) techniques.
Passive sensors detect the naturally emitted radiation from the
Earth surface. The most common passive remote sensing tech-
niques for snow are visible and near-infrared observations
(e.g., [27, 133], Section 2.1) and passive microwave detection
(e.g., [53, 96], Section 2.2). Furthermore, airborne gamma
radiation measurements detect the natural terrestrial gamma
radiation emitted from potassium, uranium, and thorium ra-
dioisotopes in the upper layer of soil. By measuring the dif-
ference in gamma radiation before and after the snow falls,
these measurements can be used to estimate snowpack mass
[20, 22]. In general, active sensors offer higher spatial resolu-
tions than passive ones but at the expense of longer repeat
times, which can limit the frequency of global coverage.
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The spectral properties of snow depend upon several fac-
tors including grain size and shape, water content, impurity
concentrations, temperature, and depth (e.g., [40, 42, 147]).
Snow remote sensing techniques have primarily focused on
estimating three key variables of seasonal snow: (1) snow
extent, (2) snow depth, and (3) SWE. The snow extent is the
surface area that is covered by snow, while depth and SWE
provide estimates of snow volume and mass, respectively.
Snow extent is generally obtained reliably with high spatial
and temporal resolution from visible and near-infrared data
(e.g., [69, 124, 136]), but sensors retrieving snow depth, such
as the Advanced Topographic Laser Altimeter System
(ATLAS) on ICESat-2 [67], are generally limited in spatial
coverage. Comparatively, there is far less confidence in the
measurement of SWE [26, 86].

Visible Near-Infrared Observations

In the visible and near-infrared (Vis/NIR) part of the electro-
magnetic spectrum, snow is highly reflective; satellite sensors
measuring in this part of the spectrum can be used to identify
the presence or absence of snow. Vis/NIR observations have
been used to detect snow cover since the mid-1960s. In par-
ticular, Vis/NIR observations can provide regional to global
estimates of fractional snow-covered extent or area [30, 124,
139]. Vis/NIR data is often available at spatial resolutions
ranging from tens to hundreds of meters with varying tempo-
ral resolution (daily to every couple of weeks). These resolu-
tions are generally considered acceptable for the mapping of
snow patterns and changes, even in complex mountainous
regions [72]. Table 1 reports some of the key Vis/NIR mis-
sions targeted to seasonal snow estimation. Examples of Vis/
NIR satellite missions are the advanced very high-resolution
radiometer (AVHRR, [48]), the Landsat suites of satellite
(e.g. , [43]) and the moderate resolution imaging
spectroradiometer (MODIS, [69]), and more recently, the vis-
ible infrared imaging radiometer suite (VIIRS, [134, 135]) and
Sentinel-2 [58].

One major challenge in snow mapping using Vis/NIR is
the discrimination between clouds and snow because of their
similar behavior in the visible part of the spectrum (e.g., [71,
109]). If cloud coverage exceeds certain threshold percent-
ages, a satellite scene can become useless for snow detection.
Furthermore, snow grain size [55, 68, 132], impurities [5, 125,
146], and snow temperature influence the spectral behavior of
different snow and ice surfaces in the Vis/NIR spectrum.
Finally, snow cover extent does not provide a direct estimate
of SWE. Indirect methods, such as retrospective (or recon-
struction) techniques (e.g., [59, 81, 111, 112, 130, 133]) or
data assimilation methods (“Remote Sensing of Seasonal
Snow” section) must be used to estimate SWE.

Lidar Observations

Lidar is an active ranging system that provides high-resolu-
tion, high-accuracy surface elevation maps. The emitted laser
pulse is reflected off multiple surface features back to the
platform and the distance traveled is estimated and used to
map surface height. Snow depth can be obtained from two
co-registered lidar images—one each for snow-free and
snow-covered dates—by differencing the snow surface and
bare-ground elevations [36]. Airborne rather than spaceborne
lidar systems [36, 126] are likely the most accurate to date, but
are limited to targeted areas on the order of hundreds of kilo-
meters and favorable weather conditions. Major limitations of
lidar techniques are that (1) they observe snow depth and not
SWE, thus assumptions or complementary in situ observa-
tions must be made about snow density [151]; and (2) they
are available only at specific locations and for specific times,
typically infrequently and often just once per season near peak
SWE [106].

