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Abstract Decadal prediction refers to predictions on
annual, multi-year, and decadal time scales. This paper
reviews major developments in decadal prediction that have
occurred in the past few years, including attribution of tem-
perature anomalies in northern latitudes, the recent slow-
down in the rate of global warming (the “hiatus”), and
mechanisms of decadal predictability that do not involve
interactive ocean circulations. In addition, this paper dis-
cusses certain advances that, in the opinion of the author,
have not been given the attention they deserve in previ-
ous reviews, including a unified framework for quantifying
decadal predictability, empirical models for decadal predic-
tion, defining improved indices of decadal predictability,
and clarification of the relation between power spectra and
predictability.

Keywords Decadal prediction · Decadal predictability

Introduction

Decadal prediction refers to predictions on annual, multi-
year, and decadal time scales. Decadal predictions do not
attempt to predict day-to-day weather patterns, but instead
predict changes in statistical quantities like annual means or
the chance of extremes. Much attention has been focused
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on improving decadal predictions of temperature, precipi-
tation, hurricane activity, droughts, storm tracks, Arctic sea
ice cover, air quality, and the Hadley Circulation. Numer-
ous reviews of decadal prediction exist in the scientific
literature, including a chapter in the fifth assessment report
of the Intergovernmental Panel on Climate Change [55],
books [13], reports from conferences and workshops [66,
92], and peer-reviewed journals [67]. Also, some major sci-
entific projects are focused on decadal prediction [5, 64].
Nevertheless, several interesting developments in decadal
prediction of temperature have occurred since the appear-
ance of these reviews. In addition, in the opinion of the
author, certain important issues have not received the atten-
tion they deserve. The purpose of this paper is to review
these more recent or overlooked developments.

Unified Framework for Quantifying Decadal
Predictability

This section follows closely a predictability framework that
is discussed in more detail in DelSole and Tippett [21].
Decadal predictability can arise from two distinct mecha-
nisms. First, internally generated components of the climate
system, especially in the subsurface ocean, evolve natu-
rally on decadal (and longer) time scales and thus are
predictable because of their persistence or periodicity [4,
10, 30, 42, 60]. This form of predictability is called Initial
Value Predictability. Second, changes in greenhouse gas
concentrations, aerosol concentrations, solar insolation, and
volcanic activity occur on multi-year time scales and alter
the energy balance of the climate system, thereby forc-
ing climate changes on these time scales. This is called
Boundary Condition Predictability or Forced Predictability.
Both mechanisms operate simultaneously, but separating
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their roles in observed temperature variations often is chal-
lenging [33, 81, 84, 85].

Quantifying predictability requires defining the distribu-
tion of a variable under certain conditions. The uncondi-
tional distribution of a variable y at time t is called the
climatological distribution and denoted pt (y). If the climate
system is stationary, then the climatological distribution is
independent of time t and describes the frequency of values
that would be obtained by sampling the system at random
points in time. A more realistic assumption is that the cli-
mate system is cyclostationary; that is, the climatological
distribution is a periodic function of time, primarily on
annual (i.e., 1-year) and diurnal (i.e., 1-day) time scales,
reflecting periodicities in solar insolation. In this case, the
climatological distribution describes the frequency of values
that would be obtained by randomly sampling the system at
the same calendar day and time of day. However, as a result
of anthropogenic and natural climate change, the climato-
logical distribution varies in additional ways, especially in
the form of a shift toward warmer temperatures on centen-
nial time scales. Forced predictability refers to changes in
the climatological distribution.

The distribution of a variable changes after observations
are taken into account. Let ot denote all observations up to
and including time t . The distribution after observations are
taken into account is denoted by the conditional distribu-
tion pt (y|ot ) and called the analysis distribution, following
similar terminology in data assimilation. The analysis distri-
bution differs from the climatological distribution because
observations provide information about the system beyond
that contained by knowing the calendar day, clock time, and
year.

Predictability is concerned with predicting the future
value of a variable y at time t + τ , where τ is a pos-
itive parameter called lead time. The distribution of the
future state given presently known observations is called the
forecast distribution and denoted pt+τ (y|ot ). The forecast
distribution is related to the analysis distribution through the
Markov law

pt+τ (y|ot ) =
∫ ∞

−∞
pt+τ (y|yt ) pt (yt |ot ) dyt ,

forecast dynamics initial
(1)

where pt+τ (y|yt ) is the transition kernel between initial and
final states. The transition kernel is obtained either from
physical laws or from empirical laws inferred from past
observations. In addition, the transition kernel is assumed
to satisfy the Markov property (i.e., the distribution condi-
tioned on previous states depends only on the most recent
state). The integral is a representation of an initial value
problem in which the initial distribution pt (yt |ot ) is propa-
gated forward in time according to physical laws embodied
in the transition kernel pt+τ (y|yt ). If the physical laws are

deterministic, in the sense that a unique future state evolves
from a unique initial state, the forecast distribution still
is probabilistic because of observational uncertainty that
always exist in nature and is expressed through pt (yt |ot ).
On the other hand, if the transition kernel is empirical
and linear, then the initial condition uncertainty often is
neglected and the forecast distribution can be derived from
linear regression (also called a linear inverse model, or
LIM). A variable is said to have no initial value predictabil-
ity if its forecast distribution equals the climatological
distribution:

pt+τ(y|ot )=pt+τ(y) for no initial value predictability.

