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Abstract Uncertainty in the equilibrium climate sensitivity
(ECS) of the Earth continues to be large. Aspects of the cloud
feedback problem have been identified as fundamental to the
uncertainty in ECS. Recent analyses have shown that changes
to cloud forcing with climate change can be decomposed into
contributions from changes in cloud occurrence that are pro-
portional to globally averaged temperature change and chang-
es associated with rapid adjustments in the system that are
independent of changes to globally averaged surface temper-
ature. Together these responses enhance warming due to (1)
cloud feedback from increasing cloud altitude by upper tropo-
spheric clouds and (2) decreases in cloud coverage by marine
boundary layer clouds. We argue that active remote sensing
from space can play a unique and crucial role in constraining
our understanding of these separate phenomena. For 1, the
feedback associated with changing tropical cirrus is predicted
to emerge from the statistical noise of the climate system
within the next one to two decades. However, active remote
sensing will need to continue for that signal to be observed
since accurate placement of these clouds in the vertical dimen-
sion is necessary. For 2, the processes associated with changes
to marine boundary layer clouds have been linked to the cou-
pling between cloud and precipitation microphysics and air
motions over remote ocean basins where precipitation forma-
tion in shallow convection is modulated by changes to aero-
sols and thermodynamics. Exploiting the synergy in

combined active and passive remote sensing is likely one of
the only ways of constraining our evolving theoretical under-
standing of low-level cloud processes as represented in cloud-
resolving models and for validating global-scale models.
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Introduction

It has been known since the era of the Earth Radiation Budget
Satellites in the 1980s [1] that clouds tend to cool the Earth by
approximately 20 W m−2. In other words, the cloud radiative
effect or forcing is Rcld =R −R0 ≈ − 20 W m−2 where R is the
temporally and globally averaged net radiation at the top of the
atmosphere and superscript 0 denotes clear sky. This tendency to
cool the Earth system is about five times the magnitude and of
opposite sign to the external radiative perturbation (dRext) due to a
doubling of CO2. Assuming that the climate system is represented

by changes to the globally averaged surface temperature (δT sfc ),
the change in top of atmosphere net radiative flux (dR), associated
with changes in the climate system, is defined as a feedback [λ,
W m−2 K−1]. A thorough discussion of the primary feedbacks in
the climate system is given in [2], and a reviewof cloud feedbacks
(λcld) is given in [3]. Uncertainty in the equilibrium climate sen-

sitivity (ECS) defined as δT sfc due to CO2 doubling has been
persistently large due primarily to uncertainties in λcld [4, 5].

Our understanding of feedbacks in the climate system has
become much more nuanced in recent years [6–16] with the
insights that (1) evaluation of λcld must account for changes in
the system not associated with clouds that appear to mask Rcld

[11, 12] and (2) that certain changes in the system that appear
as contributing to λcld are actually due to rapid changes in the
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system that are independent of δT sfc [6–10] and therefore not
associated with λcld. Furthermore, the concept that short-term
(interannual to decadal) records from the current climate can
provide empirical or emergent constraints on climate model
simulations [17] has provided a theoretical foundation for ex-
amining the existing observational record for physical mech-
anisms that correlate cloud radiative effects with feedbacks in
the climate system [18–24].

In this paper, we consider what aspects of the cloud feed-
back problem might be accessible to evaluation using space-
based active remote sensing. We consider the existing record
of active measurements from the A-Train era [25] and what
might be possible were that observational record extended and
perhaps expanded in the future. To address these issues, we
first briefly review our current understanding of the cloud
forcing and feedback concepts.