Passive Microwave Observations

The microwave radiation emitted by the Earth surface is at-
tenuated by the snow mass on the ground. For this reason,

Table 1 Key visible and near-infrared (Vis/NIR) and passive microwave (PM) satellite missions that have been used for estimating seasonal snow

Satellite or sensor Operational period Spectral resolution Spatial resolution Spatial resolution Spatial coverage

Landsat 1972–present Vis/NIR 15–120 m ~ 16 days Global

MODIS 2000–present Vis/NIR 250–1000 m < Daily Global

AVHRR 1978–present Vis/NIR 1090 m Daily Global

VIIRS 2011–present Vis/NIR 375 m < Daily Global

Sentinel-2 2018–present Vis/NIR 20 m ~ 5 days Regional

SMMR 1978–1987 PM 25 km Every other day Global

SSM/I 1987–present PM 25 km Daily Global

AMSR/E 2002–2011 PM 25 km Daily Global

AMSR 2 2012–present PM 25 km Daily Global
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microwave measurements are more sensitive to the mass of
snow than Vis/NIR observations. Another advantage of pas-
sive microwave sensors with respect to the Vis/NIR is that
they can detect snow at night and in the presence of clouds.
Retrieval algorithms have been developed to estimate the
snow depth from satellite-based microwave sensors. The re-
trievals are derived as a combination of microwave brightness
temperature differences sensed at different frequencies,
weighted by coefficients derived from the difference between
vertical and horizontal polarizations. Examples of satellite-
based missions that have been widely used to estimate SWE
are listed in Table 1. These are the Scanning Multichannel
Microwave Radiometer (SMMR, e.g., [23]), the Special
Sensor Microwave/Image (SSM/I, e.g., [161]), and the
Advanced Microwave Scanning Radiometer (AMSR-E and
AMSR2, e.g., [84]).

There are a number of limitations to using passive micro-
wave sensors to monitor seasonal snow. For example, the
presence of liquid water in the snowpack [57, 84] and/or veg-
etation alters the radiation emitted by the surface [37]. Another
major shortcoming is the spatial resolution of passive micro-
wave measurements, which is on the order of tens of kilome-
ters (i.e., much coarser than Vis/NIR). At these coarse scales,
there can be significant sub-grid heterogeneity within a single
remote sensing footprint, especially if estimating SWE in
complex mountainous terrain. Finally, passive microwaves
tend to saturate around 250 mm of SWE [56], and thus are
of limited use to estimate deep snowpacks typical of Earth’s
mountain water towers [37, 166].

Active Microwave Observations

Active microwave sensors have the potential to determine
snow depth or SWE from space with higher resolution than
passive microwave sensors. Activemicrowave remote sensing
measures the total backscattered power from snow-covered
terrain. The total power received by the sensor can be
expressed as the summation of backscatter from the air-snow
boundary, the snow volume, and the snow-ground boundary
attenuated by a factor depending on the layered snowpack
properties and incidence angle [160]. Active microwave ob-
servations are not limited by weather or sun illumination con-
ditions.While most active microwave studies have focused on
the detection of snowmelt [118], some early studies showed a
very limited sensitivity of active microwave sensors to snow
mass [11, 85, 145, 152]. Recently, a few studies have demon-
strated the possibility of using active microwave data to esti-
mate SWE [95, 110]. Currently, Sentinel-1 or RADARSAT-2
is among the few Synthetic Aperture Radar (SAR) missions
providing high-resolution backscatter measurements (at C-
band; 5.4 GHz) with a revisit time of 6 days suitable for sea-
sonal snow monitoring. Lievens et al. [98] demonstrated the
value of including cross-polarized backscatter measurements

from C-band SAR to retrieve snow depth in mountainous
areas at regional scales. Furthermore, Conde et al. [29] used
the SAR Interferometry technique and Sentinel-1 C-band data
to retrieve SWE estimates with sub-centimeter measurement
accuracy and a 20-m spatial resolution.

Gravimetric Observations

Less common ways to observe snow include gravity measure-
ments. Gravity data collected by the Gravity Recovery and
Climate Experiment (GRACE) and GRACE Follow-On
(GRACE-FO) satellites can be used to estimate changes in
the mass of terrestrial water storage caused by snow and other
hydrological factors such as soil moisture, groundwater, lakes,
and rivers [158]. However, the main shortcomings of GRACE
estimates are related to the very coarse spatial resolution (~ 3
degrees) which limits application to larger river basins and
continents, and to the fact that it observes the total sum of
terrestrial water storage. Data assimilation of GRACE obser-
vations into land surface models [61–63] can spatially and
vertically downscale the coarse resolution GRACE observa-
tions while characterizing finer-scale SWE estimates.