(2)

The above identity is equivalent to the statement that the
future value of a variable is independent of observations
available at the current time.

Because predictability depends on changes in distribu-
tions, it is natural to quantify predictability by somemeasure
of the difference in distributions. There is no unique measure
of a difference in distributions, but an attractive measure is
relative entropy, which is a central quantity in information
theory and arises naturally in a number of fields, including
statistics, communication, and finance [18]. One compelling
reason for choosing this measure is that it emerges natu-
rally as a measure of financial gain derived from selected
investment or gambling strategies [18]. Additional reasons
for choosing this measure will be given shortly. Rela-
tive entropy is defined as the average difference in the
logarithms of the distributions. Thus, the initial value pre-
dictability associated with a particular forecast distribution
can be measured by

RIV =
∫ ∞

−∞
[
logpt+τ (y|ot ) − logpt+τ (y)

]
pt+τ (y|ot )dy.

(3)

Averaging this quantity over all ot yields mutual informa-
tion [20]:

MIV =
∫ ∞

−∞
RIV p(ot )dot . (4)

RIV depends on ot and generally depends on both t and τ ,
butMIV is an average measure of predictability and depends
only on lead time τ . These measures take simple forms for
Gaussian distributions [24, 56]. Regardless of distribution,
the measure MIV has the following properties [24]:

– It is non-negative.
– It vanishes if and only if the two distributions are equal.
– It is invariant to invertible nonlinear transformations.
– It generalizes naturally to multivariate systems.

The first two properties convey the notion of a “distance”
between two distributions: the measure vanishes when the
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two distributions are equal and is positive otherwise. The
third property implies that predictability is independent of
the variable units or the basis set used to represent the data.

It is important to recognize that changes due to exter-
nal forcing do not automatically contribute to initial value
predictability. For instance, if external forcing causes the
forecast and climatological distributions to shift equally,
then the integrated difference in distributions (3) would not
change. To quantify both types of predictability, we need, in
addition to a forecast distribution, two climatological distri-
butions: one at time t+τ fromwhich to measure initial value
predictability, and one at time t from which to measure
forced predictability. In practice, these two distributions
would be estimated from two simulations: one with the same
forcing at time t applied throughout the integration, and one
with time-evolving forcing for t+τ for all τ . These distribu-
tions are illustrated in Fig. 1a. In this framework, a natural
measure of forced predictability is the average change in the
logarithm of climatological distributions between the initial
and verification times:

MF =
∫ ∞

−∞

∫ ∞

−∞
[
logpt+τ (y) − logpt (y)

]
pt+τ (y|ot )p(ot )dydot .

(5)

This measure of forced predictability was proposed by
Branstator and Teng [8]. It is straightforward to show
that MF is merely the relative entropy between the
two climatological distributions. Adding forced and initial
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Fig. 1 Schematic of the spread of the three distributions relevant to
quantifying decadal predictability (a) and the corresponding relative
entropies (b). Schematics are based on results from Branstator and
Teng [8] for the upper 300-m ocean temperature anomalies in model
simulations [8]

value predictability gives a measure called total climate
predictability:

MT = MIV + MF . (6)

It can be shown that MT can be expressed equivalently
as the difference in logarithms of the forecast and initial
climatology:

MT =
∫ ∞

−∞

∫ ∞

−∞
[
logpt+τ (y|ot )−logpt (y)

]
pt+τ (y|ot )p(ot )dydot .

(7)

A schematic of total, forced, and initial value predictability
is shown in Fig. 1b. Unlike initial value predictability, total
predictability does not always decay monotonically with
lead time, because external forcing can cause changes in the
climatological distribution that increase with time.

The above framework has been applied to a variety of
model simulations of the upper ocean heat content [8–
10]. These studies suggest that initial value predictability
remains statistically significant for roughly a decade in
each ocean basin. However, the precise limit of predictabil-
ity varies widely among models, especially in the North
Atlantic, and locations of maximum predictability differ
between models. Significant model sensitivity of decadal
predictability is characteristic of the current state of the
science.

Explaining Past Changes on Multidecadal Time
Scales

The above discussion is based on theoretical considera-
tions and evidence from model simulations. Another aspect
of decadal predictability is explaining past multidecadal
variations. In particular, a satisfying theory of decadal pre-
dictability ought to explain the major climate variations and
persistent anomalies that have been observed in the past.