The Nature of the Cloud Response—Forcing
and Feedback

Consider that even if the distribution and properties of clouds
in the climate system did not change with increasing green-
house gasses, cloud radiative forcing, Rcld, as defined earlier
would tend to become smaller just because the infrared opac-
ity of the clear sky atmosphere would increase as greenhouse
gas concentrations increase. In other words, a non-zero
λcldwould be inferred even if clouds did not change. This
highlights the need to carefully interpret changes to Rcld

(dRcld) in terms of λcld. In a paradigm introduced by Soden
et al. [12], the change in dRcld can be expressed in terms of dR
adjusted for the effects of changes to the net radiation in the
cloud-free sky (dR0):

dRcld ¼ dR− K0
TdT þ K0

wdwþ K0
adaþ G0

� � ð1Þ

where the terms in the parentheses represent dR0. In Eq. 1, G
refers to Rext, and the quantities Kxrefer to the globally aver-
aged radiative kernels (∂R∂x ) due to x where x can be tempera-
ture (T), water vapor (w), and albedo (a). Kx are functions of
the radiative transfer physics such as the radiative properties
of clouds and the atmosphere, and they allow for an intuitive
evaluation of the feedbacks [13–15]. Alternatively, dR can be
expressed in terms of the total sky (clear plus cloudy) changes,

λcldδT sfc ¼ dR− KTdT þ Kwdwþ Kadaþ Gð Þ ð2Þ

where now the terms in the parentheses represent changes to
the all-sky net radiation not associated with changes to clouds.
Subtracting Eq. 2 from 1, the relationship between Rcld and
λcld then becomes

δT sfcλcld ¼ dRcld þM ð3Þ

where M is the difference of the parenthesized terms in Eqs. 1
and2and represents the extent towhichcloudsmaskchanges to
non-cloud feedback terms. This relationship between the cloud
forcing, feedbacks, and cloudmaskingwas first derived in [12].
The important insight is the relationshipbetweendRcld andλcld.
Adecrease incloudcoverwithwarming thatdecreasesRcldwith
all else remaining constant, for instance, would result in a pos-
itive shortwave λcld and a negative longwave λcld with the net
depending on their relative magnitudes. If the cloud properties
remained the same with decreasing cloud cover, dRcld would
approach zero as R approachesR0.

It is generally understood when evaluating ECS, for in-
stance, that Eq. 3 is considered between two equilibrium cli-
mate states that differ by a doubling in CO2. However, it was
found that following an instantaneous CO2 doubling, some
changes in clouds happened very quickly (within days or

months of the CO2 change) independent of δT sfc that ultimate-
ly drove a top of atmosphere (TOA) radiative flux change

[6–10]. These rapid adjustments (Fcld) were independent of δ
T sfc and therefore independent of λcld, such that dRcld = Fcld +

δT sfcλcld: With this understanding, we would rewrite Eq. 3 to
account for the adjustments since the radiative change that

defines the feedback response (δT sfcλcld ) is due to changes
in Rcld that are not associated with rapid adjustments.

δT sfcλcld ¼ dRcld −Fcld þ M
0

� �
ð4Þ

where the prime onM indicates thatM now includes masking
adjustments for the rapid response of the climate system to the
instantaneous CO2 doubling. Equation 4 illustrates the rela-
tionship between the cloud feedback, the cloud forcing, the
adjustments, and the cloud masking.

In a further innovation, Zelinka et al., [14, 15] introduced an
approach for calculating λcld using a cloud occurrence (C) radia-
tive kernel Kc where the terms in the Kc matrix would be ∂R