Snow Data Assimilation

Despite recent rapid advances, current remote sensing tech-
nology and techniques do not adequately meet global opera-
tional needs to map seasonal SWE. To this end, there is great
promise in the combination of remote sensing technologies
with modeling and data assimilation methods to produce op-
timal SWE maps with sufficient global coverage and near
real-time estimates. In general terms, data assimilation is a
transdisciplinary tool that has been used in fields spanning
Earth sciences and extending to medicine [1] and socio-
economics [76]. Figure 1 illustrates the data assimilation
concept.

All estimates of a phenomenon or event (e.g., seasonal
SWE) obtained either through modeling (“Snow Modeling”
section) or observations (“Remote Sensing of Seasonal Snow”
section) have inherent uncertainty and errors. Data assimila-
tion is a tool to bridge models and observations in order to
obtain optimized estimates of the specific phenomena of in-
terest. Theoretically, the results of a data assimilation frame-
work should be a statistically optimal estimate superior to that
from either the model or observations alone. Modeling errors
are linked to uncertainties due to parameterization schemes
and input forcings (“Snow Modeling” section). Similarly, re-
mote sensing observations are prone to observation errors due
to measurement acquisition (e.g., sensor errors) and to repre-
sentativeness of the observations. The latter encompasses er-
rors due to unresolved scales and processes, observation-
operator error, pre-processing or quality-control error, and
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sampling error of the observation grid [80]. A remaining chal-
lenge is a better representation of errors in the observation and
models used in data assimilation [90]. In general, modeling
and observation errors are assumed to be Gaussian because of
the relative simplicity and ease of implementation of statistical
linear estimation under these conditions and because Gaussian
probability distributions are fully determined by their mean
and covariance [90], but the actual values of the errors and
their full distributions are not known. Thus, statistical assump-
tions must be used. These assumptions range from which pa-
rameters, model inputs, or remote sensing observation to con-
sider as uncertain, to the decision of the error magnitudes.
Furthermore, modeling and observation errors are often as-
sumed static in both time and space. In reality, errors vary in
space and time and a fully space and time distributed error
covariance should be considered [52].

Despite these remaining challenges, data assimilation has
been used to improve modeled estimates of snow states, snow
physics, model parameters, and sources of uncertainty [73].
There exists a wide variety of data assimilation techniques
spanning degrees of complexity and the way in which

modeling and observation errors are treated. They vary from
the simple direct insertion of observations into the model (e.g.,
[97, 137]), where observations are treated as perfect (i.e., zero
observation errors), to more mathematical Bayesian methods
such as ensemble Kalman filter and particle filter approaches
which are designed to account for the uncertainties of the
model and observations using error statistics and an ensemble
of possible model realizations. While modeling and observa-
tion errors are assumed to be of Gaussian shape in the ensem-
ble Kalman filters, particle filters relax this assumption. The
following sections expand on applications of data assimilation
in the snow science community and cover studies across dif-
ferent spatial scales: from watershed to regional and global
studies.

Direct Insertion

A simple direct insertion application is provided by Li et al.
[97]. They directly insert a blended satellite- and model-based
SWE product [105] for the initialization of a seasonal
streamflow forecast model applied over the snow-dominated

Fig. 1 Estimates of an environmental variable (e.g., seasonal snow) can
be obtained frommodel predictions or from observations (remote sensing
or in situ). Neither are perfect and they contain errors and uncertainties.

Data assimilation can be seen as a method that combines the strengths of
modeled and observed estimates to obtain an optimized set of estimates
for the environmental variable

86 Curr Clim Change Rep (2020) 6:81–94



Sierra Nevada. They demonstrate that a direct insertion of the
blended SWE product improves the efficiency of the
streamflow model predictions compared with the traditional
approach where the model simulates seasonal SWE accumu-
lation and melt using gridded meteorological data. In another
example, Rodell and Houser [137] and Toure et al. [164]
directly inserted MODIS snow cover extent in a global land
surface model. They improved SWE model estimates using a
rule that specifies whether to update the model with the mea-
surements based on the difference between modeled and ob-
served (from MODIS) snow cover extent. While important
model improvements can be obtained with a direct insertion
approach, the implicit assumption of the technique is that er-
rors and uncertainties in the system are either acceptable or
acceptably mitigated with rule-based insertion decisions.