The most prominent variation observed on multidecadal
time scales is the ˜1◦C increase in global average tempera-
ture over the past century (see Fig. 2). There exists strong
scientific consensus that this increase is caused by anthro-
pogenic increase in greenhouse gas concentrations [3]. Over
northern latitudes, however, observations show that sur-
face temperatures increased from 1900 to 1940, decreased
from 1940 to 1970, and increased from 1970 to the present
(see Fig. 2a). The cause of these multidecadal fluctuations
is very much debated. Climate models from phase 3 of
the Coupled Model Intercomparison Project (CMIP3) did
not simulate these multidecadal fluctuations, leading many
to conclude that these fluctuations were most likely due
to internal variability [29, 57, 85]. However, some of the
newer generation of models in CMIP5 were found to capture
much of the amplitude and phasing of the multidecadal
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Fig. 2 Annual mean surface temperature anomalies (dots connected
by line segments), relative to the 1951–1980 base period, for (a) north-
ern latitudes (24◦ N–90◦ N) and (b) tropical latitudes (24◦ S–24◦ N).
The smooth solid curve shows a polynomial fit. Data is from the GISS
Surface Temperature Analysis (GISTEMP) [45]. The last year plotted
is 2015

fluctuations [6]. A key point is that most CMIP3 mod-
els omitted or only partly represented the indirect aerosol
effects on cloud lifetime and reflectivity, whereas some
models that included indirect aerosol effects could cap-
ture much of the multidecadal fluctuations. Among those
models for which sulfate aerosol deposition rates are avail-
able, those that most closely reproduced the cooling also
have sulfate aerosol deposition rates most consistent with
ice-core records [39]. Unfortunately, some inconsistencies
always exist in model simulations, and some of these incon-
sistencies raise serious questions about the extent to which
the models give a physically satisfactory explanation of
observed anomalies [94]. These debates are still ongoing. In
addition, forcing by anthropogenic aerosols is very uncer-
tain, especially during the pre-satellite era, so attributing
mid-century cooling to a strong—but highly uncertain—
aerosol forcing rests on a shaky foundation.

The. main alternative hypothesis for multidecadal vari-
ability is that it is caused primarily by internal variability
[12, 70, 87]. Consistent with this, the spatial structure of
observed multidecadal variability of sea surface tempera-
ture is similar to the most predictable component of internal
variability in climate models [29]. However, this hypoth-
esis would imply that surface temperature fluctuations on
the order of 0.5◦C on multidecadal time scales can arise
from internal variability (the number is a typical difference
between multi-model CMIP3 simulations and observations;
e.g., [6]). Many climate models simulate much less internal

variability than this [11, 77, 91]. Whether climate mod-
els simulate the correct magnitude of internal variability
on multidecadal time scales is an essential question in
decadal prediction. Unfortunately, instrumental records are
too short to constrain the variability of surface temperature
at multidecadal time scales. Proxies of land surface temper-
ature suggest consistency between observations and climate
models on continental scales [7]. However, proxies of sea
surface temperature suggest much larger variability (one or
two orders of magnitude) than that simulated by climate
models, especially at low latitudes and long time scales [1,
59]. This result raises serious questions about the ability
of climate models to simulate internal variability at multi-
decadal (and longer) time scales and highlights the need for
better observational constraints on the internal variability of
sea surface temperature.

Recent Slowdown in Warming (the “Hiatus”)

Theories of decadal predictability also should explain
changes on decadal or shorter time scales. The decadal
change that has received the most attention in the recent lit-
erature is the so-called “hiatus” or “pause.” Although global
mean surface temperature has risen by about 0.8 ◦C since
the late nineteenth century [47], the rate of warming began
to slow after the turn of this century, even as the concentra-
tion of atmospheric greenhouse gases increased [65]. This
“hiatus” has been a prominent talking point by climate skep-
tics and politicians, although it will likely be dropped in the
future given the surprisingly large warming in both 2015
and 2016. While the rate of warming has varied consid-
erably over the past century, including periods of cooling
during the 1950s–1970s, the recent slowdown is noteworthy
because it was significantly slower than that predicted by
climate models [38]. The cause of this discrepancy has been
plausibly explained as the combined influence of internal
decadal variability and external forcing. An updated global
surface temperature analysis suggested that global trends
remained steady through the turn of this century [53], but
the updated warming rate still remained a standard devia-
tion or more slower than that predicted by climate models
[38].

In comparing model simulations to observations, one
must recognize that most climate models to which observa-
tions are compared are not initialized based on observations
and therefore the internal variability in these models has
no predictive usefulness. A particular component of internal
variability that has been associated with other hiatus peri-
ods, including the recent one, is the Interdecadal Pacific
Oscillation (IPO), which resembles the PDO [19]. The neg-
ative phase of the IPO is associated with strengthening of
the Pacific trade winds, which enhances heat uptake through
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increased subduction in shallow overturning cells, and
drives cooling in the eastern Pacific through enhanced equa-
torial upwelling [34, 65]. Prescribing these winds associated
with the negative IPO in fully coupled atmosphere-ocean
models produces a cooling that can explain a significant
fraction of the hiatus [34]. A significant fraction of the hia-
tus also can be simulated by imposing cooling in the eastern
equatorial Pacific in climate models [58], or subsampling
model simulations by matching the phase of internal vari-
ability to that of observations [68, 75]. These results are
consistent with some statistical analyses that decompose
northern hemisphere temperatures into forced and internal
variability and find that the recent hiatus is associated with
a cooling in Pacific-based internal variability [84]. Finally,
there is evidence that the hiatus could have been predicted
by CMIP5 models if they had been initialized in the 1990s
[68].