∂C as a
function of the column optical depth (τ) and cloud top pressure
(PCT) based on the International Satellite Cloud Climatology
Project (ISCCP) [26] convention . Thenλcld is expressed in terms
of the matrix of Kc times the change in an occurrence frequency
matrix (δC) of the various cloud types defined in termsofPCTand
τ,λcld=Kc*(δC=δT sfcÞ.Note thatδC isnormalizedbytheglobally
averaged temperature change over which the changes in cloud
occurrence were determined. In addition, methodologies for
decomposing thecloudfeedbackintocontributions fromδC, from
changes to PCT, and changes to τ were introduced [9, 16]. This
decomposition effectively separates the occurrence frequencies
from cloud properties and separates the cloud properties into im-
portant orthogonal and observable macrophysical components.
For instance, one would expect that Rcld for a given type defined
byPCTand τwouldbe reasonably constant at agiven latitudeover
some averaging period like a month while the distribution of
cloudiness typemight shift as the climate changes [27, 28].
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From an observational perspective, there are several chal-
lenges to interpreting Eq. 4. First, the distinction between Fcld
and dRcld are pedagogical in a practical sense since the dis-
tinction between Fcld and δTsfcλcld are not observable.
However, it is important to know which processes that drive
observable changes to the system are and are not associated
with feedbacks since they can indicate over what timescales
and under what conditions certain change-related processes
might emerge from the noise of the climate system. Active
remote sensors are uniquely able to observe C with very high
accuracy and relatively little ambiguity. As we discuss in the
following, the influence of cloud-type changes within the δC
matrix have distinct signatures in the climate system. Also,
while it is generally assumed that Kc is more or less constant
[9, 14–16], changes to the diurnal distribution of cloud occur-
rence and changes to radiative properties due to microphysical
processes that may be a function of temperature can modulate
Kc. In the next section, we elaborate on these issues using
specific examples from the measurement record and from re-
cent literature.

The Role of Active Remote Sensors

Using Eq. 5 as a roadmap, we consider the role of active
remote sensing in contributing to our understanding. The chal-
lenge that must be overcome is that the conceptual thinking
that produced Eq. 5 is rooted in global modeling where equi-
librium climate states can be generated numerically from in-
stantaneously perturbed approximations of nature. Because of
the drastically different space and timescales of such global
modeling exercises compared to measurements and because it
is difficult to conduct controlled experiments using the actual
Earth, the observational record has played a limited role in
developing understanding and in constraining predictions re-
garding climate feedbacks and forcings. We argue that the
primary contribution of active and combined active and pas-
sive remote sensors such as the A-Train will be in populating
the Cmatrix on global spatial scales and on timescales that are
becoming climate-relevant. This is especially true in light of
the emergent constraint concept [17]. To illustrate how active
remote sensors can contribute to the cloud feedback/forcing
problem, we present an example.

KcC =Rcld : an Example

Active remote sensors, particularly millimeter wavelength ra-
dar and elastic lidar, are uniquely suited to observing the ver-
tical distribution of clouds and precipitation [29, 30] and im-
portant first-order properties such as cloud top phase [31–34].
In Figs. 1, 2, 3, and 4, we present an example of using com-
bined space-borne lidar and radar data to diagnose Rcld in
terms of the radiative kernel and occurrence matrix.

Examples of C, Kc, and Rcld matrices were developed fol-
lowing the methodology of [14] using data collected in a
20° × 20° region in the North Atlantic centered roughly on
55° N and 20° W. An entire annual cycle is used in this anal-
ysis, and we present an average of day and night measure-
ments. The in-atmosphere Kc or Kc,atm in Fig. 1 is an observa-
tionally derived radiative kernel that was created using fluxes
calculated by combining active and passive A-Train measure-
ments and retrievals as described in detail in [37]. Here, we
present Kc in terms of the geometric cloud top height (CTH)
instead of PCT to illustrate the advantage provided by active
remote sensors in avoiding the inherently ambiguous PCT [35,
38]. Unlike the Kc shown in [9], these matrices are not

Fig. 1 Atmospheric radiative kernels in units of W m−2 %−1 following
the approach by Zelinka [9, 16] calculated from single-layer cloud prop-
erties from A-Train data over the North Atlantic [35] between 45° N–65°
N and 10° W–30° W during calendar year 1997. a In-atmosphere
longwave kernel. b In-atmosphere shortwave kernel. c In-atmosphere
net radiative kernel
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necessarily smooth since each CTH-τ bin averages flux data
from cloud layers with varying microphysical properties
(phase, water path, effective radius). In addition, the observa-
tionally derived radiative kernel is limited by the sample size
in each CTH-τ bin (Fig. 3) and is influenced by the diurnal
variation of cloud layers, with some cloud types occurring
more frequently during the night overpass and vice versa.