Ensemble Kalman Filter

The data assimilation approach most commonly used by the
snow science community is the Ensemble Kalman Filter
(EnKF) in which error statistics are determined from an en-
semble of possible model realizations. The literature is rich
with articles that use EnKF techniques (and variations) to
assimilate SWE observations (either from in situ or satellite
remote sensing) or microwave radiance observations to direct-
ly adjust modeled SWE. Radiance assimilation is more effec-
tive because it overcomes difficulties arising from the non-
unique and complex relationship linking the passive micro-
wave signal to several snow properties (e.g., density, grain
size/microstructure parameters, temperature, and wetness)
[73]. This review reports only a few works on assimilating
SWE or radiance observations. For example, [148] used an
ensemble square-root Kalman filter (EnSRF, an approach sim-
ilar to an EnKF) to assimilate in situ SWE data into a snow
hydrologic model. They report improvements in the simulated
SWE during both accumulation and melt periods. In the same
year, Durand and Margulis [44] developed a point-scale ra-
diometric data assimilation experiment where they used syn-
thetic passive microwave observations and concluded that the
EnKF was able to recover the true snowpack states. Similarly,
Dechant and Moradkhani [35] examined the ability of an
EnKF of remotely sensedmicrowave radiance data to improve
SWE prediction and operational streamflow forecasts. Huang
et al. [78] examined the potential of SWE data assimilation
using the EnKF to improve seasonal streamflow predictions in
the Pacific Northwest, the Rocky Mountains, and the Sierra
Nevada. They found that most EnKF implementation varia-
tions resulted in improved streamflow prediction. To con-
clude, the scientific community agrees that EnKF assimilation
of SWE or microwave radiance observations lead to overall
improved estimates of seasonal snow and related variables
(e.g., streamflow and snow cover).

The literature contains a few studies where the EnKF has
been used to assimilate snow cover extent observations from a
wide range of Vis/NIR satellite missions such as Landsat and/
or MODIS. Su et al. [154] investigated the feasibility of an
EnKF framework to assimilate satellite-observed snow cover
extent over North America. The authors concluded that their
framework accurately simulated the seasonal variability of
SWE and reduced the uncertainties in the ensemble spread.
Andreadis and Lettenmaier [4] and Clark et al. [24] used the
EnKF to assimilate remotely sensed Vis/NIR snow cover ob-
servations into a hydrologic model. Their results showed that
the EnKF is an effective and operationally feasible solution to
update model predictions of snow cover extent. However, the
EnKF performance is modest for estimating ephemeral SWE
and limited for deeper snowpacks. As structured, the EnKF
leverages the instantaneous correlation between modeled
snow cover extent and SWE. This correlation tends to dimin-
ish for larger values of SWE, i.e., when changes in SWE do
not correspond to changes in snow cover extent (i.e., snow
cover extent saturates at 100%). To solve for this weak instan-
taneous correlation, Durand et al. [46], Girotto et al. [60],
Margulis et al. [104], and Oaida et al. [122] presented a
smoother version of the EnKF, the Ensemble Kalman
Smoother (EnKS). In the EnKS, all snow cover extent obser-
vations within an assimilation window are assimilated; thus,
multiple strengths of the observed snow cover extent signal
are leveraged, not only the instantaneous acquisition.

The retrospective or reconstructive use of Vis/NIR satellite
observations can provide accurate estimates of SWE. The
general idea of such methods builds upon work on determin-
istic reconstruction techniques (e.g., [81, 111, 112, 133])
where the maximum (or peak) SWE can be retrieved from a
retrospective accumulation of spring-summer potential melt
energy fluxes coupled with the disappearance date of snow
as ascertained from visible and near infrared images.

Particle Filter

Other, arguably more sophisticated methods include particle
filter (PF) techniques [6]. Similar to the EnKF, the PF is a
sequential Monte Carlo approach, but it does not depend on
the assumption of a Gaussian distribution of errors. PF tech-
niques typically require larger ensembles to characterize the
full probability distribution of state variables and consequent-
ly their uncertainties via resampling sets of state variables.
Leisenring and Moradkhani [93] assimilated SWE in the
National Weather Service model while Margulis et al. [104]
derived an ensemble PF approach to estimate SWE from the
assimilation of snow cover extent. Both studies compared the
PF with the EnKF. Their results suggest that the particle filter
is superior to the EnKF-based methods for predicting model
states and parameters. Thirel et al. [163] improved modeled
snow cover extent and runoff by assimilating MODIS snow
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cover products into a distributed hydrological model using a
PF. A similar approach used in Margulis et al. [106] assimi-
lated infrequent (i.e., a couple of observations per year) lidar
snow depth observations within a land surface model. They
demonstrated that data assimilation provides a useful frame-
work for leveraging infrequent remotely sensed snow depth
observations to derive continuous (spatially and temporally)
accurate estimates of unobserved variables such as SWE and
snowmelt, even at times when observations are unavailable.