Although variations in the IPO, and its relative the Pacific
Decadal Oscillation (PDO), are widely assumed to be domi-
nated by internal variability, it has been shown that negative
phases of the PDO can occur in response to anthropogenic
aerosols [80]. Although the multi-model mean of CMIP5
models did not in fact reproduce the observed negative
phase of the PDO during the recent hiatus, the response to
anthropogenic aerosol forcing has large uncertainties, espe-
cially from indirect effects on changing cloud albedo and
lifetime, so the role of external human influences by this
mechanism is unclear.

The hiatus also has been partly explained by external
forcing (both internal and forced variability co-exist simul-
taneously, so there is no reason to believe the hiatus should
be explained by only one of these mechanisms). The partic-
ular climate models most often cited in relation to the hiatus
are from phase five of the Coupled Model Intercompari-
son Project (CMIP5), which included observationally-based
estimates of external influences only up to 2000 or 2005.
Beyond those years, external forcing was extrapolated into
the future based on “scenarios” called Representative Con-
centration Pathways, or RCPs. It turns out that during
the recent hiatus period several minor volcanic eruptions
occurred, the solar minimum was deeper than anticipated,
and aerosol forcing was larger than expected, all of which
lead to externally forced cooling that was not included in the
RCPs [78, 82]. Taking account of these cooling influences
brings the predicted temperatures more in line with observa-
tions [54, 78], although some models do not reproduce the
slowdown based on updated external forcings alone [43].

Mechanisms of Decadal Predictability

It is well established that the atmospheric system, by itself,
is predictable for at most a few weeks. Despite this, some

atmospheric components, such as the North Atlantic Oscil-
lation (NAO), can contribute to decadal variability simply
because they have large variance and large spatial scales
[32]. Nevertheless, significant decadal predictability must
arise from the coupling of the atmosphere to slower parts
of the climate system, such as the ocean, sea ice, and soil
moisture. A widely accepted null hypothesis for predictabil-
ity beyond a few weeks is that put forth by Hasselman
(1976): atmospheric variables are essentially unpredictable
on oceanic time scales and thus act as white noise forcing
on the oceanic surface layers, which in turn integrates atmo-
spheric heat fluxes to produce slowly varying SST anoma-
lies [48]. In this mechanism, the uppermost ocean layer
interacts only thermodynamically with the atmosphere. In
the case of a well-mixed layer, energy balance yields the
following equation for ocean temperature T :

ρocpH
dT

dt
= −λT + Q, (8)

where Q is the surface heat flux into the ocean, ρo is the
density of seawater (≈ 1000 kg m−3), cp is the specific heat
of seawater (≈ 4128 J kg−1 K−1), and H is the depth of the
mixed layer. To the extent that surface heat flux Q behaves
as white noise forcing, the above equation reduces to a first
order stochastically forced differential equation whose solu-
tions are well known [48]. The parameter λ is a feedback
factor representing a damping to climatological conditions
and has a typical value of 20 W m−2 K−1 [36], which for a
mixed layer depth of 50 m, leads to a damping rate of

λ

ρocpH
≈ (4 months)−1 . (9)

However, this time scale is somewhat misleading because
the oceanic mixed layer undergoes a large seasonal cycle.
For instance, the mixed layer depth during winter rou-
tinely exceeds 150 m and 450 m in the North Pacific and
North Atlantic, respectively, giving damping rates exceed-
ing 1 year−1 and (3 years)−1, at least locally. Modifications
of the above stochastic model to account for seasonal vari-
ations in the mixed layer have been proposed and can
improve the fit to observations, especially by capturing the
“reemergence” phenomenon [31]. Also, it is well known
that temperature anomalies tend to be more persistent on
longer spatial scales, suggesting that the feedback parame-
ter depends on the spatial scale of the temperature anomaly
[35, 74].

The most prominent components of decadal variability
tend to be large scale and therefore cannot be explained by
a set of spatially independent ocean mixed-layer models.
A more realistic model of decadal variability is provided
by atmospheric general circulation models coupled to slab
ocean mixed layer models, which we call slab models. In
slab models, the ocean temperature at each geographic loca-
tion is governed by an equation of the type (8), but the heat
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flux forcing Q is determined by an overlying atmospheric
general circulation model. The surface heat flux arising in
these models tends to fluctuate with characteristic spatial
structures and with certain dependencies on the distribution
of SSTs, but often still has a white power spectrum.