The net Kc,atm is largely dominated by longwave radiation
and demonstrates the bifurcation in upper tropospheric
heating and lower tropospheric cooling by clouds over these
middle-latitude regions. Conversely, the net TOA and surface

Kc in Fig. 2 are similar to one another, implying that most
clouds strongly cool the surface, and this cooling is predom-
inant in the column. Note the difference in the color scale
between Figs. 1 and 2.

The cloud occurrence matrix or C in Fig. 3 shows that the
distribution of cloud layer occurrence in this region is domi-
nated by optically thick high-level clouds associated with
fronts and moderately optically thick low-level clouds that
have tops below 3 km. However, the extremely high cloud
fraction in this region of 86% indicates the predominance of
clouds to the radiation budget of the North Atlantic.
Multiplying Kc,TOA, Kc,atm, and Kc,sfc by C allows us to derive
matrices of cloud radiative forcing, Rcld (Fig. 4). Interestingly,
the net radiative forcing of clouds to the atmosphere of the
North Atlantic region balances to be effectively zero over the
annual cycle considered. Since the atmosphere cloud radiative
effect (CRE) balances, the net surface and TOA CRE are
effectively identical. The cooling diagnosed in this region on
an annual cycle results from optically thick low-level clouds
and frontal clouds that have tops in the upper troposphere.

The nuances provided in this example highlight the unique
strength of combined space-borne cloud radar and lidar to the
cloud feedback problem using the Kc kernel approach.
Because we can place hydrometeor layers in the atmosphere
with very high accuracy using the active remote sensors, we
can also derive their radiative properties with improved accu-
racy. This allows us to demonstrate not only that the atmo-
sphere CRE effectively balances, but that this balance is
achieved through cooling in the lower troposphere and heating
aloft. Presumably, the energy that is deposited in the upper
troposphere is then exported to higher latitudes where it is
ultimately radiated to space. It is noteworthy that analyzing
only the TOA radiative quantities misses the interesting radi-
ative processes that occur in the atmosphere [37].

Observations: Practical Questions

While the overall picture of forcing and feedbacks is a com-
plicated one, we make an attempt at extreme simplification.
Two primary phenomena associated with temperature-
mediated feedbacks and rapid adjustments seem to
predominate.

1. High-level clouds ascend in height as the climate warms
inducing a positive longwave feedback [39].

2. Marine boundary layer (MBL) clouds decrease in cover-
age inducing a positive shortwave feedback1 [40].

1 Note that the decrease in low-level clouds has also been linked to rapid
adjustments [9], but from a practical observational aspect, we combine those
effects here into a single climate system response. The MBL positive feedback
is modulated by negative feedbacks in the system such as what is known as the
optical depth feedback that occurs primarily at colder temperatures [21].

Fig. 2 As in Fig. 1 except a the TOA net radiative kernel and b the
surface net radiative kernel

Fig. 3 The cloud-type occurrence matrix C from the North Atlantic
analysis region during 2007 as derived from A-Train active and passive
remote sensing data [36]
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These feedbacks would be realized by changes to the δC
matrix. Ascending high clouds would be realized by a migra-
tion of non-MBL cloud tops (particularly upper tropospheric
ice clouds hereafter referred to as cirrus) upward. The MBL
cloud feedbacks would be realized as a decrease in overall
cloud coverage resulting in more solar radiation absorbed at
the surface, while the ascent of high clouds is thought to be
understood [39, 41] and is a robust feature of climate predic-
tions [13]. It is important to note that both of these are positive
feedbacks, and neither has been observationally verified al-
though the use of interannual variability in the measurements
as climate feedback proxies is providing hints that the model
predictions are credible [17–20, 42, 43].