Spatially Distributed Updates

Spatial distribution updates are essential in operational analy-
ses of in situ snow depth measurements. Most of the snow
data assimilation research in the literature, however, are one-
dimensional approaches, where one satellite observation type
(i.e., SWE, snow depth, or snow cover extent) is used to up-
date co-located modeled snow estimates. That is, snow up-
dates can only be performed at the locations where an obser-
vation is available. One-dimensional techniques disregard
spatial correlation across observations and model errors. In a
few exceptions, De Lannoy et al. [32] and Cantet et al. [19]
tested the effect of introducing spatial error correlation into
snow data assimilation updates. De Lannoy et al. [32] assim-
ilated coarse-scale (25 km) SWE observations into fine-scale
(1 km) land model simulations and tested the effect of differ-
ent spatial aggregation and correlation methods. Their results
indicate that assimilating disaggregated fine-scale observa-
tions independently is less efficient than assimilating a collec-
tion of neighboring correlated coarser scale observations.
Cantet et al. [19] assimilated SWE data from a sparse network
of in situ snow observation stations using a PF. Their PF
formulation included error spatial correlations to allow for
snow states to be updated at locations where observations
were not directly available. These few studies indicate that
underlying spatial error correlations should be exploited to
improve spatial estimates of seasonal snow.

Multi-sensor Data Assimilation

Only a few studies have focused on multi-spectral, multi-res-
olution, and multi-sensor data assimilation approaches. In
fact, merging different observation types could be a challeng-
ing task [63]. A few exceptions include work by Durand and
Margulis [45], De Lannoy et al. [33], Liu et al. [101], and
Zhao and Yang [172]. Durand and Margulis [45] used EnKF
in a multi-scale, multi-frequency radiometric data assimilation
experiment using synthetic passive microwave radiance along
with Vis/NIR snow cover extent observations. They stated
that the combined assimilation of passive microwave and
Vis/NIR observations resulted in overall improved snow pre-
dictive skill because of the positive synergy due to the com-
plementary nature of the two observation types. Liu et al.

[101] assimilated MODIS snow cover extent and AMSR-E
snow depth products into the Noah land surface model and
concluded that the assimilation of snow data consistently im-
proved snow and streamflow predictions. De Lannoy et al.
[33] assimilated AMSR-E SWE retrievals and MODIS snow
cover extent observations. Their joint SWE and snow cover
extent assimilation significantly improved root-mean-square
error and correlation values. Zhao and Yang [172] assimilated
MODIS, GRACE, and AMSR-E and found that the assimila-
tion of MODIS snow cover fraction slightly improves snow
estimation in mid and high latitudes while the assimilation of
GRACE has potential in improving snow depth estimation in
most high-latitude regions. The studies reviewed here agree
that a broader range of assimilated observations is an essential
for optimizing the information content provided to the models
to produce the best possible estimates of seasonal snow.

Snow Data Assimilation in Operational Forecast
Systems

Even if the research field in snow data assimilation has
evolved significantly over the last decade, operational systems
use methods that are much simpler than the state-of-the-art
research [73]. For example, the GlobSnow product [103] pro-
vides global gridded information on snow extent and SWE
across the Northern Hemisphere by incorporating in situ sta-
tion snow depth observations, microwave emission modeling,
and spaceborne passive microwave observations using an it-
erative least squares minimization scheme. Another widely
used product is SNODAS, developed by the National
Oceanic and Atmospheric Administration (NOAA) [8].
SNODAS incorporates in situ and airborne observations with
model estimates to provide daily SWE at 1-km resolution
across the continental USA [21]. Its assimilation procedure
is a simple nudging technique that calculates differences be-
tween estimated and observed SWE values and then spatially
interpolates these differences to the model grid. Furthermore,
the Canadian Meteorological Center Daily Snow Depth
Analysis product [15] uses a simple statistical interpolation
method to blend observations with model estimates of snow
[16]. Improved snow data assimilation schemes increase the
skill of snow reanalysis products, which serve as an important
baseline against which to assess climate model ensembles
such as available in climate model intercomparison projects.