Slab models can reproduce the observed simultaneous
regression between the AMO and SST, sea level pressure,
and winds over the North Atlantic [15]. Slab models also
can generate variability similar to the PDO [73]. To be sure,
not all details of this variability matches observations. For
instance, slab models do not clearly produce the tropical
expressions of these components [76]. In some locations,
the lag-correlation between AMO and surface heat flux in
slab models has the wrong sign relative to coupled models
and observations [44, 72, 95], which impacts the atmo-
spheric response to the AMO. On the other hand, these
surface heat fluxes tend to be in close balance with ocean
heat transport convergence on long time scales [16], so it
is unclear whether these fluxes play a driving role or are
simply a response to AMO variability. Also, the AMO is
anti-correlated with subsurface temperatures and surface
salinity in the tropical Atlantic [90]. These features can-
not be explained by slab models because slab models have
a single temperature in a column (due to the well-mixed
assumption) and do not contain salinity as a prognostic
variable. Again, whether these relations are associated with
driving mechanisms or a response to AMO variability is
unclear. Attempts to diagnose causality through time-lagged
covariances are problematic because the physical relation
is presumed to depend on time scale, and isolating certain
time scales by temporal filtering can significantly distort
the cross correlation between atmospheric and oceanic vari-
ables in a way that depends on the choice of filter [37].

Predictability can be explored systematically using methods
discussed in “Identifying theMost Predictable Components”.
These methods reveal that the most predictable components
of fully coupled models are remarkably similar to those of
slab models [83], suggesting that the essential physics of
many forms of decadal predictability do not involve inter-
active ocean dynamics. On the other hand, studies show
that components like the AMO and PDO can be predicted
with more skill than univariate regression models by includ-
ing additional predictors associated with ocean dynamics
(e.g., meridional overturning circulation or ENSO) [71, 86],
suggesting that ocean dynamics augments or modulates
decadal variability that can occur in the absence of ocean
dynamics.

Recently, a very different hypothesis about AMO vari-
ability has been proposed: some studies argue that, during
the past century and a half, AMO variability has been
forced primarily by aerosol emissions and periods of vol-
canic activity [6]. Again, some aspects of the simulations
used in these studies are at odds with observations [94].

In any case, the existence of competing hypotheses for the
same observations suggest that the mechanisms of decadal
predictability are far from settled science.

Decadal Predictions

Multi-year predictions based on dynamical models have
been discussed extensively [55]. Predictions based on
empirical models, in contrast, have received much less
attention, and thus will be our focus here. Empirical pre-
dictions provide a valuable tool in decadal predictabil-
ity because they are economical to perform, they serve
as benchmarks for dynamical model forecasts, their pre-
dictability can be diagnosed comprehensively by methods
in linear algebra, and they are sufficiently skillful as to be
useful in their own right. Energy balance models provide
the simplest physically based prediction models for global
average temperature [46]. Recently, multivariate regression
models that incorporate time lag information in climate
forcings and include components of internal variability,
such as ENSO, have been developed [62]. These models can
account for a significant fraction of multidecadal variability
in global average temperature and have some explanatory
power. As an example, one such model attributes the rapid
rise in global average temperatures from 1992–1998 to
the combined influences of anthropogenic global warm-
ing, ENSO-induced warming, and the recovery from the
Pinatubo eruption in 1991 [61].

Empirical prediction models for internal variability often
are of the form

x̂t+τ = Lτxt (10)

where xt is the state vector at time t , Lτ is a transition
matrix, x̂t+τ is the predicted state vector at time t + τ . In
most cases, the state space is defined by the leading prin-
cipal components of the domain being predicted. A linear
inverse model (LIM) defines the transition matrix as

Lτ = Lτ
1, (11)

where L1 is the least squares prediction operator for a 1-
year lag. These models show that for short leads (e.g., a year
or two), transient growth mechanisms associated with non-
orthogonality of eigenmodes are important. For larger leads,
predictability is dominated by the persistence of the least
damped modes, which often have a strong projection on the
AMO and PDO [69, 93]. The skill of linear inverse models
for multi-year leads is comparable to, or even better than,
the skill of dynamical model hindcasts [49, 69].

A complementary approach to estimating empirical mod-
els from observations is to estimate them from dynamical
model simulations. This approach is attractive because the
forced and internal components can be analyzed separately,
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whereas these components are superposed in observations.
In addition, the available observational record is relatively
short—only 15 decades—whereas dynamical model output
is orders of magnitude larger, thereby providing a much
larger sample size for estimating empirical models. Of
course, dynamical models are imperfect and hence empir-
ical relations derived from them may not be realistic or
may miss important physical relations. This deficiency can
be mitigated to some extent by a multi-model approach
in which many dynamical model simulations are pooled
together. Another attractive aspect is that the training sam-
ple is completely independent of observations, hence the
entire observational record becomes a genuinely indepen-
dent verification sample. This aspect is especially attractive
in light of the fact that cross-validation techniques usually
are employed to estimate empirical models from observa-
tions. In cross-validation, some portion of the sample (often
a decade) is withheld from the training process and the
remaining sample used to train the model, then the resulting
model is used to predict the withheld sample. Unfortunately,
different empirical models are generated in this procedure,
thereby complicating the interpretation of predictability.
Also, cross validation gives inflated estimates of skill if the
data are serially correlated, which is certainly the case when
trends or multidecadal variability is present. These issues do
not automatically discredit empirical estimation, but they do
raise questions that have to be addressed carefully. These
questions are avoided completely if the empirical model is
derived from dynamical model output.