With these issues in mind, we argue that solving the cloud
feedback problem in general or even the two simplified as-
pects of the problem listed earlier has two necessary condi-
tions. The first would be understanding. Why is a particular
feedback happening? For ascending high clouds, the answer
to whether we understand the phenomenon is thought to be
yes [39, 41]. All models seem to agree more or less that high
clouds will ascend with warming and there are physically
plausible explanations for it [13] and measurements are
hinting that it is happening [44–47]. For decreasing MBL
coverage, it is very clear, given the disparity in ECS that has
been linked to decreasing MBL coverage, that we do not un-
derstand this phenomenon [4, 36, 40, 42, 43, 48–52] although
physically plausible mechanisms have been proposed [36,
48]. A second necessary condition to solving the cloud feed-
back problem would be observational verification. Have the
processes associated with the phenomenon been observed
and/or has the feedback itself been observed?More important-
ly perhaps, at what point do we expect the signal of a partic-
ular phenomenon to emerge from the natural noise in the
climate system so that observational verification can take
place [53, 54]?

High Clouds

Regarding the ascent of high clouds, we will not elaborate on
our first condition for solution (understanding) since a series
of papers have documented a plausible theoretical mechanism
for it. Our second condition for solution (verification) howev-
er raises very interesting questions. The recent report by
Norris et al., [55] examines a 30-year record of PCT-τ C from
ISCCP and PATMOS-x [56] compared to similarly processed
model statistics. They report statistically significant spatial
shifts in cloud occurrence as well as changes to the vertical
distribution of cloudiness (Fig. 3 of [55]). In particular, they
identify an increase in high cloud occurrence that seems to
confirm model predictions of similar changes although cau-
tion is warranted given the ambiguities associated with the use
of passive remote sensing to populate PCT-τ-dependent C his-
tograms [35, 38].

While the TOA radiative signature of climate change is not
expected to emerge from natural variability for decades [57,
58], the δC for tropical cirrus may be accessible to remote
sensing observations in the relatively near future [53, 54]. If
model predictions are realistic, the emergence of this feedback
signal in observations could occur in the 2020s. Identifying
such a signal in measurements (or not) would represent a
unique observational constraint on climate models.
Regardless, use of the existing observational record is produc-
ing intriguing examples of λcldderived from CALIPSO data
[18–20] using the emergent constraint concept [17] that sug-
gests that this signal indeed may be emerging from climate
system noise although caution is warranted [44].

Fig. 4 Cloud radiative effect (Rcld) matrix resulting from multiplying the
cloud fraction with the TOA (a), atmosphere (b), and surface (c) net cloud
radiative kernels, calculated from cloud layer properties derived from A-
Train data over the NorthAtlantic for calendar year 2007 [37]. The sum of
each matrix (Wm−2) is shown in the title. The uncertainty in the net CRE
estimates is approximately 7 W m−2

Curr Clim Change Rep (2017) 3:185–192 189



MBL Clouds

The feedback problem associated withMBL clouds is very near-
ly the mirror image of the high cloud problem. With models
widely disagreeing on the magnitude and even the sign of this
feedback (although evidence is suggesting that it is positive), it is
clear that we are not close to a sufficient understanding of the
physical processes that will drive the climate system one way or
another [4, 36, 40, 42, 43, 48–52]. Our second condition for
solution—observational verification—seems somewhat out of
reach for the cloud coverage problem since the signal of MBL
cloud coverage decrease is not expected to emerge from the
climate system noise until beyond the 2030s [53, 54] although
the existing data record is providing hints about the nature of this
feedback mechanism [21–24]. We argue that focusing on under-
standing the dominant physical processes involved in MBL
cloud coverage changes is a critical activity to which active re-
mote sensing from space can uniquely contribute.