The work by Peings et al. [127] and Lin et al. [99] demon-
strates that an accurate initialization of snow in a climate mod-
el has a positive impact on seasonal temperature forecast skill
(Fig. 2). Lin et al. [99] showed that the assimilation of satellite
measurements improves the initialization, with concomitant
impacts on the forecast skill [88]. Improvements at low lati-
tudes are seen immediately and last up to 60 days, whereas
improvements at high latitudes appear later in transitional (fall
and spring) seasons (Fig. 2). Finally, despite the importance of
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snow in regulating weather and climate processes, only a few
global weather forecast centers include snow data assimilation
schemes in their forecasting systems. One example is the
European Center for Medium Weather Forecast (ECMWF)
center which assimilates in situ snow depth and satellite-
derived snow cover extent [34].

Zsoter et al. [173] address an ongoing challenge in Earth
system modeling and data assimilation applications. They
show that while data assimilation of snow properties is a crit-
ical component of numerical weather prediction, the addition
or removal of water neither conserves water mass nor does it
reliably improve hydrologic prediction. The authors attribute
the issue to getting the right answers for the wrong reasons;
improvements in one model variable expose other model de-
ficiencies. They call for a need to consider the whole Earth
system in data assimilation and model coupling efforts. Such
holistic Earth system approaches and the inclusion of diverse
observations promise to provide robust information to im-
prove our ability to map, model, and project with a better
degree of accuracy past, current, and future seasonal snow
characteristics and the effects of snow on the entire Earth
system.

Conclusions

The international Earth sciences community lacks an accurate
way to estimate seasonal snow changes at sufficiently high
temporal and spatial resolutions and with global coverage
using any single in situ, remote sensing or modeling tech-
nique. In this paper, we review current modeling, remote sens-
ing, and assimilation techniques used to estimate seasonal
snow and elucidate the remaining challenges associated with
each system.

The representation of snow in hydrologic and Earth system
models has steadily improved over the last 60 years. To date,
modeling efforts have provided the most spatially and tempo-
rally complete estimates of local, regional, and global snow
properties; however, the accuracy of snow model estimates
remains hindered by uncertain forcing and parameters, and
error-prone model structures and process representations.

Satellite and airborne remote sensing allow for extensive
and global coverage of seasonal snow even in remote, com-
plex mountainous regions. While snow cover extent and re-
lated surface properties are generally obtained reliably with
high spatial and temporal resolution from visible and near
infrared data, we critically lack similar robust estimates of
snow mass relevant to water resource applications [26].
Compared with Vis/NIR data, microwave measurements are
more directly related to the mass of snow. While active mi-
crowave data have recently been found suitable for providing
temporal and spatial resolutions for seasonal snow monitor-
ing, passive microwave techniques are not useful for estimat-
ing deep or wet snow at an acceptable spatial resolution capa-
ble of resolving global snow processes inclusive of Earth’s
mountain water towers. Airborne lidar systems are, to date,
the most accurate methods to retrieve seasonal snow, but they
only observe snow depth (not SWE) and are limited to
targeted regions and for specific, infrequent times.

Data assimilation is a viable way to converge different
temporal and spatial resolutions of in situ and remotely sensed
observations and as a useful technology to bridge the scale gap
between these observations and models. In fact, the assimila-
tion of satellite and airborne observations leads, in general, to
overall improved estimates of seasonal snow and related var-
iables. Some remaining challenges in the snow data assimila-
tion field include research in the effects of underlying spatial
error correlations in data assimilation to improve the spatial
estimates of SWE, and possibly merging multiple observa-
tions to improve snow model accuracy. Finally, even if the
research field in snow data assimilation has evolved signifi-
cantly, operational and weather forecasting systems use
methods (if any) that are much simpler than the state of the
art. The inclusion of a broader range of observations is an
active and emergent research field as multi-sensor, multi-
resolution snow observations become available.

Fig. 2 Improvements in temperature 3-month prediction due to assimila-
tion of MODIS snow cover extent. Improvements are expressed in terms
of cumulative RMSE difference between the model run that assimilated
snow information and a run with no assimilation. Negative values indi-
cate reduced prediction errors and improved temperature predictions after
using snow data assimilation–constrained land initializations. This is an
edited version of Fig. 2 in Lin et al. [99]
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These data assimilation efforts promise to provide robust
and diverse information to improve our ability to map, model,
and project past, current, and future characteristics and the
effects of seasonal snow on the Earth system.
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