Individual predictions for forced and internal variability
can be added together to produce a climate prediction. By
itself, the forced component is independent of lead time, and
thus, its skill is independent of lead time. Adding predic-
tions of internal variability to the prediction of the forced
component adds skill for 2–5 years, depending on spatial
structure [23]. This result demonstrates that initial condition
information can improve decadal prediction skill for a few
years. This improvement occurs even when the empirical
model for internal variability is estimated from dynamical
model simulations rather than from observations [23]. In
contrast to current decadal predictions based on dynamical
models, this type of decadal prediction system avoids initial-
ization shock because the regression model does not require
initialization of a full ocean model, and avoids climate drift
because the regression model can be estimated from equili-
brated control runs. This type of decadal prediction system
also is extremely economical relative to AOGCMs.

Identifying the Most Predictable Components

Studies of decadal predictability often focus on the pre-
dictability of certain climate indices, such as the AMO or

PDO. The AMO is simply a spatial average of the SSTs
over the North Atlantic and the PDO is a component in the
North Pacific with maximum variance. These indices have
proven useful for certain kinds of studies, but they were not
defined for the explicit purpose of studying decadal pre-
dictability. The question arises as to whether there exists
a systematic, optimal method for identifying indices of
decadal predictability.

One approach to the above question is to find indices
that maximize a measure of predictability. For forced pre-
dictability, the appropriate measure is MF (7), which in the
case of Gaussian distributions becomes

MF = −1

2
log

|�F |
|�U | + 1

2
tr

[
(�F − �U)�−1

U

]

+ 1

2

(
μF − μU

)T
�−1

U

(
μF − μU

)
, (12)

where μF and μU are the means, and �F and �U are
covariance matrices, for the forced and unforced systems,
respectively (i.e., forced and control simulations). The terms
in the top line measure dispersion while terms in the bot-
tom line measure signal [56]. The linear combination of
variables that maximize dispersion are found by solving the
generalized eigenvalue problem

�Fq = λ�Uq. (13)

The linear combination of variables that maximize the sig-
nal term is found from Fisher’s linear discriminant. Finally,
the linear combination of variables that maximize all terms
in MF except the log-term are called the most detectable
components, because it can be shown that they maximize the
average detection statistic in optimal fingerprinting [52].

For initial value predictability, the natural approach is to
identify projections that maximize the predictability mea-
sure MIV defined in Eq. 4. If the distributions are Gaussian,
then this measure reduces to

MIV = −1

2
log

|�E |
|�C | , (14)

where �E and �C are the covariance matrices for the
forecast and climatological distributions [24]. The linear
combination of variables that maximize this measure are
found by solving the generalized eigenvalue problem

�Eq = λ�Cq. (15)

The resulting components are called the most predictable
components of the forecast system. In the context of
ensemble forecasting, �E is estimated from differences
between ensemble member and ensemble mean. This tech-
nique appears in various guises and under various names,
including Signal-to-Noise Maximizing EOFs, Predictable
Component Analysis, andMultivariate Analysis of Variance
(MANOVA) [28, 79, 89].
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It is instructive to consider the most predictable compo-
nents of a linear regression model, which has the form

xt+τ = Lτxt + εt . (16)

A standard result in regression theory is that the fore-
cast error covariance matrix is related to the time-lagged
covariance matrix as

�E = �0 − �τ�
−1
0 �T

τ , (17)

where �τ is the time-lagged covariance matrix of xt . Sub-
stituting (17) into (15) leads to an eigenvalue problem
that is equivalent to Canonical Correlation Analysis (CCA)
[24]. Thus, the most predictable components of a linear
regression model are precisely the patterns that maximize
correlation between initial and final states. These compo-
nents also can be derived as the singular vectors of the
propagator, provided suitable vector norms are used [25].

One shortcoming of maximizing predictability at a sin-
gle lead is that the results depend on the choice of lead. For
instance, the most predictable component at 1 year differs
from that at 5 years. However, the space spanned by the
most predictable components often is the same over a range
of lead times. To derive predictable components in a way
that avoids a lead-time dependence, one can maximize the
integral of predictability over lead time. Such integrals are
called integral time scales and are common in turbulence
studies. Unfortunately, integrating MIV leads to a nonlin-
ear optimization problem even for Gaussian distributions.
However, integrating the related measure

P = 1 − e−2MIV = 1 − |�F |
|�C | , (18)

leads to an optimization problem that can be solved by
eigenvector methods [26]. This approach is called Average
Predictability Component (APT) Analysis and has been used
to clarify the spatial structure of decadal predictability glob-
ally, and in distinct ocean basins and continents [29, 50,
51].