A series of competing processes appear to be at work inMBL
cloud feedbacks. These processes range from how free tropo-
spheric air is mixed into deeper and warmer boundary layers
[36, 48] and how latent heat fluxes required tomaintain a constant
relative humidity dry the MBL [50, 51] to the fact that moist
adiabatic lapse rates become steeper with warming. This latter
process results in higher liquid water paths [36] especially at
colder temperatures and higher latitudes where cloud phase
changes will also vary and additional negative feedbacks could
modulate the overall response [21–24]. Other processes are ex-
pected to play a role including aerosol-cloud interactions [52].
Few of these processes have specifically been constrained obser-
vationally although there is evidence that the overall interannual
responses in many climate models are not consistent with bulk
cloud properties derived frommeasurements [21].While the pro-
cess of mixing dry air into the MBL seems to be gaining consen-
sus as an explanation for why models produce decreasing low-
level clouds, it is important to note that the properties of the free
tropospheric air that mixes depends on the degree to which this
air has beenmodified by shallow penetrative convection [36, 49].

The life cycles of these shallow convective clouds are
thought to be linked to the aerosol-mediated droplet number
via the processes that modulate precipitation formation [36,
50–52]. Quantitative empirical knowledge of these processes
is uniquely providedonly by simultaneous knowledgeof cloud
and precipitation properties within turbulent MBLs [59–64].
An observational capacity for diagnosing CTH, cloud droplet
number, and associated precipitation microphysics in cloud el-
ements is onenecessary aspect toprovide anobservational con-
straint on competing feedbacks and processes that may cause
changes to boundary layer cloud cover over the coming de-
cades. Diagnosing CTH, cloud droplet number, and precipita-
tion microphysics in cloudy vertical columns is an extremely
challenging proposition that cannot be accomplished with any
single instrument but requires combinations of passive and

active remote sensing consistingminimally ofmillimeter radar,
lidar, solar reflectance, and passive microwave measurements
as demonstrated with A-Train data [59–64].

Summary and Conclusions

In a recent discussion of grand challenges, Bony et al. [49] report
that most of the leading advances in our understanding of cloud
feedback and climate processes have come primarily from ideal-
ized modeling, yet there remain major outstanding uncertainties
that must be addressed observationally if we are to reduce the
spread in ECS. It is, therefore, incumbent on the observational
community to keep pace with the questions being posed by the
theoretical community. Because it typically takes a decade or
more to move a new observational platform or concept to space,
the observational community must be thinking well ahead.

Thereal strengthof theA-Trainhasbeen, firstandforemost, to
accurately and unambiguously map the vertical distributions of
hydrometeor layers in the atmosphere. This accurate mapping
relates directly to the occurrence matrix, C, alluded to in BThe
Nature of theCloudResponse—Forcing andFeedback^ section
and illustrated inFig. 3.Additionally, the radar and lidar in theA-
train illustratehowactive remote sensingcharacterizes important
moments of the vertical hydrometeor distributions that can be
combined synergisticallywith passivemeasurements to provide
integral constraints on the columnproperties [65, 66].Withmore
than a decade of A-Train data, opportunities exist for innovative
exploration of this data to increase our understanding of cloud
and precipitation processes and propertieswithin the general cir-
culation. This is especially true with the evolving concept of
using the interannual measurement record to constrain the cloud
responses in climate models [17].

With the A-Train era ending late this decade or earlier as the
active instruments reach end of life, we have argued that there is
very good reason to continue a constellation-based active and
passive measurement strategy.Models predict that δC signals in
cirrus may be identifiable from the natural noise in the system
sometime in the third decade of this century [53, 54] and there-
by provide a unique observational constraint on GCMs and our
understanding of the Earth’s climate. Beyond this, the cloud
feedback decomposition into Kc and C allows us to examine
cloud-circulation coupling using longer data records.
Furthermore, with the technological advances of the last decade
[67–73] and our increasing understanding of how to exploit
multi-instrument, multi-frequency active and passive synergy
that began with the A-Train, the observational community is
well positioned to address the aerosol-cloud-precipitation pro-
cesses that presently drive the large uncertainty in ECS.
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