A practical limitation of the above methods is that, in
most applications, the covariance matrices estimated from
data are singular, owing to the fact that the number of
grid points far exceeds the sample size. Consequently, solv-
ing the above maximization problems requires some sort
of regularization procedure. The most common regular-
ization is to project the data onto a reduced dimension
subspace, usually the space spanned by the leading empir-
ical orthogonal functions (EOFs) of the data. EOFs can be
problematic because they depend on the data and complicate
significance testing. An alternative basis set that has sev-
eral attractive properties are the eigenvectors of the Laplace
operator. These eigenvectors can be ordered by a measure
of spatial scale, hence they provide an objective basis for

reducing the dimension of a data set by filtering out small-
scale variability. This approach is attractive given that most
mechanisms of decadal predictability involve large-scale
spatial patterns. In addition, Laplacian eigenvectors depend
only on the geometry of the domain and therefore are inde-
pendent of the data, a feature that is attractive for small
sample sizes. Recently, new algorithms have been discov-
ered for computing Laplacian eigenfunctions over arbitrary
domains [27].

A key question in the above approaches is how many
basis vectors should be chosen in a particular application.
This question is tantamount to model selection question and
is an active area of research [96]. For large data sets, a typ-
ical approach is to split the data into two parts: one part,
called the training set, for deriving the predictable com-
ponents, and another part, called the verification set, for
verifying the predictability of the components.

The above framework applies for Gaussian distributions
and analyzes only the first and second moments of ran-
dom variables. However, the climate system is nonlinear
and probably contains predictable variability that cannot be
captured by the first two moments. For instance, intermit-
tent patterns arising in turbulent dynamical systems tend
to have low variance but play an important role in turbu-
lence. Recently, methods based on Laplacian eigenmaps and
diffusion maps have been proposed for representing a high-
dimensional data set with a low dimensional description in
a way that preserves information about the nonlinear mani-
fold in which the data lies [2, 17, 41]. These methods have
proven capable of identifying intermittent structures in cli-
mate simulations that would otherwise go undetected with
EOF-type methods [41].

Predictability and the Power Spectrum

It is sometimes suggested that the predictability time scale
can be identified with the peak of a power spectrum. For
instance, the AMO index has an apparent peak around
50–70 years [30]. However, no prediction of AMO has
demonstrated skill anywhere close to 50 years. How can a
process have a spectral peak around 50 years and yet have
predictability much less than that? The answer is that the
location of a spectral peak need not have anything to do
with predictability. Instead, predictability time scale often
is related to the width of a spectral peak [14, 24], as we
demonstrate below in the context of an analytically solvable
model.

We consider the classical beta-plane model for Rossby
waves:

∂ζ

∂t
= −U

∂ζ

∂x
− β

∂ψ

∂x
, (19)
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where ζ = ∇2ψ is vorticity, ψ is streamfunction, U is
a zonally symmetric background zonal flow, and the other
variables have their usual meaning [88]. The beta-plane
model is barotropic and hence its solutions have no direct
relation to temperature. We use it here merely to illustrate
certain basic concepts that hold in any damped linear system
that supports wave solutions. Because the system is linear
and deterministic, its solutions are predictable for an infinite
amount of time. To study a system with finite predictability,
we add stochastic forcing and Rayleigh damping:

∂ζ

∂t
= −U

∂ζ

∂x
− β

∂ψ

∂x
− rζ + ε, (20)

where r is the dissipation rate and ε is white noise forc-
ing with zero mean. Since the coefficients are constant, the
equation supports eigenmode solutions of the form

ψ(x, y, t) = ψk,l(t) exp [i(kx + ly)] . (21)

Fourier transform methods yield the following equation for
wavenumbers k and l:
∂ψk,l

∂t
= λψk,l + εk,l, (22)

where λ = λR + iλI is the corresponding eigenvalue with

λR = −r and λI = −k

(
U − β

k2 + l2

)
. (23)

Because the coefficients in the beta-plane model are con-
stant, each Fourier mode can be solved independently of the
others. Therefore, we focus only on a specific value of k and
l, in which case the k, l subscripts can be dropped to yield
the simple stochastic differential equation

∂ψ

∂t
= λψ + ε, (24)

where ε is assumed to be a (complex) white noise process
with covariance

E[ε(t)ε∗(t ′)] = σ 2
ε δ(t − t ′), (25)

where E[·] denotes the expectation operator and the asterisk
denotes the complex conjugate. Because the forcing term
ε is random, only the statistics of the solution are rele-
vant. Methods for solving these statistics are standard [22,
24, 40]. In the case of a deterministic initial condition, the
variance of the ensemble of solutions grows with time as

σ 2
t = E

[
|(ψt − E[ψt ])|2

]
= σ 2

ε

(
1 − e2λRt

−2λR

)
, (26)

the stationary time-lagged covariance is

cτ =E
[
(ψt+τ −E[ψt+τ ]) (ψt −E[ψt ])∗

]=eλτ σ 2∞, for τ ≥ 0,

(27)

and the power spectrum is

s(ω) = σ 2
ε

|λ − iω|2 = σ 2
ε

λ2R + (ω − λI )2
. (28)

Predictability of this system can be measured by MIV ,
which for Gaussian distributions reduces to Eq. 14, and for
the present scalar system reduces to

MIV = −1

2
log

σ 2
t

σ 2∞
= −1

2
log

(
1 − e2λRt

)
. (29)

This measure decays monotonically with lead time.
Stochastic models have limited predictability because ran-
dom noise in the dynamics renders the future uncertain even
with perfect initial conditions. The variance of the ensem-
ble of solutions (26) can be viewed as measuring errors of
forecasts starting from the same initial condition. The error
variance saturates at σ 2∞ at asymptotically long times, as
illustrated in Fig. 3a. The limit of predictability τP usually
is defined as the time at which the error variance exceeds
some pre-chosen fraction α of the saturation variance [63].
From (26), this time scale is

τP = log(1 − α)

2λR

. (30)

This time scale is illustrated in Fig. 3a. Note that the limit
of predictability depends only on the real part of the eigen-
value, which in turn depends only on the damping rate in
the model. Thus, the limit of predictability in this model is
determined by the damping time scale.

The above definition of predictability limit is of course
arbitrary. However, variance depends only on λR , hence any
definition of a predictability time scale derived from vari-
ance would depend only on the real part of the eigenvalue.

The power spectrum (28) has a simple interpretation: the
spectrum peaks at ω = λI and decays asymptotically as ω−2

for large frequencies. These features are illustrated in
Fig. 3b. Thus, the location of the spectral peak is deter-
mined by the imaginary part of the eigenvalue, which is the
Rossby frequency. The real part of the eigenvalue turns out
to effect the width of the spectral peak. For instance, the
width of the spectral peak can be measured by the full width
at half-maximum (i.e., the distance between two points on
the spectral curve that are at half the maximum amplitude).
This width is indicated in Fig. 3b. The two frequencies at
half-maximum are ω = λI ± λR , hence the width is 2|λR|,
which depends only on the real part of the eigenvalue. These
results demonstrate that, in this simple model, the location
of the spectral peak is independent of predictability. Instead,
predictability is reflected by the width of the spectral peak–
narrow peaks correspond to high predictability while broad
peaks correspond to low predictability. In the limit of no
predictability, the spectrum is flat, corresponding to white
noise.
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Fig. 3 Results from a stochastically forced linear differential equa-
tion: error growth as a function of lead time (a), power spectrum
(b), and autocorrelation function (c). The curves are generated from
Eqs. 26–28 for λR = −1 and λI = 4.5. The limit of predictability is
based on the fraction α = 80%

The autocorrelation function provides a complementary
perspective of the above concepts. The autocorrelation func-
tion is defined as

ACF = cτ

c0
= eλτ = eλRτ (cos(λI τ ) + i sin(λI τ )) , (31)

the real part of which is illustrated in Fig. 3c. Note that
the autocorrelation function is the product of an exponen-
tially decaying function and a sinusoid. The exponential
function defines the envelope of the autocorrelation function
while the sinusoid defines the oscillatory part. The envelope
decays with an e-folding time −1/λR while the oscillatory
part has period 2π/λI . Thus, based on the previous discus-
sion, predictability is reflected by the envelope, while the
spectral peak is reflected by the oscillation frequency. This
example illustrates how predictability and oscillation fre-
quency characterize different aspects of the autocorrelation
function, and in particular how the oscillation frequency can
differ from predictability.

Conclusion: Future Prospects

In regards to future prospects, some trends are clear: long
standing assumptions about the mechanisms of decadal pre-
dictability are currently being questioned intensely [15],
so it is likely that further progress will be made in this
area. Also, because the effective sample size in decadal
predictability is small, comparison between models and
observations is challenging and is likely to drive new sta-
tistical techniques and new analyses of different kinds of
data, especially paleo-records. Research stimulated by the
recent slowdown in global surface warming has lead to
a better understanding of decadal variability in the ocean
and of the role of decadal changes in volcanic forcing
and solar variability, which is likely to be exploited in
future forecast systems. The importance of improving ocean
observations to track ocean heat uptake also has become
clear. On the other hand, there are a number of open ques-
tions that do not seem to be the focus of any coordinated
research. For instance, dynamical models differ consid-
erably in their internal variability [10], revealing a large
uncertainty in the physical modeling of decadal variability.
Indeed, some analyses suggest that current climate mod-
els grossly underestimate variability on multidecadal and
longer time scales [1, 59]. These potential inadequacies war-
rant further research. Some “low-hanging fruit” also can
be exploited. For instance, simple energy balance models
and empirical models have been shown to give skillful pre-
dictions of temperature variations for years. It seems that
these models should be used more routinely for decadal
predictions.
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